Properties

Label 275.2.z.b.224.1
Level $275$
Weight $2$
Character 275.224
Analytic conductor $2.196$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(49,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.z (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 11x^{14} + 56x^{12} - 141x^{10} + 551x^{8} - 1245x^{6} + 1400x^{4} + 125x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 224.1
Root \(-2.34600 - 0.762262i\) of defining polynomial
Character \(\chi\) \(=\) 275.224
Dual form 275.2.z.b.124.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.48388 + 2.04238i) q^{2} +(-2.34600 - 0.762262i) q^{3} +(-1.35140 - 4.15918i) q^{4} +(5.03801 - 3.66033i) q^{6} +(1.99105 - 0.646930i) q^{7} +(5.69802 + 1.85140i) q^{8} +(2.49563 + 1.81318i) q^{9} +(-1.64693 + 2.87882i) q^{11} +10.7876i q^{12} +(0.757336 - 1.04238i) q^{13} +(-1.63319 + 5.02644i) q^{14} +(-5.16042 + 3.74926i) q^{16} +(-1.75822 - 2.41998i) q^{17} +(-7.40641 + 2.40649i) q^{18} +(-0.664789 + 2.04601i) q^{19} -5.16413 q^{21} +(-3.43582 - 7.63548i) q^{22} +8.77882i q^{23} +(-11.9563 - 8.68677i) q^{24} +(1.00515 + 3.09354i) q^{26} +(-0.122903 - 0.169161i) q^{27} +(-5.38140 - 7.40686i) q^{28} +(0.189313 + 0.582646i) q^{29} +(2.94887 + 2.14248i) q^{31} -4.12048i q^{32} +(6.05812 - 5.49833i) q^{33} +7.55150 q^{34} +(4.16875 - 12.8301i) q^{36} +(-1.77921 + 0.578100i) q^{37} +(-3.19227 - 4.39378i) q^{38} +(-2.57128 + 1.86814i) q^{39} +(-1.57810 + 4.85689i) q^{41} +(7.66294 - 10.5471i) q^{42} +5.17287i q^{43} +(14.1992 + 2.95944i) q^{44} +(-17.9297 - 13.0267i) q^{46} +(6.94907 + 2.25789i) q^{47} +(14.9643 - 4.86218i) q^{48} +(-2.11737 + 1.53836i) q^{49} +(2.28012 + 7.01749i) q^{51} +(-5.35892 - 1.74122i) q^{52} +(-1.72939 + 2.38030i) q^{53} +0.527864 q^{54} +12.5428 q^{56} +(3.11919 - 4.29320i) q^{57} +(-1.47090 - 0.477925i) q^{58} +(2.00682 + 6.17636i) q^{59} +(0.406490 - 0.295332i) q^{61} +(-8.75154 + 2.84355i) q^{62} +(6.14191 + 1.99563i) q^{63} +(-1.90523 - 1.38423i) q^{64} +(2.24019 + 20.5318i) q^{66} +7.80964i q^{67} +(-7.68907 + 10.5831i) q^{68} +(6.69176 - 20.5951i) q^{69} +(9.14526 - 6.64442i) q^{71} +(10.8632 + 14.9519i) q^{72} +(10.5730 - 3.43539i) q^{73} +(1.45943 - 4.49166i) q^{74} +9.40812 q^{76} +(-1.41672 + 6.79732i) q^{77} -8.02363i q^{78} +(4.33558 + 3.14998i) q^{79} +(-2.70035 - 8.31082i) q^{81} +(-7.57793 - 10.4301i) q^{82} +(-6.37474 - 8.77408i) q^{83} +(6.97880 + 21.4785i) q^{84} +(-10.5650 - 7.67591i) q^{86} -1.51119i q^{87} +(-14.7141 + 13.3545i) q^{88} +4.32336 q^{89} +(0.833541 - 2.56538i) q^{91} +(36.5127 - 11.8637i) q^{92} +(-5.28493 - 7.27408i) q^{93} +(-14.9230 + 10.8422i) q^{94} +(-3.14089 + 9.66666i) q^{96} +(0.206696 - 0.284493i) q^{97} -6.60723i q^{98} +(-9.32995 + 4.19829i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 12 q^{4} + 26 q^{6} + 10 q^{9} - 10 q^{11} - 32 q^{14} - 40 q^{16} + 2 q^{19} - 24 q^{21} - 50 q^{24} - 28 q^{26} - 38 q^{29} + 12 q^{31} + 40 q^{34} + 42 q^{36} - 18 q^{39} - 8 q^{41} + 56 q^{44}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.48388 + 2.04238i −1.04926 + 1.44418i −0.159812 + 0.987148i \(0.551089\pi\)
−0.889449 + 0.457035i \(0.848911\pi\)
\(3\) −2.34600 0.762262i −1.35446 0.440092i −0.460273 0.887777i \(-0.652249\pi\)
−0.894191 + 0.447685i \(0.852249\pi\)
\(4\) −1.35140 4.15918i −0.675700 2.07959i
\(5\) 0 0
\(6\) 5.03801 3.66033i 2.05676 1.49432i
\(7\) 1.99105 0.646930i 0.752545 0.244517i 0.0924689 0.995716i \(-0.470524\pi\)
0.660076 + 0.751199i \(0.270524\pi\)
\(8\) 5.69802 + 1.85140i 2.01456 + 0.654569i
\(9\) 2.49563 + 1.81318i 0.831876 + 0.604393i
\(10\) 0 0
\(11\) −1.64693 + 2.87882i −0.496568 + 0.867998i
\(12\) 10.7876i 3.11410i
\(13\) 0.757336 1.04238i 0.210047 0.289105i −0.690975 0.722879i \(-0.742818\pi\)
0.901022 + 0.433774i \(0.142818\pi\)
\(14\) −1.63319 + 5.02644i −0.436489 + 1.34337i
\(15\) 0 0
\(16\) −5.16042 + 3.74926i −1.29010 + 0.937316i
\(17\) −1.75822 2.41998i −0.426430 0.586931i 0.540699 0.841216i \(-0.318160\pi\)
−0.967129 + 0.254285i \(0.918160\pi\)
\(18\) −7.40641 + 2.40649i −1.74571 + 0.567215i
\(19\) −0.664789 + 2.04601i −0.152513 + 0.469387i −0.997900 0.0647668i \(-0.979370\pi\)
0.845387 + 0.534154i \(0.179370\pi\)
\(20\) 0 0
\(21\) −5.16413 −1.12690
\(22\) −3.43582 7.63548i −0.732518 1.62789i
\(23\) 8.77882i 1.83051i 0.402874 + 0.915255i \(0.368011\pi\)
−0.402874 + 0.915255i \(0.631989\pi\)
\(24\) −11.9563 8.68677i −2.44057 1.77318i
\(25\) 0 0
\(26\) 1.00515 + 3.09354i 0.197126 + 0.606693i
\(27\) −0.122903 0.169161i −0.0236526 0.0325550i
\(28\) −5.38140 7.40686i −1.01699 1.39977i
\(29\) 0.189313 + 0.582646i 0.0351545 + 0.108195i 0.967094 0.254419i \(-0.0818844\pi\)
−0.931939 + 0.362614i \(0.881884\pi\)
\(30\) 0 0
\(31\) 2.94887 + 2.14248i 0.529633 + 0.384801i 0.820221 0.572047i \(-0.193851\pi\)
−0.290587 + 0.956848i \(0.593851\pi\)
\(32\) 4.12048i 0.728405i
\(33\) 6.05812 5.49833i 1.05458 0.957136i
\(34\) 7.55150 1.29507
\(35\) 0 0
\(36\) 4.16875 12.8301i 0.694792 2.13835i
\(37\) −1.77921 + 0.578100i −0.292500 + 0.0950391i −0.451592 0.892225i \(-0.649144\pi\)
0.159091 + 0.987264i \(0.449144\pi\)
\(38\) −3.19227 4.39378i −0.517855 0.712766i
\(39\) −2.57128 + 1.86814i −0.411734 + 0.299142i
\(40\) 0 0
\(41\) −1.57810 + 4.85689i −0.246458 + 0.758519i 0.748935 + 0.662643i \(0.230565\pi\)
−0.995393 + 0.0958763i \(0.969435\pi\)
\(42\) 7.66294 10.5471i 1.18242 1.62746i
\(43\) 5.17287i 0.788856i 0.918927 + 0.394428i \(0.129057\pi\)
−0.918927 + 0.394428i \(0.870943\pi\)
\(44\) 14.1992 + 2.95944i 2.14061 + 0.446152i
\(45\) 0 0
\(46\) −17.9297 13.0267i −2.64359 1.92068i
\(47\) 6.94907 + 2.25789i 1.01363 + 0.329347i 0.768298 0.640093i \(-0.221104\pi\)
0.245329 + 0.969440i \(0.421104\pi\)
\(48\) 14.9643 4.86218i 2.15991 0.701796i
\(49\) −2.11737 + 1.53836i −0.302482 + 0.219766i
\(50\) 0 0
\(51\) 2.28012 + 7.01749i 0.319281 + 0.982645i
\(52\) −5.35892 1.74122i −0.743149 0.241464i
\(53\) −1.72939 + 2.38030i −0.237549 + 0.326959i −0.911102 0.412180i \(-0.864767\pi\)
0.673553 + 0.739139i \(0.264767\pi\)
\(54\) 0.527864 0.0718332
\(55\) 0 0
\(56\) 12.5428 1.67610
\(57\) 3.11919 4.29320i 0.413147 0.568648i
\(58\) −1.47090 0.477925i −0.193139 0.0627547i
\(59\) 2.00682 + 6.17636i 0.261266 + 0.804094i 0.992530 + 0.121999i \(0.0389306\pi\)
−0.731264 + 0.682094i \(0.761069\pi\)
\(60\) 0 0
\(61\) 0.406490 0.295332i 0.0520457 0.0378134i −0.561458 0.827505i \(-0.689759\pi\)
0.613504 + 0.789692i \(0.289759\pi\)
\(62\) −8.75154 + 2.84355i −1.11145 + 0.361131i
\(63\) 6.14191 + 1.99563i 0.773808 + 0.251425i
\(64\) −1.90523 1.38423i −0.238154 0.173029i
\(65\) 0 0
\(66\) 2.24019 + 20.5318i 0.275748 + 2.52730i
\(67\) 7.80964i 0.954099i 0.878876 + 0.477050i \(0.158294\pi\)
−0.878876 + 0.477050i \(0.841706\pi\)
\(68\) −7.68907 + 10.5831i −0.932437 + 1.28339i
\(69\) 6.69176 20.5951i 0.805594 2.47936i
\(70\) 0 0
\(71\) 9.14526 6.64442i 1.08534 0.788548i 0.106736 0.994287i \(-0.465960\pi\)
0.978607 + 0.205740i \(0.0659600\pi\)
\(72\) 10.8632 + 14.9519i 1.28024 + 1.76210i
\(73\) 10.5730 3.43539i 1.23748 0.402082i 0.384061 0.923308i \(-0.374525\pi\)
0.853419 + 0.521226i \(0.174525\pi\)
\(74\) 1.45943 4.49166i 0.169655 0.522145i
\(75\) 0 0
\(76\) 9.40812 1.07919
\(77\) −1.41672 + 6.79732i −0.161450 + 0.774626i
\(78\) 8.02363i 0.908498i
\(79\) 4.33558 + 3.14998i 0.487791 + 0.354401i 0.804334 0.594177i \(-0.202522\pi\)
−0.316543 + 0.948578i \(0.602522\pi\)
\(80\) 0 0
\(81\) −2.70035 8.31082i −0.300039 0.923425i
\(82\) −7.57793 10.4301i −0.836842 1.15181i
\(83\) −6.37474 8.77408i −0.699719 0.963080i −0.999958 0.00921619i \(-0.997066\pi\)
0.300239 0.953864i \(-0.402934\pi\)
\(84\) 6.97880 + 21.4785i 0.761450 + 2.34350i
\(85\) 0 0
\(86\) −10.5650 7.67591i −1.13925 0.827715i
\(87\) 1.51119i 0.162017i
\(88\) −14.7141 + 13.3545i −1.56853 + 1.42359i
\(89\) 4.32336 0.458275 0.229137 0.973394i \(-0.426409\pi\)
0.229137 + 0.973394i \(0.426409\pi\)
\(90\) 0 0
\(91\) 0.833541 2.56538i 0.0873788 0.268924i
\(92\) 36.5127 11.8637i 3.80671 1.23688i
\(93\) −5.28493 7.27408i −0.548021 0.754287i
\(94\) −14.9230 + 10.8422i −1.53920 + 1.11829i
\(95\) 0 0
\(96\) −3.14089 + 9.66666i −0.320566 + 0.986599i
\(97\) 0.206696 0.284493i 0.0209868 0.0288859i −0.798395 0.602135i \(-0.794317\pi\)
0.819381 + 0.573249i \(0.194317\pi\)
\(98\) 6.60723i 0.667431i
\(99\) −9.32995 + 4.19829i −0.937695 + 0.421944i
\(100\) 0 0
\(101\) 12.7011 + 9.22791i 1.26381 + 0.918211i 0.998938 0.0460722i \(-0.0146704\pi\)
0.264872 + 0.964284i \(0.414670\pi\)
\(102\) −17.7158 5.75622i −1.75413 0.569951i
\(103\) −6.35297 + 2.06420i −0.625977 + 0.203392i −0.604792 0.796383i \(-0.706744\pi\)
−0.0211846 + 0.999776i \(0.506744\pi\)
\(104\) 6.24518 4.53739i 0.612391 0.444928i
\(105\) 0 0
\(106\) −2.29528 7.06414i −0.222937 0.686130i
\(107\) −14.8441 4.82313i −1.43503 0.466269i −0.514685 0.857379i \(-0.672091\pi\)
−0.920344 + 0.391110i \(0.872091\pi\)
\(108\) −0.537481 + 0.739779i −0.0517191 + 0.0711852i
\(109\) −11.5070 −1.10217 −0.551087 0.834448i \(-0.685787\pi\)
−0.551087 + 0.834448i \(0.685787\pi\)
\(110\) 0 0
\(111\) 4.61469 0.438007
\(112\) −7.84912 + 10.8034i −0.741672 + 1.02082i
\(113\) 8.60538 + 2.79606i 0.809526 + 0.263031i 0.684397 0.729110i \(-0.260066\pi\)
0.125129 + 0.992140i \(0.460066\pi\)
\(114\) 4.13986 + 12.7412i 0.387733 + 1.19332i
\(115\) 0 0
\(116\) 2.16749 1.57477i 0.201246 0.146214i
\(117\) 3.78006 1.22821i 0.349466 0.113548i
\(118\) −15.5924 5.06627i −1.43539 0.466388i
\(119\) −5.06625 3.68084i −0.464422 0.337422i
\(120\) 0 0
\(121\) −5.57524 9.48244i −0.506840 0.862040i
\(122\) 1.26845i 0.114840i
\(123\) 7.40445 10.1914i 0.667637 0.918923i
\(124\) 4.92586 15.1602i 0.442356 1.36143i
\(125\) 0 0
\(126\) −13.1897 + 9.58287i −1.17503 + 0.853710i
\(127\) 11.0704 + 15.2371i 0.982339 + 1.35207i 0.935560 + 0.353169i \(0.114896\pi\)
0.0467796 + 0.998905i \(0.485104\pi\)
\(128\) 13.4919 4.38378i 1.19252 0.387475i
\(129\) 3.94308 12.1356i 0.347169 1.06848i
\(130\) 0 0
\(131\) −20.0997 −1.75612 −0.878058 0.478555i \(-0.841161\pi\)
−0.878058 + 0.478555i \(0.841161\pi\)
\(132\) −31.0555 17.7664i −2.70303 1.54636i
\(133\) 4.50377i 0.390527i
\(134\) −15.9503 11.5886i −1.37789 1.00110i
\(135\) 0 0
\(136\) −5.53801 17.0442i −0.474881 1.46153i
\(137\) −10.5632 14.5390i −0.902478 1.24215i −0.969671 0.244414i \(-0.921404\pi\)
0.0671930 0.997740i \(-0.478596\pi\)
\(138\) 32.1334 + 44.2278i 2.73537 + 3.76492i
\(139\) −5.21098 16.0377i −0.441989 1.36030i −0.885752 0.464159i \(-0.846357\pi\)
0.443762 0.896145i \(-0.353643\pi\)
\(140\) 0 0
\(141\) −14.5814 10.5940i −1.22798 0.892178i
\(142\) 28.5376i 2.39482i
\(143\) 1.75356 + 3.89697i 0.146640 + 0.325881i
\(144\) −19.6766 −1.63971
\(145\) 0 0
\(146\) −8.67272 + 26.6919i −0.717759 + 2.20904i
\(147\) 6.13999 1.99500i 0.506418 0.164545i
\(148\) 4.80885 + 6.61881i 0.395285 + 0.544063i
\(149\) 1.88797 1.37169i 0.154669 0.112373i −0.507759 0.861499i \(-0.669526\pi\)
0.662428 + 0.749126i \(0.269526\pi\)
\(150\) 0 0
\(151\) −1.21718 + 3.74609i −0.0990525 + 0.304852i −0.988289 0.152596i \(-0.951237\pi\)
0.889236 + 0.457448i \(0.151237\pi\)
\(152\) −7.57597 + 10.4274i −0.614492 + 0.845776i
\(153\) 9.22732i 0.745985i
\(154\) −11.7805 12.9799i −0.949299 1.04595i
\(155\) 0 0
\(156\) 11.2448 + 8.16981i 0.900302 + 0.654108i
\(157\) 4.64218 + 1.50834i 0.370486 + 0.120378i 0.488342 0.872652i \(-0.337602\pi\)
−0.117856 + 0.993031i \(0.537602\pi\)
\(158\) −12.8669 + 4.18073i −1.02364 + 0.332601i
\(159\) 5.87155 4.26593i 0.465644 0.338310i
\(160\) 0 0
\(161\) 5.67928 + 17.4790i 0.447590 + 1.37754i
\(162\) 20.9809 + 6.81710i 1.64841 + 0.535602i
\(163\) −4.13549 + 5.69202i −0.323917 + 0.445833i −0.939658 0.342115i \(-0.888857\pi\)
0.615741 + 0.787948i \(0.288857\pi\)
\(164\) 22.3333 1.74394
\(165\) 0 0
\(166\) 27.3794 2.12505
\(167\) −6.30075 + 8.67223i −0.487566 + 0.671078i −0.979937 0.199308i \(-0.936131\pi\)
0.492370 + 0.870386i \(0.336131\pi\)
\(168\) −29.4253 9.56086i −2.27021 0.737637i
\(169\) 3.50422 + 10.7849i 0.269555 + 0.829605i
\(170\) 0 0
\(171\) −5.36885 + 3.90070i −0.410566 + 0.298294i
\(172\) 21.5149 6.99062i 1.64050 0.533030i
\(173\) 8.00012 + 2.59940i 0.608238 + 0.197628i 0.596911 0.802307i \(-0.296395\pi\)
0.0113267 + 0.999936i \(0.496395\pi\)
\(174\) 3.08644 + 2.24243i 0.233982 + 0.169998i
\(175\) 0 0
\(176\) −2.29462 21.0307i −0.172963 1.58525i
\(177\) 16.0195i 1.20410i
\(178\) −6.41533 + 8.82995i −0.480850 + 0.661833i
\(179\) −6.50062 + 20.0069i −0.485879 + 1.49538i 0.344824 + 0.938667i \(0.387939\pi\)
−0.830703 + 0.556716i \(0.812061\pi\)
\(180\) 0 0
\(181\) 1.41020 1.02457i 0.104819 0.0761557i −0.534141 0.845395i \(-0.679365\pi\)
0.638960 + 0.769240i \(0.279365\pi\)
\(182\) 4.00261 + 5.50911i 0.296693 + 0.408363i
\(183\) −1.17875 + 0.382998i −0.0871355 + 0.0283120i
\(184\) −16.2531 + 50.0219i −1.19820 + 3.68767i
\(185\) 0 0
\(186\) 22.6986 1.66435
\(187\) 9.86234 1.07606i 0.721206 0.0786893i
\(188\) 31.9538i 2.33047i
\(189\) −0.354140 0.257298i −0.0257599 0.0187157i
\(190\) 0 0
\(191\) 0.00771200 + 0.0237351i 0.000558021 + 0.00171741i 0.951335 0.308158i \(-0.0997126\pi\)
−0.950777 + 0.309876i \(0.899713\pi\)
\(192\) 3.41452 + 4.69969i 0.246422 + 0.339171i
\(193\) −0.856548 1.17894i −0.0616557 0.0848618i 0.777076 0.629407i \(-0.216702\pi\)
−0.838731 + 0.544545i \(0.816702\pi\)
\(194\) 0.274331 + 0.844306i 0.0196959 + 0.0606176i
\(195\) 0 0
\(196\) 9.25974 + 6.72759i 0.661410 + 0.480542i
\(197\) 22.7027i 1.61750i −0.588151 0.808751i \(-0.700144\pi\)
0.588151 0.808751i \(-0.299856\pi\)
\(198\) 5.26999 25.2851i 0.374522 1.79693i
\(199\) 6.62834 0.469870 0.234935 0.972011i \(-0.424512\pi\)
0.234935 + 0.972011i \(0.424512\pi\)
\(200\) 0 0
\(201\) 5.95299 18.3214i 0.419892 1.29229i
\(202\) −37.6939 + 12.2475i −2.65213 + 0.861729i
\(203\) 0.753862 + 1.03760i 0.0529107 + 0.0728254i
\(204\) 26.1057 18.9669i 1.82776 1.32795i
\(205\) 0 0
\(206\) 5.21114 16.0382i 0.363077 1.11744i
\(207\) −15.9176 + 21.9087i −1.10635 + 1.52276i
\(208\) 8.21858i 0.569856i
\(209\) −4.79524 5.28345i −0.331694 0.365464i
\(210\) 0 0
\(211\) −4.57709 3.32545i −0.315100 0.228934i 0.418982 0.907995i \(-0.362387\pi\)
−0.734082 + 0.679061i \(0.762387\pi\)
\(212\) 12.2372 + 3.97610i 0.840453 + 0.273080i
\(213\) −26.5196 + 8.61673i −1.81709 + 0.590409i
\(214\) 31.8774 23.1603i 2.17910 1.58321i
\(215\) 0 0
\(216\) −0.387117 1.19143i −0.0263400 0.0810662i
\(217\) 7.25738 + 2.35807i 0.492663 + 0.160076i
\(218\) 17.0750 23.5018i 1.15647 1.59174i
\(219\) −27.4230 −1.85308
\(220\) 0 0
\(221\) −3.85410 −0.259255
\(222\) −6.84764 + 9.42497i −0.459584 + 0.632563i
\(223\) 7.49852 + 2.43642i 0.502138 + 0.163155i 0.549124 0.835741i \(-0.314961\pi\)
−0.0469856 + 0.998896i \(0.514961\pi\)
\(224\) −2.66566 8.20407i −0.178107 0.548158i
\(225\) 0 0
\(226\) −18.4800 + 13.4265i −1.22927 + 0.893116i
\(227\) −10.6627 + 3.46451i −0.707706 + 0.229948i −0.640685 0.767804i \(-0.721350\pi\)
−0.0670213 + 0.997752i \(0.521350\pi\)
\(228\) −22.0715 7.17145i −1.46172 0.474941i
\(229\) 21.8360 + 15.8647i 1.44296 + 1.04837i 0.987413 + 0.158160i \(0.0505563\pi\)
0.455547 + 0.890212i \(0.349444\pi\)
\(230\) 0 0
\(231\) 8.50496 14.8666i 0.559585 0.978151i
\(232\) 3.67042i 0.240975i
\(233\) −6.37792 + 8.77845i −0.417831 + 0.575095i −0.965107 0.261857i \(-0.915665\pi\)
0.547275 + 0.836953i \(0.315665\pi\)
\(234\) −3.10066 + 9.54284i −0.202696 + 0.623835i
\(235\) 0 0
\(236\) 22.9766 16.6935i 1.49565 1.08665i
\(237\) −7.77017 10.6947i −0.504727 0.694697i
\(238\) 15.0354 4.88529i 0.974599 0.316666i
\(239\) 3.54327 10.9051i 0.229195 0.705391i −0.768643 0.639678i \(-0.779068\pi\)
0.997839 0.0657129i \(-0.0209322\pi\)
\(240\) 0 0
\(241\) 12.7542 0.821572 0.410786 0.911732i \(-0.365254\pi\)
0.410786 + 0.911732i \(0.365254\pi\)
\(242\) 27.6398 + 2.68401i 1.77675 + 0.172534i
\(243\) 22.1829i 1.42303i
\(244\) −1.77767 1.29155i −0.113804 0.0826833i
\(245\) 0 0
\(246\) 9.82734 + 30.2455i 0.626568 + 1.92838i
\(247\) 1.62926 + 2.24248i 0.103667 + 0.142686i
\(248\) 12.8362 + 17.6675i 0.815097 + 1.12188i
\(249\) 8.26700 + 25.4432i 0.523900 + 1.61240i
\(250\) 0 0
\(251\) 9.87130 + 7.17192i 0.623071 + 0.452687i 0.853993 0.520285i \(-0.174174\pi\)
−0.230922 + 0.972972i \(0.574174\pi\)
\(252\) 28.2422i 1.77909i
\(253\) −25.2727 14.4581i −1.58888 0.908973i
\(254\) −47.5471 −2.98337
\(255\) 0 0
\(256\) −9.61149 + 29.5811i −0.600718 + 1.84882i
\(257\) −5.60747 + 1.82198i −0.349784 + 0.113652i −0.478639 0.878012i \(-0.658870\pi\)
0.128855 + 0.991663i \(0.458870\pi\)
\(258\) 18.9344 + 26.0610i 1.17881 + 1.62249i
\(259\) −3.16850 + 2.30205i −0.196881 + 0.143042i
\(260\) 0 0
\(261\) −0.583986 + 1.79733i −0.0361478 + 0.111252i
\(262\) 29.8254 41.0512i 1.84262 2.53615i
\(263\) 21.7305i 1.33996i −0.742379 0.669980i \(-0.766302\pi\)
0.742379 0.669980i \(-0.233698\pi\)
\(264\) 44.6989 20.1136i 2.75103 1.23791i
\(265\) 0 0
\(266\) −9.19843 6.68305i −0.563992 0.409764i
\(267\) −10.1426 3.29553i −0.620717 0.201683i
\(268\) 32.4817 10.5539i 1.98414 0.644685i
\(269\) −3.66042 + 2.65945i −0.223180 + 0.162149i −0.693757 0.720209i \(-0.744046\pi\)
0.470577 + 0.882359i \(0.344046\pi\)
\(270\) 0 0
\(271\) −6.72447 20.6958i −0.408482 1.25718i −0.917952 0.396691i \(-0.870159\pi\)
0.509470 0.860488i \(-0.329841\pi\)
\(272\) 18.1463 + 5.89608i 1.10028 + 0.357502i
\(273\) −3.91098 + 5.38300i −0.236703 + 0.325794i
\(274\) 45.3688 2.74083
\(275\) 0 0
\(276\) −94.7021 −5.70040
\(277\) 7.66154 10.5452i 0.460337 0.633600i −0.514241 0.857645i \(-0.671926\pi\)
0.974579 + 0.224046i \(0.0719265\pi\)
\(278\) 40.4877 + 13.1552i 2.42829 + 0.788999i
\(279\) 3.47459 + 10.6937i 0.208018 + 0.640214i
\(280\) 0 0
\(281\) −7.59310 + 5.51671i −0.452966 + 0.329099i −0.790766 0.612119i \(-0.790317\pi\)
0.337799 + 0.941218i \(0.390317\pi\)
\(282\) 43.2741 14.0606i 2.57694 0.837297i
\(283\) 13.2574 + 4.30760i 0.788072 + 0.256060i 0.675283 0.737559i \(-0.264021\pi\)
0.112789 + 0.993619i \(0.464021\pi\)
\(284\) −39.9943 29.0575i −2.37322 1.72425i
\(285\) 0 0
\(286\) −10.5612 2.20119i −0.624495 0.130159i
\(287\) 10.6912i 0.631083i
\(288\) 7.47118 10.2832i 0.440243 0.605943i
\(289\) 2.48832 7.65828i 0.146372 0.450487i
\(290\) 0 0
\(291\) −0.701768 + 0.509864i −0.0411383 + 0.0298888i
\(292\) −28.5768 39.3326i −1.67233 2.30176i
\(293\) −28.9787 + 9.41576i −1.69296 + 0.550075i −0.987354 0.158534i \(-0.949323\pi\)
−0.705602 + 0.708608i \(0.749323\pi\)
\(294\) −5.03644 + 15.5006i −0.293731 + 0.904011i
\(295\) 0 0
\(296\) −11.2083 −0.651468
\(297\) 0.689397 0.0752186i 0.0400028 0.00436463i
\(298\) 5.89138i 0.341278i
\(299\) 9.15089 + 6.64851i 0.529210 + 0.384493i
\(300\) 0 0
\(301\) 3.34649 + 10.2994i 0.192888 + 0.593649i
\(302\) −5.84480 8.04468i −0.336330 0.462919i
\(303\) −22.7628 31.3303i −1.30769 1.79988i
\(304\) −4.24044 13.0507i −0.243206 0.748511i
\(305\) 0 0
\(306\) 18.8457 + 13.6922i 1.07734 + 0.782732i
\(307\) 5.08609i 0.290278i −0.989411 0.145139i \(-0.953637\pi\)
0.989411 0.145139i \(-0.0463630\pi\)
\(308\) 30.1858 3.29351i 1.72000 0.187665i
\(309\) 16.4775 0.937375
\(310\) 0 0
\(311\) 4.25249 13.0878i 0.241136 0.742141i −0.755112 0.655596i \(-0.772417\pi\)
0.996248 0.0865451i \(-0.0275827\pi\)
\(312\) −18.1099 + 5.88426i −1.02527 + 0.333131i
\(313\) −9.37676 12.9060i −0.530006 0.729491i 0.457125 0.889402i \(-0.348879\pi\)
−0.987131 + 0.159912i \(0.948879\pi\)
\(314\) −9.96903 + 7.24292i −0.562585 + 0.408742i
\(315\) 0 0
\(316\) 7.24225 22.2894i 0.407408 1.25387i
\(317\) −6.29364 + 8.66246i −0.353486 + 0.486532i −0.948320 0.317317i \(-0.897218\pi\)
0.594833 + 0.803849i \(0.297218\pi\)
\(318\) 18.3221i 1.02745i
\(319\) −1.98912 0.414578i −0.111369 0.0232119i
\(320\) 0 0
\(321\) 31.1477 + 22.6301i 1.73849 + 1.26309i
\(322\) −44.1263 14.3375i −2.45906 0.798997i
\(323\) 6.12014 1.98855i 0.340534 0.110646i
\(324\) −30.9170 + 22.4625i −1.71761 + 1.24792i
\(325\) 0 0
\(326\) −5.48871 16.8925i −0.303992 0.935590i
\(327\) 26.9955 + 8.77138i 1.49286 + 0.485058i
\(328\) −17.9841 + 24.7530i −0.993006 + 1.36676i
\(329\) 15.2966 0.843330
\(330\) 0 0
\(331\) −8.84618 −0.486230 −0.243115 0.969997i \(-0.578169\pi\)
−0.243115 + 0.969997i \(0.578169\pi\)
\(332\) −27.8782 + 38.3710i −1.53001 + 2.10588i
\(333\) −5.48845 1.78330i −0.300765 0.0977245i
\(334\) −8.36248 25.7371i −0.457575 1.40827i
\(335\) 0 0
\(336\) 26.6491 19.3617i 1.45382 1.05627i
\(337\) −11.0225 + 3.58143i −0.600434 + 0.195093i −0.593434 0.804883i \(-0.702228\pi\)
−0.00699978 + 0.999976i \(0.502228\pi\)
\(338\) −27.2267 8.84648i −1.48093 0.481185i
\(339\) −18.0569 13.1191i −0.980716 0.712532i
\(340\) 0 0
\(341\) −11.0244 + 4.96077i −0.597005 + 0.268641i
\(342\) 16.7534i 0.905920i
\(343\) −11.8343 + 16.2885i −0.638993 + 0.879498i
\(344\) −9.57705 + 29.4751i −0.516360 + 1.58919i
\(345\) 0 0
\(346\) −17.1802 + 12.4821i −0.923611 + 0.671043i
\(347\) −2.87368 3.95529i −0.154267 0.212331i 0.724887 0.688868i \(-0.241892\pi\)
−0.879155 + 0.476537i \(0.841892\pi\)
\(348\) −6.28533 + 2.04223i −0.336929 + 0.109475i
\(349\) −0.294654 + 0.906853i −0.0157725 + 0.0485427i −0.958633 0.284645i \(-0.908124\pi\)
0.942861 + 0.333188i \(0.108124\pi\)
\(350\) 0 0
\(351\) −0.269409 −0.0143800
\(352\) 11.8621 + 6.78615i 0.632254 + 0.361703i
\(353\) 15.5166i 0.825865i −0.910762 0.412933i \(-0.864505\pi\)
0.910762 0.412933i \(-0.135495\pi\)
\(354\) 32.7179 + 23.7709i 1.73894 + 1.26341i
\(355\) 0 0
\(356\) −5.84258 17.9816i −0.309656 0.953024i
\(357\) 9.07965 + 12.4971i 0.480546 + 0.661415i
\(358\) −31.2155 42.9645i −1.64979 2.27074i
\(359\) −6.25915 19.2637i −0.330345 1.01670i −0.968970 0.247180i \(-0.920496\pi\)
0.638624 0.769519i \(-0.279504\pi\)
\(360\) 0 0
\(361\) 11.6271 + 8.44759i 0.611953 + 0.444610i
\(362\) 4.40051i 0.231286i
\(363\) 5.85142 + 26.4956i 0.307120 + 1.39066i
\(364\) −11.7963 −0.618295
\(365\) 0 0
\(366\) 0.966888 2.97578i 0.0505400 0.155546i
\(367\) 33.9099 11.0180i 1.77008 0.575135i 0.771920 0.635719i \(-0.219296\pi\)
0.998163 + 0.0605844i \(0.0192964\pi\)
\(368\) −32.9141 45.3024i −1.71577 2.36155i
\(369\) −12.7448 + 9.25962i −0.663466 + 0.482037i
\(370\) 0 0
\(371\) −1.90340 + 5.85807i −0.0988198 + 0.304136i
\(372\) −23.1122 + 31.8112i −1.19831 + 1.64933i
\(373\) 12.1358i 0.628370i 0.949362 + 0.314185i \(0.101731\pi\)
−0.949362 + 0.314185i \(0.898269\pi\)
\(374\) −12.4368 + 21.7394i −0.643091 + 1.12412i
\(375\) 0 0
\(376\) 35.4157 + 25.7310i 1.82643 + 1.32698i
\(377\) 0.750713 + 0.243922i 0.0386637 + 0.0125626i
\(378\) 1.05100 0.341491i 0.0540577 0.0175644i
\(379\) 5.77971 4.19921i 0.296884 0.215699i −0.429364 0.903131i \(-0.641262\pi\)
0.726248 + 0.687433i \(0.241262\pi\)
\(380\) 0 0
\(381\) −14.3565 44.1848i −0.735506 2.26366i
\(382\) −0.0599198 0.0194691i −0.00306576 0.000996127i
\(383\) 9.38279 12.9143i 0.479438 0.659890i −0.498959 0.866626i \(-0.666284\pi\)
0.978397 + 0.206736i \(0.0662840\pi\)
\(384\) −34.9936 −1.78576
\(385\) 0 0
\(386\) 3.67885 0.187249
\(387\) −9.37935 + 12.9096i −0.476779 + 0.656230i
\(388\) −1.46259 0.475223i −0.0742516 0.0241258i
\(389\) 7.75336 + 23.8624i 0.393111 + 1.20987i 0.930423 + 0.366488i \(0.119440\pi\)
−0.537312 + 0.843384i \(0.680560\pi\)
\(390\) 0 0
\(391\) 21.2445 15.4351i 1.07438 0.780585i
\(392\) −14.9130 + 4.84551i −0.753218 + 0.244735i
\(393\) 47.1538 + 15.3212i 2.37860 + 0.772853i
\(394\) 46.3677 + 33.6881i 2.33597 + 1.69718i
\(395\) 0 0
\(396\) 30.0699 + 33.1314i 1.51107 + 1.66491i
\(397\) 3.57490i 0.179419i −0.995968 0.0897094i \(-0.971406\pi\)
0.995968 0.0897094i \(-0.0285938\pi\)
\(398\) −9.83564 + 13.5376i −0.493016 + 0.678579i
\(399\) 3.43305 10.5659i 0.171868 0.528954i
\(400\) 0 0
\(401\) −23.3675 + 16.9775i −1.16692 + 0.847815i −0.990637 0.136524i \(-0.956407\pi\)
−0.176281 + 0.984340i \(0.556407\pi\)
\(402\) 28.5859 + 39.3451i 1.42573 + 1.96235i
\(403\) 4.46657 1.45128i 0.222496 0.0722933i
\(404\) 21.2162 65.2969i 1.05555 3.24864i
\(405\) 0 0
\(406\) −3.23782 −0.160690
\(407\) 1.26599 6.07412i 0.0627526 0.301083i
\(408\) 44.2072i 2.18858i
\(409\) 7.78197 + 5.65393i 0.384794 + 0.279569i 0.763319 0.646022i \(-0.223569\pi\)
−0.378525 + 0.925591i \(0.623569\pi\)
\(410\) 0 0
\(411\) 13.6988 + 42.1606i 0.675712 + 2.07963i
\(412\) 17.1708 + 23.6336i 0.845945 + 1.16434i
\(413\) 7.99135 + 10.9991i 0.393229 + 0.541233i
\(414\) −21.1261 65.0196i −1.03829 3.19554i
\(415\) 0 0
\(416\) −4.29512 3.12059i −0.210586 0.152999i
\(417\) 41.5967i 2.03700i
\(418\) 17.9064 1.95373i 0.875829 0.0955599i
\(419\) 30.6537 1.49753 0.748765 0.662836i \(-0.230647\pi\)
0.748765 + 0.662836i \(0.230647\pi\)
\(420\) 0 0
\(421\) −2.14755 + 6.60949i −0.104665 + 0.322127i −0.989652 0.143490i \(-0.954168\pi\)
0.884986 + 0.465617i \(0.154168\pi\)
\(422\) 13.5837 4.41361i 0.661244 0.214851i
\(423\) 13.2483 + 18.2348i 0.644156 + 0.886605i
\(424\) −14.2610 + 10.3612i −0.692574 + 0.503184i
\(425\) 0 0
\(426\) 21.7532 66.9493i 1.05394 3.24371i
\(427\) 0.618281 0.850991i 0.0299207 0.0411823i
\(428\) 68.2571i 3.29933i
\(429\) −1.14334 10.4790i −0.0552009 0.505929i
\(430\) 0 0
\(431\) 2.61636 + 1.90090i 0.126026 + 0.0915631i 0.649013 0.760778i \(-0.275182\pi\)
−0.522987 + 0.852341i \(0.675182\pi\)
\(432\) 1.26846 + 0.412147i 0.0610287 + 0.0198294i
\(433\) 28.9044 9.39161i 1.38906 0.451332i 0.483421 0.875388i \(-0.339394\pi\)
0.905636 + 0.424056i \(0.139394\pi\)
\(434\) −15.5851 + 11.3233i −0.748110 + 0.543534i
\(435\) 0 0
\(436\) 15.5506 + 47.8598i 0.744739 + 2.29207i
\(437\) −17.9616 5.83606i −0.859218 0.279177i
\(438\) 40.6924 56.0083i 1.94436 2.67618i
\(439\) −36.5311 −1.74353 −0.871767 0.489921i \(-0.837026\pi\)
−0.871767 + 0.489921i \(0.837026\pi\)
\(440\) 0 0
\(441\) −8.07350 −0.384452
\(442\) 5.71902 7.87155i 0.272026 0.374412i
\(443\) −2.05574 0.667949i −0.0976710 0.0317352i 0.259774 0.965669i \(-0.416352\pi\)
−0.357445 + 0.933934i \(0.616352\pi\)
\(444\) −6.23630 19.1933i −0.295962 0.910876i
\(445\) 0 0
\(446\) −16.1030 + 11.6995i −0.762499 + 0.553988i
\(447\) −5.47477 + 1.77886i −0.258948 + 0.0841372i
\(448\) −4.68890 1.52352i −0.221530 0.0719793i
\(449\) −9.32124 6.77228i −0.439897 0.319604i 0.345697 0.938346i \(-0.387642\pi\)
−0.785594 + 0.618742i \(0.787642\pi\)
\(450\) 0 0
\(451\) −11.3831 12.5420i −0.536010 0.590581i
\(452\) 39.5699i 1.86121i
\(453\) 5.71100 7.86051i 0.268326 0.369319i
\(454\) 8.74624 26.9182i 0.410482 1.26333i
\(455\) 0 0
\(456\) 25.7217 18.6879i 1.20453 0.875140i
\(457\) −9.36427 12.8888i −0.438042 0.602913i 0.531734 0.846912i \(-0.321541\pi\)
−0.969776 + 0.243999i \(0.921541\pi\)
\(458\) −64.8038 + 21.0560i −3.02808 + 0.983883i
\(459\) −0.193276 + 0.594843i −0.00902136 + 0.0277649i
\(460\) 0 0
\(461\) 1.52527 0.0710387 0.0355193 0.999369i \(-0.488691\pi\)
0.0355193 + 0.999369i \(0.488691\pi\)
\(462\) 17.7430 + 39.4306i 0.825478 + 1.83448i
\(463\) 14.2073i 0.660268i 0.943934 + 0.330134i \(0.107094\pi\)
−0.943934 + 0.330134i \(0.892906\pi\)
\(464\) −3.16143 2.29691i −0.146765 0.106631i
\(465\) 0 0
\(466\) −8.46491 26.0523i −0.392129 1.20685i
\(467\) −3.56020 4.90020i −0.164746 0.226754i 0.718660 0.695362i \(-0.244756\pi\)
−0.883406 + 0.468608i \(0.844756\pi\)
\(468\) −10.2167 14.0621i −0.472269 0.650022i
\(469\) 5.05229 + 15.5494i 0.233293 + 0.718002i
\(470\) 0 0
\(471\) −9.74081 7.07711i −0.448833 0.326096i
\(472\) 38.9085i 1.79091i
\(473\) −14.8918 8.51936i −0.684725 0.391720i
\(474\) 33.3727 1.53286
\(475\) 0 0
\(476\) −8.46277 + 26.0457i −0.387890 + 1.19380i
\(477\) −8.63181 + 2.80464i −0.395223 + 0.128416i
\(478\) 17.0146 + 23.4185i 0.778227 + 1.07114i
\(479\) −14.2455 + 10.3500i −0.650894 + 0.472902i −0.863576 0.504219i \(-0.831780\pi\)
0.212681 + 0.977122i \(0.431780\pi\)
\(480\) 0 0
\(481\) −0.744857 + 2.29243i −0.0339626 + 0.104526i
\(482\) −18.9257 + 26.0490i −0.862043 + 1.18650i
\(483\) 45.3350i 2.06281i
\(484\) −31.9048 + 36.0030i −1.45022 + 1.63650i
\(485\) 0 0
\(486\) −45.3059 32.9167i −2.05512 1.49313i
\(487\) −6.45140 2.09619i −0.292341 0.0949874i 0.159175 0.987250i \(-0.449117\pi\)
−0.451516 + 0.892263i \(0.649117\pi\)
\(488\) 2.86297 0.930235i 0.129600 0.0421097i
\(489\) 14.0407 10.2011i 0.634941 0.461312i
\(490\) 0 0
\(491\) 0.160261 + 0.493232i 0.00723247 + 0.0222592i 0.954608 0.297866i \(-0.0962749\pi\)
−0.947375 + 0.320125i \(0.896275\pi\)
\(492\) −52.3941 17.0239i −2.36211 0.767495i
\(493\) 1.07714 1.48255i 0.0485117 0.0667707i
\(494\) −6.99762 −0.314838
\(495\) 0 0
\(496\) −23.2501 −1.04396
\(497\) 13.9102 19.1457i 0.623956 0.858802i
\(498\) −64.2320 20.8703i −2.87831 0.935218i
\(499\) −6.75534 20.7908i −0.302411 0.930725i −0.980631 0.195866i \(-0.937248\pi\)
0.678220 0.734859i \(-0.262752\pi\)
\(500\) 0 0
\(501\) 21.3921 15.5423i 0.955727 0.694377i
\(502\) −29.2956 + 9.51872i −1.30753 + 0.424841i
\(503\) 2.86902 + 0.932202i 0.127923 + 0.0415649i 0.372279 0.928121i \(-0.378576\pi\)
−0.244356 + 0.969686i \(0.578576\pi\)
\(504\) 31.3020 + 22.7423i 1.39430 + 1.01302i
\(505\) 0 0
\(506\) 67.0306 30.1624i 2.97987 1.34088i
\(507\) 27.9724i 1.24230i
\(508\) 48.4133 66.6352i 2.14799 2.95646i
\(509\) 7.94418 24.4497i 0.352119 1.08371i −0.605542 0.795814i \(-0.707043\pi\)
0.957661 0.287898i \(-0.0929565\pi\)
\(510\) 0 0
\(511\) 18.8289 13.6800i 0.832943 0.605169i
\(512\) −29.4768 40.5713i −1.30270 1.79302i
\(513\) 0.427809 0.139004i 0.0188882 0.00613716i
\(514\) 4.59962 14.1562i 0.202881 0.624403i
\(515\) 0 0
\(516\) −55.8027 −2.45658
\(517\) −17.9447 + 16.2866i −0.789207 + 0.716282i
\(518\) 9.88725i 0.434421i
\(519\) −16.7869 12.1964i −0.736862 0.535361i
\(520\) 0 0
\(521\) 3.44017 + 10.5877i 0.150716 + 0.463858i 0.997702 0.0677588i \(-0.0215848\pi\)
−0.846985 + 0.531616i \(0.821585\pi\)
\(522\) −2.80426 3.85974i −0.122739 0.168936i
\(523\) 3.84318 + 5.28968i 0.168050 + 0.231302i 0.884733 0.466098i \(-0.154340\pi\)
−0.716683 + 0.697399i \(0.754340\pi\)
\(524\) 27.1627 + 83.5981i 1.18661 + 3.65200i
\(525\) 0 0
\(526\) 44.3820 + 32.2454i 1.93515 + 1.40597i
\(527\) 10.9032i 0.474949i
\(528\) −10.6477 + 51.0871i −0.463383 + 2.22328i
\(529\) −54.0677 −2.35077
\(530\) 0 0
\(531\) −6.19057 + 19.0526i −0.268648 + 0.826814i
\(532\) 18.7320 6.08640i 0.812135 0.263879i
\(533\) 3.86759 + 5.32328i 0.167524 + 0.230577i
\(534\) 21.7811 15.8249i 0.942561 0.684811i
\(535\) 0 0
\(536\) −14.4588 + 44.4995i −0.624524 + 1.92209i
\(537\) 30.5009 41.9809i 1.31621 1.81161i
\(538\) 11.4223i 0.492449i
\(539\) −0.941505 8.62911i −0.0405535 0.371682i
\(540\) 0 0
\(541\) −33.7684 24.5342i −1.45182 1.05481i −0.985403 0.170239i \(-0.945546\pi\)
−0.466413 0.884567i \(-0.654454\pi\)
\(542\) 52.2470 + 16.9761i 2.24420 + 0.729185i
\(543\) −4.08932 + 1.32870i −0.175490 + 0.0570201i
\(544\) −9.97147 + 7.24470i −0.427523 + 0.310614i
\(545\) 0 0
\(546\) −5.19073 15.9754i −0.222143 0.683685i
\(547\) 4.23806 + 1.37703i 0.181206 + 0.0588775i 0.398215 0.917292i \(-0.369630\pi\)
−0.217008 + 0.976170i \(0.569630\pi\)
\(548\) −46.1954 + 63.5825i −1.97337 + 2.71611i
\(549\) 1.54994 0.0661498
\(550\) 0 0
\(551\) −1.31795 −0.0561466
\(552\) 76.2596 104.962i 3.24583 4.46750i
\(553\) 10.6702 + 3.46695i 0.453742 + 0.147430i
\(554\) 10.1686 + 31.2956i 0.432020 + 1.32962i
\(555\) 0 0
\(556\) −59.6618 + 43.3468i −2.53022 + 1.83831i
\(557\) 18.4233 5.98608i 0.780619 0.253638i 0.108514 0.994095i \(-0.465391\pi\)
0.672104 + 0.740456i \(0.265391\pi\)
\(558\) −26.9964 8.77167i −1.14285 0.371335i
\(559\) 5.39211 + 3.91760i 0.228062 + 0.165697i
\(560\) 0 0
\(561\) −23.9573 4.99325i −1.01148 0.210815i
\(562\) 23.6941i 0.999477i
\(563\) 12.1925 16.7816i 0.513853 0.707259i −0.470710 0.882288i \(-0.656002\pi\)
0.984563 + 0.175030i \(0.0560021\pi\)
\(564\) −24.3571 + 74.9636i −1.02562 + 3.15654i
\(565\) 0 0
\(566\) −28.4702 + 20.6848i −1.19669 + 0.869447i
\(567\) −10.7530 14.8003i −0.451585 0.621554i
\(568\) 64.4114 20.9285i 2.70264 0.878141i
\(569\) 13.0945 40.3007i 0.548950 1.68949i −0.162458 0.986716i \(-0.551942\pi\)
0.711408 0.702779i \(-0.248058\pi\)
\(570\) 0 0
\(571\) −5.03980 −0.210909 −0.105455 0.994424i \(-0.533630\pi\)
−0.105455 + 0.994424i \(0.533630\pi\)
\(572\) 13.8384 12.5597i 0.578614 0.525148i
\(573\) 0.0615611i 0.00257175i
\(574\) −21.8356 15.8645i −0.911399 0.662170i
\(575\) 0 0
\(576\) −2.24488 6.90905i −0.0935369 0.287877i
\(577\) 20.4796 + 28.1877i 0.852576 + 1.17347i 0.983289 + 0.182050i \(0.0582733\pi\)
−0.130713 + 0.991420i \(0.541727\pi\)
\(578\) 11.9488 + 16.4461i 0.497003 + 0.684066i
\(579\) 1.11080 + 3.41870i 0.0461634 + 0.142076i
\(580\) 0 0
\(581\) −18.3686 13.3456i −0.762059 0.553668i
\(582\) 2.18985i 0.0907724i
\(583\) −4.00427 8.89878i −0.165840 0.368550i
\(584\) 66.6057 2.75616
\(585\) 0 0
\(586\) 23.7703 73.1575i 0.981943 3.02211i
\(587\) −13.1039 + 4.25772i −0.540857 + 0.175735i −0.566690 0.823931i \(-0.691776\pi\)
0.0258331 + 0.999666i \(0.491776\pi\)
\(588\) −16.5952 22.8413i −0.684373 0.941959i
\(589\) −6.34392 + 4.60913i −0.261397 + 0.189916i
\(590\) 0 0
\(591\) −17.3054 + 53.2606i −0.711850 + 2.19085i
\(592\) 7.01402 9.65397i 0.288274 0.396776i
\(593\) 25.1595i 1.03318i −0.856234 0.516588i \(-0.827202\pi\)
0.856234 0.516588i \(-0.172798\pi\)
\(594\) −0.869355 + 1.51963i −0.0356701 + 0.0623511i
\(595\) 0 0
\(596\) −8.25651 5.99871i −0.338200 0.245717i
\(597\) −15.5501 5.05253i −0.636423 0.206786i
\(598\) −27.1576 + 8.82405i −1.11056 + 0.360842i
\(599\) −13.3539 + 9.70216i −0.545624 + 0.396419i −0.826170 0.563421i \(-0.809485\pi\)
0.280545 + 0.959841i \(0.409485\pi\)
\(600\) 0 0
\(601\) 12.2509 + 37.7045i 0.499726 + 1.53800i 0.809460 + 0.587175i \(0.199760\pi\)
−0.309734 + 0.950823i \(0.600240\pi\)
\(602\) −26.0011 8.44829i −1.05973 0.344326i
\(603\) −14.1603 + 19.4900i −0.576651 + 0.793692i
\(604\) 17.2255 0.700897
\(605\) 0 0
\(606\) 97.7656 3.97146
\(607\) −8.34036 + 11.4795i −0.338525 + 0.465939i −0.944010 0.329917i \(-0.892979\pi\)
0.605485 + 0.795857i \(0.292979\pi\)
\(608\) 8.43055 + 2.73925i 0.341904 + 0.111091i
\(609\) −0.977637 3.00886i −0.0396158 0.121925i
\(610\) 0 0
\(611\) 7.61636 5.53361i 0.308125 0.223866i
\(612\) −38.3781 + 12.4698i −1.55134 + 0.504062i
\(613\) 28.6785 + 9.31820i 1.15831 + 0.376359i 0.824269 0.566199i \(-0.191586\pi\)
0.334044 + 0.942557i \(0.391586\pi\)
\(614\) 10.3877 + 7.54714i 0.419215 + 0.304578i
\(615\) 0 0
\(616\) −20.6570 + 36.1084i −0.832296 + 1.45485i
\(617\) 31.3844i 1.26349i 0.775177 + 0.631744i \(0.217661\pi\)
−0.775177 + 0.631744i \(0.782339\pi\)
\(618\) −24.4507 + 33.6534i −0.983550 + 1.35374i
\(619\) −10.8876 + 33.5087i −0.437611 + 1.34683i 0.452775 + 0.891625i \(0.350434\pi\)
−0.890387 + 0.455205i \(0.849566\pi\)
\(620\) 0 0
\(621\) 1.48503 1.07894i 0.0595924 0.0432964i
\(622\) 20.4201 + 28.1059i 0.818773 + 1.12694i
\(623\) 8.60800 2.79691i 0.344872 0.112056i
\(624\) 6.26471 19.2808i 0.250789 0.771850i
\(625\) 0 0
\(626\) 40.2730 1.60963
\(627\) 7.22227 + 16.0502i 0.288430 + 0.640983i
\(628\) 21.3460i 0.851799i
\(629\) 4.52723 + 3.28922i 0.180512 + 0.131150i
\(630\) 0 0
\(631\) 1.77213 + 5.45404i 0.0705472 + 0.217122i 0.980114 0.198436i \(-0.0635863\pi\)
−0.909567 + 0.415558i \(0.863586\pi\)
\(632\) 18.8724 + 25.9756i 0.750702 + 1.03325i
\(633\) 8.20300 + 11.2905i 0.326040 + 0.448755i
\(634\) −8.35306 25.7081i −0.331742 1.02100i
\(635\) 0 0
\(636\) −25.6776 18.6559i −1.01818 0.739753i
\(637\) 3.37217i 0.133610i
\(638\) 3.79834 3.44736i 0.150378 0.136482i
\(639\) 34.8707 1.37946
\(640\) 0 0
\(641\) −2.20167 + 6.77605i −0.0869608 + 0.267638i −0.985075 0.172124i \(-0.944937\pi\)
0.898115 + 0.439762i \(0.144937\pi\)
\(642\) −92.4388 + 30.0352i −3.64827 + 1.18539i
\(643\) 12.4549 + 17.1427i 0.491173 + 0.676042i 0.980604 0.196000i \(-0.0627953\pi\)
−0.489431 + 0.872042i \(0.662795\pi\)
\(644\) 65.0235 47.2423i 2.56229 1.86161i
\(645\) 0 0
\(646\) −5.02015 + 15.4504i −0.197515 + 0.607889i
\(647\) 3.32083 4.57074i 0.130555 0.179694i −0.738735 0.673996i \(-0.764576\pi\)
0.869290 + 0.494302i \(0.164576\pi\)
\(648\) 52.3547i 2.05669i
\(649\) −21.0857 4.39475i −0.827688 0.172509i
\(650\) 0 0
\(651\) −15.2284 11.0640i −0.596846 0.433634i
\(652\) 29.2628 + 9.50807i 1.14602 + 0.372365i
\(653\) 14.9441 4.85563i 0.584808 0.190016i −0.00164558 0.999999i \(-0.500524\pi\)
0.586453 + 0.809983i \(0.300524\pi\)
\(654\) −57.9726 + 42.1195i −2.26691 + 1.64700i
\(655\) 0 0
\(656\) −10.0661 30.9803i −0.393016 1.20958i
\(657\) 32.6153 + 10.5974i 1.27245 + 0.413442i
\(658\) −22.6983 + 31.2416i −0.884872 + 1.21792i
\(659\) 41.7884 1.62784 0.813922 0.580975i \(-0.197329\pi\)
0.813922 + 0.580975i \(0.197329\pi\)
\(660\) 0 0
\(661\) 15.8742 0.617435 0.308717 0.951154i \(-0.400100\pi\)
0.308717 + 0.951154i \(0.400100\pi\)
\(662\) 13.1266 18.0673i 0.510182 0.702205i
\(663\) 9.04173 + 2.93784i 0.351152 + 0.114096i
\(664\) −20.0791 61.7971i −0.779220 2.39819i
\(665\) 0 0
\(666\) 11.7864 8.56330i 0.456713 0.331821i
\(667\) −5.11494 + 1.66195i −0.198051 + 0.0643508i
\(668\) 44.5842 + 14.4863i 1.72502 + 0.560491i
\(669\) −15.7344 11.4317i −0.608325 0.441974i
\(670\) 0 0
\(671\) 0.180749 + 1.65660i 0.00697773 + 0.0639525i
\(672\) 21.2787i 0.820844i
\(673\) 18.9529 26.0864i 0.730580 1.00556i −0.268525 0.963273i \(-0.586536\pi\)
0.999106 0.0422850i \(-0.0134637\pi\)
\(674\) 9.04140 27.8266i 0.348262 1.07184i
\(675\) 0 0
\(676\) 40.1206 29.1493i 1.54310 1.12113i
\(677\) 10.3230 + 14.2084i 0.396745 + 0.546073i 0.959923 0.280263i \(-0.0904215\pi\)
−0.563178 + 0.826336i \(0.690422\pi\)
\(678\) 53.5885 17.4120i 2.05805 0.668702i
\(679\) 0.227495 0.700157i 0.00873044 0.0268695i
\(680\) 0 0
\(681\) 27.6555 1.05976
\(682\) 6.22710 29.8772i 0.238448 1.14406i
\(683\) 5.93856i 0.227233i −0.993525 0.113616i \(-0.963757\pi\)
0.993525 0.113616i \(-0.0362434\pi\)
\(684\) 23.4792 + 17.0586i 0.897749 + 0.652253i
\(685\) 0 0
\(686\) −15.7067 48.3404i −0.599686 1.84565i
\(687\) −39.1341 53.8634i −1.49306 2.05502i
\(688\) −19.3945 26.6942i −0.739407 1.01771i
\(689\) 1.17145 + 3.60537i 0.0446289 + 0.137353i
\(690\) 0 0
\(691\) −17.7463 12.8934i −0.675100 0.490489i 0.196629 0.980478i \(-0.437001\pi\)
−0.871728 + 0.489989i \(0.837001\pi\)
\(692\) 36.7868i 1.39842i
\(693\) −15.8604 + 14.3948i −0.602485 + 0.546814i
\(694\) 12.3424 0.468511
\(695\) 0 0
\(696\) 2.79782 8.61082i 0.106051 0.326392i
\(697\) 14.5282 4.72050i 0.550295 0.178802i
\(698\) −1.41491 1.94746i −0.0535551 0.0737123i
\(699\) 21.6541 15.7326i 0.819033 0.595062i
\(700\) 0 0
\(701\) 10.0186 30.8341i 0.378397 1.16459i −0.562761 0.826620i \(-0.690261\pi\)
0.941158 0.337967i \(-0.109739\pi\)
\(702\) 0.399770 0.550236i 0.0150884 0.0207673i
\(703\) 4.02460i 0.151791i
\(704\) 7.12273 3.20509i 0.268448 0.120796i
\(705\) 0 0
\(706\) 31.6908 + 23.0247i 1.19270 + 0.866547i
\(707\) 31.2584 + 10.1565i 1.17559 + 0.381973i
\(708\) −66.6279 + 21.6487i −2.50403 + 0.813609i
\(709\) −13.0256 + 9.46362i −0.489185 + 0.355414i −0.804871 0.593450i \(-0.797765\pi\)
0.315686 + 0.948864i \(0.397765\pi\)
\(710\) 0 0
\(711\) 5.10851 + 15.7224i 0.191584 + 0.589635i
\(712\) 24.6346 + 8.00426i 0.923220 + 0.299972i
\(713\) −18.8085 + 25.8876i −0.704383 + 0.969499i
\(714\) −38.9969 −1.45942
\(715\) 0 0
\(716\) 91.9971 3.43809
\(717\) −16.6250 + 22.8824i −0.620874 + 0.854559i
\(718\) 48.6316 + 15.8014i 1.81492 + 0.589702i
\(719\) 2.41409 + 7.42981i 0.0900304 + 0.277085i 0.985927 0.167178i \(-0.0534655\pi\)
−0.895896 + 0.444263i \(0.853466\pi\)
\(720\) 0 0
\(721\) −11.3137 + 8.21985i −0.421343 + 0.306123i
\(722\) −34.5064 + 11.2118i −1.28420 + 0.417261i
\(723\) −29.9214 9.72206i −1.11279 0.361567i
\(724\) −6.16712 4.48068i −0.229199 0.166523i
\(725\) 0 0
\(726\) −62.7970 27.3654i −2.33061 1.01563i
\(727\) 49.1218i 1.82183i 0.412597 + 0.910914i \(0.364622\pi\)
−0.412597 + 0.910914i \(0.635378\pi\)
\(728\) 9.49907 13.0744i 0.352059 0.484568i
\(729\) 8.80810 27.1086i 0.326226 1.00402i
\(730\) 0 0
\(731\) 12.5182 9.09503i 0.463003 0.336392i
\(732\) 3.18592 + 4.38504i 0.117755 + 0.162076i
\(733\) 0.635255 0.206407i 0.0234637 0.00762382i −0.297262 0.954796i \(-0.596073\pi\)
0.320725 + 0.947172i \(0.396073\pi\)
\(734\) −27.8152 + 85.6064i −1.02668 + 3.15979i
\(735\) 0 0
\(736\) 36.1730 1.33335
\(737\) −22.4826 12.8619i −0.828156 0.473775i
\(738\) 39.7699i 1.46395i
\(739\) 30.8186 + 22.3911i 1.13368 + 0.823668i 0.986227 0.165400i \(-0.0528916\pi\)
0.147456 + 0.989069i \(0.452892\pi\)
\(740\) 0 0
\(741\) −2.11288 6.50278i −0.0776187 0.238886i
\(742\) −9.14001 12.5801i −0.335540 0.461832i
\(743\) 18.4186 + 25.3511i 0.675714 + 0.930041i 0.999873 0.0159622i \(-0.00508114\pi\)
−0.324159 + 0.946003i \(0.605081\pi\)
\(744\) −16.6464 51.2324i −0.610287 1.87827i
\(745\) 0 0
\(746\) −24.7860 18.0081i −0.907480 0.659323i
\(747\) 33.4554i 1.22407i
\(748\) −17.8035 39.5651i −0.650960 1.44664i
\(749\) −32.6754 −1.19393
\(750\) 0 0
\(751\) −11.4915 + 35.3673i −0.419332 + 1.29057i 0.488986 + 0.872292i \(0.337367\pi\)
−0.908318 + 0.418280i \(0.862633\pi\)
\(752\) −44.3255 + 14.4022i −1.61639 + 0.525196i
\(753\) −17.6912 24.3498i −0.644703 0.887358i
\(754\) −1.61215 + 1.17129i −0.0587110 + 0.0426560i
\(755\) 0 0
\(756\) −0.591564 + 1.82065i −0.0215150 + 0.0662162i
\(757\) −3.92680 + 5.40478i −0.142722 + 0.196440i −0.874394 0.485217i \(-0.838741\pi\)
0.731672 + 0.681657i \(0.238741\pi\)
\(758\) 18.0355i 0.655079i
\(759\) 48.2689 + 53.1831i 1.75205 + 1.93043i
\(760\) 0 0
\(761\) 18.5213 + 13.4565i 0.671398 + 0.487799i 0.870493 0.492181i \(-0.163800\pi\)
−0.199095 + 0.979980i \(0.563800\pi\)
\(762\) 111.546 + 36.2434i 4.04087 + 1.31296i
\(763\) −22.9110 + 7.44425i −0.829435 + 0.269500i
\(764\) 0.0882966 0.0641512i 0.00319446 0.00232091i
\(765\) 0 0
\(766\) 12.4530 + 38.3265i 0.449947 + 1.38479i
\(767\) 7.95797 + 2.58570i 0.287346 + 0.0933643i
\(768\) 45.0971 62.0709i 1.62730 2.23979i
\(769\) 13.1946 0.475808 0.237904 0.971289i \(-0.423540\pi\)
0.237904 + 0.971289i \(0.423540\pi\)
\(770\) 0 0
\(771\) 14.5440 0.523788
\(772\) −3.74587 + 5.15575i −0.134817 + 0.185560i
\(773\) −11.8130 3.83827i −0.424883 0.138053i 0.0887673 0.996052i \(-0.471707\pi\)
−0.513651 + 0.857999i \(0.671707\pi\)
\(774\) −12.4485 38.3124i −0.447451 1.37711i
\(775\) 0 0
\(776\) 1.70447 1.23837i 0.0611869 0.0444549i
\(777\) 9.18807 2.98538i 0.329620 0.107100i
\(778\) −60.2412 19.5735i −2.15975 0.701746i
\(779\) −8.88815 6.45762i −0.318451 0.231368i
\(780\) 0 0
\(781\) 4.06650 + 37.2705i 0.145511 + 1.33364i
\(782\) 66.2932i 2.37064i
\(783\) 0.0752938 0.103633i 0.00269078 0.00370354i
\(784\) 5.15881 15.8772i 0.184243 0.567042i
\(785\) 0 0
\(786\) −101.262 + 73.5714i −3.61191 + 2.62420i
\(787\) 12.6286 + 17.3818i 0.450162 + 0.619595i 0.972432 0.233185i \(-0.0749148\pi\)
−0.522270 + 0.852780i \(0.674915\pi\)
\(788\) −94.4247 + 30.6805i −3.36374 + 1.09295i
\(789\) −16.5643 + 50.9798i −0.589706 + 1.81493i
\(790\) 0 0
\(791\) 18.9426 0.673520
\(792\) −60.9350 + 6.64849i −2.16523 + 0.236244i
\(793\) 0.647384i 0.0229893i
\(794\) 7.30130 + 5.30471i 0.259114 + 0.188257i
\(795\) 0 0
\(796\) −8.95753 27.5685i −0.317491 0.977138i
\(797\) 1.25157 + 1.72264i 0.0443330 + 0.0610191i 0.830608 0.556858i \(-0.187993\pi\)
−0.786275 + 0.617877i \(0.787993\pi\)
\(798\) 16.4853 + 22.6901i 0.583573 + 0.803219i
\(799\) −6.75393 20.7864i −0.238937 0.735372i
\(800\) 0 0
\(801\) 10.7895 + 7.83902i 0.381228 + 0.276978i
\(802\) 72.9179i 2.57482i
\(803\) −7.52318 + 36.0957i −0.265487 + 1.27379i
\(804\) −84.2470 −2.97116
\(805\) 0 0
\(806\) −3.66378 + 11.2760i −0.129051 + 0.397179i
\(807\) 10.6145 3.44887i 0.373649 0.121406i
\(808\) 55.2868 + 76.0957i 1.94498 + 2.67704i
\(809\) −4.33820 + 3.15189i −0.152523 + 0.110815i −0.661430 0.750007i \(-0.730050\pi\)
0.508906 + 0.860822i \(0.330050\pi\)
\(810\) 0 0
\(811\) 6.05047 18.6214i 0.212461 0.653887i −0.786863 0.617127i \(-0.788296\pi\)
0.999324 0.0367600i \(-0.0117037\pi\)
\(812\) 3.29681 4.53766i 0.115695 0.159241i
\(813\) 53.6781i 1.88257i
\(814\) 10.5271 + 11.5989i 0.368975 + 0.406541i
\(815\) 0 0
\(816\) −38.0768 27.6644i −1.33295 0.968448i
\(817\) −10.5837 3.43887i −0.370278 0.120311i
\(818\) −23.0950 + 7.50402i −0.807497 + 0.262372i
\(819\) 6.73170 4.89086i 0.235224 0.170901i
\(820\) 0 0
\(821\) −5.14095 15.8222i −0.179420 0.552199i 0.820387 0.571808i \(-0.193758\pi\)
−0.999808 + 0.0196092i \(0.993758\pi\)
\(822\) −106.435 34.5829i −3.71236 1.20622i
\(823\) −10.7523 + 14.7993i −0.374801 + 0.515870i −0.954198 0.299176i \(-0.903288\pi\)
0.579397 + 0.815046i \(0.303288\pi\)
\(824\) −40.0210 −1.39420
\(825\) 0 0
\(826\) −34.3227 −1.19424
\(827\) 22.3466 30.7575i 0.777069 1.06954i −0.218530 0.975830i \(-0.570126\pi\)
0.995599 0.0937136i \(-0.0298738\pi\)
\(828\) 112.633 + 36.5967i 3.91427 + 1.27182i
\(829\) −15.9762 49.1698i −0.554877 1.70774i −0.696267 0.717783i \(-0.745157\pi\)
0.141389 0.989954i \(-0.454843\pi\)
\(830\) 0 0
\(831\) −26.0122 + 18.8990i −0.902353 + 0.655598i
\(832\) −2.88580 + 0.937652i −0.100047 + 0.0325072i
\(833\) 7.44560 + 2.41922i 0.257975 + 0.0838210i
\(834\) −84.9564 61.7244i −2.94180 2.13734i
\(835\) 0 0
\(836\) −15.4945 + 27.0843i −0.535889 + 0.936731i
\(837\) 0.762151i 0.0263438i
\(838\) −45.4863 + 62.6065i −1.57130 + 2.16271i
\(839\) −11.9288 + 36.7132i −0.411829 + 1.26748i 0.503227 + 0.864154i \(0.332146\pi\)
−0.915056 + 0.403326i \(0.867854\pi\)
\(840\) 0 0
\(841\) 23.1579 16.8252i 0.798547 0.580178i
\(842\) −10.3124 14.1938i −0.355389 0.489151i
\(843\) 22.0186 7.15428i 0.758361 0.246406i
\(844\) −7.64568 + 23.5310i −0.263175 + 0.809969i
\(845\) 0 0
\(846\) −56.9013 −1.95631
\(847\) −17.2350 15.2732i −0.592203 0.524793i
\(848\) 18.7672i 0.644470i
\(849\) −27.8184 20.2113i −0.954726 0.693649i
\(850\) 0 0
\(851\) −5.07504 15.6194i −0.173970 0.535425i
\(852\) 71.6771 + 98.6551i 2.45562 + 3.37987i
\(853\) −19.9293 27.4303i −0.682366 0.939197i 0.317593 0.948227i \(-0.397126\pi\)
−0.999959 + 0.00903033i \(0.997126\pi\)
\(854\) 0.820596 + 2.52553i 0.0280802 + 0.0864220i
\(855\) 0 0
\(856\) −75.6523 54.9646i −2.58574 1.87865i
\(857\) 56.7117i 1.93723i 0.248558 + 0.968617i \(0.420043\pi\)
−0.248558 + 0.968617i \(0.579957\pi\)
\(858\) 23.0986 + 13.2144i 0.788574 + 0.451131i
\(859\) 25.7505 0.878597 0.439298 0.898341i \(-0.355227\pi\)
0.439298 + 0.898341i \(0.355227\pi\)
\(860\) 0 0
\(861\) 8.14951 25.0816i 0.277735 0.854779i
\(862\) −7.76473 + 2.52291i −0.264468 + 0.0859308i
\(863\) −21.0222 28.9345i −0.715603 0.984942i −0.999658 0.0261347i \(-0.991680\pi\)
0.284056 0.958808i \(-0.408320\pi\)
\(864\) −0.697025 + 0.506418i −0.0237133 + 0.0172287i
\(865\) 0 0
\(866\) −23.7093 + 72.9698i −0.805676 + 2.47962i
\(867\) −11.6752 + 16.0696i −0.396511 + 0.545751i
\(868\) 33.3714i 1.13270i
\(869\) −16.2086 + 7.29357i −0.549841 + 0.247417i
\(870\) 0 0
\(871\) 8.14064 + 5.91452i 0.275835 + 0.200406i
\(872\) −65.5674 21.3041i −2.22039 0.721449i
\(873\) 1.03167 0.335211i 0.0349169 0.0113452i
\(874\) 38.5722 28.0244i 1.30473 0.947938i
\(875\) 0 0
\(876\) 37.0595 + 114.057i 1.25212 + 3.85364i
\(877\) −16.4629 5.34913i −0.555913 0.180627i 0.0175682 0.999846i \(-0.494408\pi\)
−0.573482 + 0.819218i \(0.694408\pi\)
\(878\) 54.2077 74.6105i 1.82942 2.51798i
\(879\) 75.1614 2.53513
\(880\) 0 0
\(881\) −4.15822 −0.140094 −0.0700470 0.997544i \(-0.522315\pi\)
−0.0700470 + 0.997544i \(0.522315\pi\)
\(882\) 11.9801 16.4892i 0.403391 0.555219i
\(883\) −39.2505 12.7533i −1.32088 0.429182i −0.438086 0.898933i \(-0.644344\pi\)
−0.882799 + 0.469751i \(0.844344\pi\)
\(884\) 5.20843 + 16.0299i 0.175179 + 0.539144i
\(885\) 0 0
\(886\) 4.41467 3.20744i 0.148314 0.107756i
\(887\) 28.9873 9.41854i 0.973297 0.316243i 0.221151 0.975240i \(-0.429019\pi\)
0.752146 + 0.658996i \(0.229019\pi\)
\(888\) 26.2946 + 8.54364i 0.882390 + 0.286706i
\(889\) 31.8990 + 23.1760i 1.06986 + 0.777298i
\(890\) 0 0
\(891\) 28.3727 + 5.91352i 0.950520 + 0.198110i
\(892\) 34.4803i 1.15449i
\(893\) −9.23933 + 12.7168i −0.309182 + 0.425553i
\(894\) 4.49077 13.8212i 0.150194 0.462249i
\(895\) 0 0
\(896\) 24.0270 17.4566i 0.802684 0.583184i
\(897\) −16.4001 22.5728i −0.547583 0.753684i
\(898\) 27.6632 8.98831i 0.923132 0.299944i
\(899\) −0.690047 + 2.12375i −0.0230144 + 0.0708309i
\(900\) 0 0
\(901\) 8.80090 0.293200
\(902\) 42.5068 4.63783i 1.41532 0.154423i
\(903\) 26.7134i 0.888965i
\(904\) 43.8570 + 31.8640i 1.45866 + 1.05978i
\(905\) 0 0
\(906\) 7.57976 + 23.3281i 0.251821 + 0.775024i
\(907\) 6.63578 + 9.13337i 0.220338 + 0.303269i 0.904848 0.425734i \(-0.139984\pi\)
−0.684511 + 0.729003i \(0.739984\pi\)
\(908\) 28.8191 + 39.6660i 0.956394 + 1.31636i
\(909\) 14.9654 + 46.0589i 0.496372 + 1.52768i
\(910\) 0 0
\(911\) −40.9417 29.7459i −1.35646 0.985525i −0.998661 0.0517251i \(-0.983528\pi\)
−0.357797 0.933799i \(-0.616472\pi\)
\(912\) 33.8494i 1.12086i
\(913\) 35.7578 3.90146i 1.18341 0.129119i
\(914\) 40.2193 1.33034
\(915\) 0 0
\(916\) 36.4753 112.259i 1.20518 3.70915i
\(917\) −40.0193 + 13.0031i −1.32156 + 0.429399i
\(918\) −0.928099 1.27742i −0.0306318 0.0421611i
\(919\) −22.0198 + 15.9983i −0.726366 + 0.527736i −0.888412 0.459048i \(-0.848191\pi\)
0.162046 + 0.986783i \(0.448191\pi\)
\(920\) 0 0
\(921\) −3.87693 + 11.9320i −0.127749 + 0.393172i
\(922\) −2.26331 + 3.11518i −0.0745381 + 0.102593i
\(923\) 14.5649i 0.479410i
\(924\) −73.3265 15.2829i −2.41227 0.502771i
\(925\) 0 0
\(926\) −29.0167 21.0819i −0.953547 0.692793i
\(927\) −19.5974 6.36759i −0.643664 0.209139i
\(928\) 2.40078 0.780061i 0.0788095 0.0256068i
\(929\) −18.7776 + 13.6427i −0.616073 + 0.447603i −0.851548 0.524277i \(-0.824336\pi\)
0.235475 + 0.971880i \(0.424336\pi\)
\(930\) 0 0
\(931\) −1.73990 5.35485i −0.0570228 0.175498i
\(932\) 45.1303 + 14.6637i 1.47829 + 0.480326i
\(933\) −19.9527 + 27.4625i −0.653221 + 0.899082i
\(934\) 15.2910 0.500336
\(935\) 0 0
\(936\) 23.8128 0.778344
\(937\) 24.8114 34.1500i 0.810554 1.11563i −0.180684 0.983541i \(-0.557831\pi\)
0.991238 0.132090i \(-0.0421689\pi\)
\(938\) −39.2547 12.7546i −1.28171 0.416453i
\(939\) 12.1601 + 37.4251i 0.396831 + 1.22132i
\(940\) 0 0
\(941\) 23.6336 17.1708i 0.770435 0.559754i −0.131658 0.991295i \(-0.542030\pi\)
0.902093 + 0.431542i \(0.142030\pi\)
\(942\) 28.9083 9.39289i 0.941885 0.306037i
\(943\) −42.6378 13.8539i −1.38848 0.451144i
\(944\) −33.5128 24.3485i −1.09075 0.792476i
\(945\) 0 0
\(946\) 39.4974 17.7730i 1.28417 0.577851i
\(947\) 9.63809i 0.313196i −0.987662 0.156598i \(-0.949947\pi\)
0.987662 0.156598i \(-0.0500527\pi\)
\(948\) −33.9807 + 46.7704i −1.10364 + 1.51903i
\(949\) 4.42634 13.6229i 0.143685 0.442218i
\(950\) 0 0
\(951\) 21.3680 15.5247i 0.692904 0.503424i
\(952\) −22.0529 30.3532i −0.714738 0.983752i
\(953\) −4.96593 + 1.61353i −0.160862 + 0.0522673i −0.388341 0.921516i \(-0.626952\pi\)
0.227479 + 0.973783i \(0.426952\pi\)
\(954\) 7.08039 21.7912i 0.229236 0.705517i
\(955\) 0 0
\(956\) −50.1446 −1.62179
\(957\) 4.35046 + 2.48883i 0.140630 + 0.0804525i
\(958\) 44.4529i 1.43621i
\(959\) −30.4376 22.1142i −0.982882 0.714106i
\(960\) 0 0
\(961\) −5.47390 16.8469i −0.176577 0.543450i
\(962\) −3.57675 4.92298i −0.115319 0.158723i
\(963\) −28.3001 38.9517i −0.911956 1.25520i
\(964\) −17.2361 53.0471i −0.555136 1.70853i
\(965\) 0 0
\(966\) 92.5913 + 67.2715i 2.97908 + 2.16443i
\(967\) 38.4583i 1.23674i −0.785889 0.618368i \(-0.787794\pi\)
0.785889 0.618368i \(-0.212206\pi\)
\(968\) −14.2121 64.3532i −0.456793 2.06839i
\(969\) −15.8737 −0.509935
\(970\) 0 0
\(971\) 13.4928 41.5267i 0.433006 1.33265i −0.462111 0.886822i \(-0.652908\pi\)
0.895116 0.445832i \(-0.147092\pi\)
\(972\) 92.2625 29.9779i 2.95932 0.961542i
\(973\) −20.7506 28.5608i −0.665234 0.915616i
\(974\) 13.8543 10.0658i 0.443921 0.322527i
\(975\) 0 0
\(976\) −0.990380 + 3.04808i −0.0317013 + 0.0975665i
\(977\) 6.90455 9.50330i 0.220896 0.304038i −0.684158 0.729334i \(-0.739830\pi\)
0.905054 + 0.425296i \(0.139830\pi\)
\(978\) 43.8137i 1.40101i
\(979\) −7.12027 + 12.4462i −0.227565 + 0.397782i
\(980\) 0 0
\(981\) −28.7173 20.8643i −0.916872 0.666147i
\(982\) −1.24518 0.404582i −0.0397351 0.0129107i
\(983\) −8.89417 + 2.88989i −0.283680 + 0.0921733i −0.447401 0.894333i \(-0.647650\pi\)
0.163721 + 0.986507i \(0.447650\pi\)
\(984\) 61.0590 44.3620i 1.94649 1.41421i
\(985\) 0 0
\(986\) 1.42960 + 4.39985i 0.0455276 + 0.140120i
\(987\) −35.8859 11.6600i −1.14226 0.371143i
\(988\) 7.12510 9.80687i 0.226680 0.311998i
\(989\) −45.4117 −1.44401
\(990\) 0 0
\(991\) −32.3450 −1.02747 −0.513737 0.857948i \(-0.671739\pi\)
−0.513737 + 0.857948i \(0.671739\pi\)
\(992\) 8.82806 12.1508i 0.280291 0.385788i
\(993\) 20.7531 + 6.74310i 0.658581 + 0.213986i
\(994\) 18.4619 + 56.8197i 0.585574 + 1.80221i
\(995\) 0 0
\(996\) 94.6510 68.7679i 2.99913 2.17900i
\(997\) −27.6923 + 8.99777i −0.877023 + 0.284962i −0.712721 0.701448i \(-0.752537\pi\)
−0.164302 + 0.986410i \(0.552537\pi\)
\(998\) 52.4869 + 17.0540i 1.66144 + 0.539836i
\(999\) 0.316462 + 0.229923i 0.0100124 + 0.00727444i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.z.b.224.1 16
5.2 odd 4 55.2.g.a.26.1 8
5.3 odd 4 275.2.h.b.26.2 8
5.4 even 2 inner 275.2.z.b.224.4 16
11.3 even 5 inner 275.2.z.b.124.4 16
15.2 even 4 495.2.n.f.136.2 8
20.7 even 4 880.2.bo.e.81.2 8
55.2 even 20 605.2.g.g.511.1 8
55.3 odd 20 275.2.h.b.201.2 8
55.7 even 20 605.2.g.g.251.1 8
55.14 even 10 inner 275.2.z.b.124.1 16
55.17 even 20 605.2.a.i.1.1 4
55.27 odd 20 605.2.a.l.1.4 4
55.28 even 20 3025.2.a.be.1.4 4
55.32 even 4 605.2.g.n.81.2 8
55.37 odd 20 605.2.g.j.251.2 8
55.38 odd 20 3025.2.a.v.1.1 4
55.42 odd 20 605.2.g.j.511.2 8
55.47 odd 20 55.2.g.a.36.1 yes 8
55.52 even 20 605.2.g.n.366.2 8
165.17 odd 20 5445.2.a.bu.1.4 4
165.47 even 20 495.2.n.f.91.2 8
165.137 even 20 5445.2.a.bg.1.1 4
220.27 even 20 9680.2.a.cs.1.4 4
220.47 even 20 880.2.bo.e.641.2 8
220.127 odd 20 9680.2.a.cv.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.g.a.26.1 8 5.2 odd 4
55.2.g.a.36.1 yes 8 55.47 odd 20
275.2.h.b.26.2 8 5.3 odd 4
275.2.h.b.201.2 8 55.3 odd 20
275.2.z.b.124.1 16 55.14 even 10 inner
275.2.z.b.124.4 16 11.3 even 5 inner
275.2.z.b.224.1 16 1.1 even 1 trivial
275.2.z.b.224.4 16 5.4 even 2 inner
495.2.n.f.91.2 8 165.47 even 20
495.2.n.f.136.2 8 15.2 even 4
605.2.a.i.1.1 4 55.17 even 20
605.2.a.l.1.4 4 55.27 odd 20
605.2.g.g.251.1 8 55.7 even 20
605.2.g.g.511.1 8 55.2 even 20
605.2.g.j.251.2 8 55.37 odd 20
605.2.g.j.511.2 8 55.42 odd 20
605.2.g.n.81.2 8 55.32 even 4
605.2.g.n.366.2 8 55.52 even 20
880.2.bo.e.81.2 8 20.7 even 4
880.2.bo.e.641.2 8 220.47 even 20
3025.2.a.v.1.1 4 55.38 odd 20
3025.2.a.be.1.4 4 55.28 even 20
5445.2.a.bg.1.1 4 165.137 even 20
5445.2.a.bu.1.4 4 165.17 odd 20
9680.2.a.cs.1.4 4 220.27 even 20
9680.2.a.cv.1.4 4 220.127 odd 20