Properties

Label 2736.2.k.p
Level $2736$
Weight $2$
Character orbit 2736.k
Analytic conductor $21.847$
Analytic rank $0$
Dimension $8$
CM discriminant -19
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2702336256.1
Defining polynomial: \(x^{8} + 9 x^{6} + 56 x^{4} + 225 x^{2} + 625\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{5} + ( \beta_{2} - \beta_{3} ) q^{7} +O(q^{10})\) \( q + \beta_{5} q^{5} + ( \beta_{2} - \beta_{3} ) q^{7} + ( -\beta_{6} + \beta_{7} ) q^{11} + \beta_{1} q^{17} + ( -\beta_{2} - 2 \beta_{3} ) q^{19} -\beta_{7} q^{23} + ( 1 - \beta_{4} ) q^{25} + ( \beta_{6} - \beta_{7} ) q^{35} + ( -\beta_{2} - 3 \beta_{3} ) q^{43} + ( \beta_{6} - 2 \beta_{7} ) q^{47} + ( -3 - 3 \beta_{4} ) q^{49} + ( -3 \beta_{2} + \beta_{3} ) q^{55} + ( 8 - \beta_{4} ) q^{61} + ( -4 - 3 \beta_{4} ) q^{73} + ( -3 \beta_{1} + 4 \beta_{5} ) q^{77} + 4 \beta_{7} q^{83} + ( 2 - 3 \beta_{4} ) q^{85} + ( -\beta_{6} - 2 \beta_{7} ) q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + O(q^{10}) \) \( 8q + 4q^{25} - 36q^{49} + 60q^{61} - 44q^{73} + 4q^{85} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} + 9 x^{6} + 56 x^{4} + 225 x^{2} + 625\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( \nu^{7} + 84 \nu^{5} + 356 \nu^{3} + 925 \nu \)\()/500\)
\(\beta_{2}\)\(=\)\((\)\( -9 \nu^{6} - 56 \nu^{4} - 504 \nu^{2} - 1325 \)\()/700\)
\(\beta_{3}\)\(=\)\((\)\( -2 \nu^{6} + 7 \nu^{4} + 63 \nu^{2} + 250 \)\()/175\)
\(\beta_{4}\)\(=\)\((\)\( -\nu^{6} - 9 \nu^{4} - 31 \nu^{2} - 100 \)\()/25\)
\(\beta_{5}\)\(=\)\((\)\( -\nu^{7} - 4 \nu^{5} - 36 \nu^{3} - 45 \nu \)\()/100\)
\(\beta_{6}\)\(=\)\((\)\( -23 \nu^{7} - 182 \nu^{5} - 938 \nu^{3} - 5525 \nu \)\()/1750\)
\(\beta_{7}\)\(=\)\((\)\( -18 \nu^{7} - 112 \nu^{5} - 308 \nu^{3} - 1250 \nu \)\()/875\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{7} - 4 \beta_{6} + 3 \beta_{5} - \beta_{1}\)\()/8\)
\(\nu^{2}\)\(=\)\((\)\(\beta_{4} + \beta_{3} - 4 \beta_{2} - 5\)\()/2\)
\(\nu^{3}\)\(=\)\((\)\(7 \beta_{7} - 14 \beta_{5} + 2 \beta_{1}\)\()/4\)
\(\nu^{4}\)\(=\)\((\)\(-9 \beta_{4} + 9 \beta_{3} + 20 \beta_{2} - 11\)\()/2\)
\(\nu^{5}\)\(=\)\((\)\(-67 \beta_{7} + 44 \beta_{6} + 89 \beta_{5} + 45 \beta_{1}\)\()/8\)
\(\nu^{6}\)\(=\)\(-56 \beta_{3} - 28 \beta_{2} + 27\)
\(\nu^{7}\)\(=\)\((\)\(-281 \beta_{7} + 4 \beta_{6} - 283 \beta_{5} - 279 \beta_{1}\)\()/8\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2431.1
−0.656712 2.13746i
−0.656712 + 2.13746i
−1.52274 1.63746i
−1.52274 + 1.63746i
1.52274 + 1.63746i
1.52274 1.63746i
0.656712 + 2.13746i
0.656712 2.13746i
0 0 0 −3.04547 0 0.418627i 0 0 0
2431.2 0 0 0 −3.04547 0 0.418627i 0 0 0
2431.3 0 0 0 −1.31342 0 4.77753i 0 0 0
2431.4 0 0 0 −1.31342 0 4.77753i 0 0 0
2431.5 0 0 0 1.31342 0 4.77753i 0 0 0
2431.6 0 0 0 1.31342 0 4.77753i 0 0 0
2431.7 0 0 0 3.04547 0 0.418627i 0 0 0
2431.8 0 0 0 3.04547 0 0.418627i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2431.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner
57.d even 2 1 inner
76.d even 2 1 inner
228.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2736.2.k.p 8
3.b odd 2 1 inner 2736.2.k.p 8
4.b odd 2 1 inner 2736.2.k.p 8
12.b even 2 1 inner 2736.2.k.p 8
19.b odd 2 1 CM 2736.2.k.p 8
57.d even 2 1 inner 2736.2.k.p 8
76.d even 2 1 inner 2736.2.k.p 8
228.b odd 2 1 inner 2736.2.k.p 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2736.2.k.p 8 1.a even 1 1 trivial
2736.2.k.p 8 3.b odd 2 1 inner
2736.2.k.p 8 4.b odd 2 1 inner
2736.2.k.p 8 12.b even 2 1 inner
2736.2.k.p 8 19.b odd 2 1 CM
2736.2.k.p 8 57.d even 2 1 inner
2736.2.k.p 8 76.d even 2 1 inner
2736.2.k.p 8 228.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2736, [\chi])\):

\( T_{5}^{4} - 11 T_{5}^{2} + 16 \)
\( T_{7}^{4} + 23 T_{7}^{2} + 4 \)
\( T_{11}^{4} + 41 T_{11}^{2} + 64 \)
\( T_{31} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \)
$3$ \( T^{8} \)
$5$ \( ( 16 - 11 T^{2} + T^{4} )^{2} \)
$7$ \( ( 4 + 23 T^{2} + T^{4} )^{2} \)
$11$ \( ( 64 + 41 T^{2} + T^{4} )^{2} \)
$13$ \( T^{8} \)
$17$ \( ( 1024 - 83 T^{2} + T^{4} )^{2} \)
$19$ \( ( 19 + T^{2} )^{4} \)
$23$ \( ( 16 + T^{2} )^{4} \)
$29$ \( T^{8} \)
$31$ \( T^{8} \)
$37$ \( T^{8} \)
$41$ \( T^{8} \)
$43$ \( ( 1764 + 87 T^{2} + T^{4} )^{2} \)
$47$ \( ( 784 + 113 T^{2} + T^{4} )^{2} \)
$53$ \( T^{8} \)
$59$ \( T^{8} \)
$61$ \( ( 42 - 15 T + T^{2} )^{4} \)
$67$ \( T^{8} \)
$71$ \( T^{8} \)
$73$ \( ( -98 + 11 T + T^{2} )^{4} \)
$79$ \( T^{8} \)
$83$ \( ( 256 + T^{2} )^{4} \)
$89$ \( T^{8} \)
$97$ \( T^{8} \)
show more
show less