Properties

Label 2736.2.k.p.2431.6
Level $2736$
Weight $2$
Character 2736.2431
Analytic conductor $21.847$
Analytic rank $0$
Dimension $8$
CM discriminant -19
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2736,2,Mod(2431,2736)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2736, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2736.2431");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2736 = 2^{4} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2736.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.8470699930\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.2702336256.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 56x^{4} + 225x^{2} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 2431.6
Root \(1.52274 - 1.63746i\) of defining polynomial
Character \(\chi\) \(=\) 2736.2431
Dual form 2736.2.k.p.2431.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.31342 q^{5} +4.77753i q^{7} +O(q^{10})\) \(q+1.31342 q^{5} +4.77753i q^{7} -6.27492i q^{11} -8.24163 q^{17} +4.35890i q^{19} +4.00000i q^{23} -3.27492 q^{25} +6.27492i q^{35} +7.40437i q^{43} +10.2749i q^{47} -15.8248 q^{49} -8.24163i q^{55} +3.72508 q^{61} -16.8248 q^{73} +29.9786 q^{77} -16.0000i q^{83} -10.8248 q^{85} +5.72508i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{25} - 36 q^{49} + 60 q^{61} - 44 q^{73} + 4 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2736\mathbb{Z}\right)^\times\).

\(n\) \(1009\) \(1217\) \(1711\) \(2053\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.31342 0.587381 0.293691 0.955901i \(-0.405116\pi\)
0.293691 + 0.955901i \(0.405116\pi\)
\(6\) 0 0
\(7\) 4.77753i 1.80573i 0.429919 + 0.902867i \(0.358542\pi\)
−0.429919 + 0.902867i \(0.641458\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 6.27492i − 1.89196i −0.324227 0.945979i \(-0.605104\pi\)
0.324227 0.945979i \(-0.394896\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −8.24163 −1.99889 −0.999444 0.0333386i \(-0.989386\pi\)
−0.999444 + 0.0333386i \(0.989386\pi\)
\(18\) 0 0
\(19\) 4.35890i 1.00000i
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.00000i 0.834058i 0.908893 + 0.417029i \(0.136929\pi\)
−0.908893 + 0.417029i \(0.863071\pi\)
\(24\) 0 0
\(25\) −3.27492 −0.654983
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 6.27492i 1.06065i
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 7.40437i 1.12916i 0.825380 + 0.564578i \(0.190961\pi\)
−0.825380 + 0.564578i \(0.809039\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.2749i 1.49875i 0.662145 + 0.749375i \(0.269646\pi\)
−0.662145 + 0.749375i \(0.730354\pi\)
\(48\) 0 0
\(49\) −15.8248 −2.26068
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) − 8.24163i − 1.11130i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 3.72508 0.476948 0.238474 0.971149i \(-0.423353\pi\)
0.238474 + 0.971149i \(0.423353\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −16.8248 −1.96919 −0.984594 0.174855i \(-0.944054\pi\)
−0.984594 + 0.174855i \(0.944054\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 29.9786 3.41638
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 16.0000i − 1.75623i −0.478451 0.878114i \(-0.658802\pi\)
0.478451 0.878114i \(-0.341198\pi\)
\(84\) 0 0
\(85\) −10.8248 −1.17411
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.72508i 0.587381i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −17.4356 −1.73491 −0.867453 0.497519i \(-0.834245\pi\)
−0.867453 + 0.497519i \(0.834245\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 5.25370i 0.489910i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 39.3746i − 3.60946i
\(120\) 0 0
\(121\) −28.3746 −2.57951
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.8685 −0.972106
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15.3746i 1.34328i 0.740876 + 0.671642i \(0.234411\pi\)
−0.740876 + 0.671642i \(0.765589\pi\)
\(132\) 0 0
\(133\) −20.8248 −1.80573
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.0980 1.88796 0.943981 0.329999i \(-0.107048\pi\)
0.943981 + 0.329999i \(0.107048\pi\)
\(138\) 0 0
\(139\) 3.10302i 0.263195i 0.991303 + 0.131597i \(0.0420106\pi\)
−0.991303 + 0.131597i \(0.957989\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −20.4235 −1.67316 −0.836580 0.547844i \(-0.815449\pi\)
−0.836580 + 0.547844i \(0.815449\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 18.0000 1.43656 0.718278 0.695756i \(-0.244931\pi\)
0.718278 + 0.695756i \(0.244931\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −19.1101 −1.50609
\(162\) 0 0
\(163\) 8.71780i 0.682831i 0.939913 + 0.341415i \(0.110906\pi\)
−0.939913 + 0.341415i \(0.889094\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) − 15.6460i − 1.18273i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 51.7155i 3.78181i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 27.3746i 1.98076i 0.138390 + 0.990378i \(0.455807\pi\)
−0.138390 + 0.990378i \(0.544193\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 17.4356 1.24223 0.621117 0.783718i \(-0.286679\pi\)
0.621117 + 0.783718i \(0.286679\pi\)
\(198\) 0 0
\(199\) 28.1890i 1.99826i 0.0416556 + 0.999132i \(0.486737\pi\)
−0.0416556 + 0.999132i \(0.513263\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 27.3517 1.89196
\(210\) 0 0
\(211\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9.72508i 0.663245i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −29.3746 −1.94113 −0.970564 0.240845i \(-0.922576\pi\)
−0.970564 + 0.240845i \(0.922576\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 16.1222 1.05620 0.528099 0.849183i \(-0.322905\pi\)
0.528099 + 0.849183i \(0.322905\pi\)
\(234\) 0 0
\(235\) 13.4953i 0.880338i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 23.9244i − 1.54754i −0.633465 0.773771i \(-0.718368\pi\)
0.633465 0.773771i \(-0.281632\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −20.7846 −1.32788
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 7.37459i − 0.465480i −0.972539 0.232740i \(-0.925231\pi\)
0.972539 0.232740i \(-0.0747691\pi\)
\(252\) 0 0
\(253\) 25.0997 1.57800
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 31.9244i 1.96854i 0.176659 + 0.984272i \(0.443471\pi\)
−0.176659 + 0.984272i \(0.556529\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) − 26.1534i − 1.58871i −0.607457 0.794353i \(-0.707810\pi\)
0.607457 0.794353i \(-0.292190\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 20.5498i 1.23920i
\(276\) 0 0
\(277\) −20.2749 −1.21820 −0.609101 0.793093i \(-0.708470\pi\)
−0.609101 + 0.793093i \(0.708470\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) − 20.3084i − 1.20721i −0.797283 0.603606i \(-0.793730\pi\)
0.797283 0.603606i \(-0.206270\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 50.9244 2.99555
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −35.3746 −2.03896
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.89261 0.280150
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 13.7251i − 0.778278i −0.921179 0.389139i \(-0.872773\pi\)
0.921179 0.389139i \(-0.127227\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 35.9244i − 1.99889i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −49.0887 −2.70635
\(330\) 0 0
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) − 42.1605i − 2.27645i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 22.2749i 1.19578i 0.801578 + 0.597890i \(0.203994\pi\)
−0.801578 + 0.597890i \(0.796006\pi\)
\(348\) 0 0
\(349\) −28.8248 −1.54295 −0.771477 0.636257i \(-0.780482\pi\)
−0.771477 + 0.636257i \(0.780482\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −34.8712 −1.85601 −0.928003 0.372572i \(-0.878476\pi\)
−0.928003 + 0.372572i \(0.878476\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.37459i 0.178104i 0.996027 + 0.0890519i \(0.0283837\pi\)
−0.996027 + 0.0890519i \(0.971616\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −22.0980 −1.15666
\(366\) 0 0
\(367\) − 26.1534i − 1.36520i −0.730794 0.682598i \(-0.760850\pi\)
0.730794 0.682598i \(-0.239150\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 39.3746 2.00671
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 36.9068 1.87125 0.935624 0.352998i \(-0.114838\pi\)
0.935624 + 0.352998i \(0.114838\pi\)
\(390\) 0 0
\(391\) − 32.9665i − 1.66719i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 30.4743 1.52946 0.764730 0.644351i \(-0.222873\pi\)
0.764730 + 0.644351i \(0.222873\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 21.0148i − 1.03158i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 40.0000i − 1.95413i −0.212946 0.977064i \(-0.568306\pi\)
0.212946 0.977064i \(-0.431694\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 26.9906 1.30924
\(426\) 0 0
\(427\) 17.7967i 0.861242i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −17.4356 −0.834058
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 11.9244i − 0.566546i −0.959039 0.283273i \(-0.908580\pi\)
0.959039 0.283273i \(-0.0914203\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 42.4743 1.98686 0.993431 0.114433i \(-0.0365053\pi\)
0.993431 + 0.114433i \(0.0365053\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.1457 0.984853 0.492427 0.870354i \(-0.336110\pi\)
0.492427 + 0.870354i \(0.336110\pi\)
\(462\) 0 0
\(463\) 42.0454i 1.95401i 0.213205 + 0.977007i \(0.431610\pi\)
−0.213205 + 0.977007i \(0.568390\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.7251i 0.820219i 0.912036 + 0.410110i \(0.134510\pi\)
−0.912036 + 0.410110i \(0.865490\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 46.4618 2.13632
\(474\) 0 0
\(475\) − 14.2750i − 0.654983i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 4.00000i − 0.182765i −0.995816 0.0913823i \(-0.970871\pi\)
0.995816 0.0913823i \(-0.0291285\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) − 8.00000i − 0.361035i −0.983572 0.180517i \(-0.942223\pi\)
0.983572 0.180517i \(-0.0577772\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 44.6722i 1.99980i 0.0139987 + 0.999902i \(0.495544\pi\)
−0.0139987 + 0.999902i \(0.504456\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 44.0000i − 1.96186i −0.194354 0.980932i \(-0.562261\pi\)
0.194354 0.980932i \(-0.437739\pi\)
\(504\) 0 0
\(505\) −22.9003 −1.01905
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) − 80.3807i − 3.55583i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 64.4743 2.83557
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 99.2990i 4.27711i
\(540\) 0 0
\(541\) 46.4743 1.99808 0.999042 0.0437584i \(-0.0139332\pi\)
0.999042 + 0.0437584i \(0.0139332\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 42.8826 1.81700 0.908498 0.417889i \(-0.137230\pi\)
0.908498 + 0.417889i \(0.137230\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 26.1534i 1.09449i 0.836974 + 0.547243i \(0.184323\pi\)
−0.836974 + 0.547243i \(0.815677\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 13.0997i − 0.546294i
\(576\) 0 0
\(577\) 43.0241 1.79112 0.895558 0.444945i \(-0.146777\pi\)
0.895558 + 0.444945i \(0.146777\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 76.4404 3.17128
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 45.0241i 1.85834i 0.369649 + 0.929172i \(0.379478\pi\)
−0.369649 + 0.929172i \(0.620522\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −34.8712 −1.43199 −0.715994 0.698106i \(-0.754026\pi\)
−0.715994 + 0.698106i \(0.754026\pi\)
\(594\) 0 0
\(595\) − 51.7155i − 2.12013i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −37.2679 −1.51515
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 45.9244 1.85487 0.927435 0.373985i \(-0.122009\pi\)
0.927435 + 0.373985i \(0.122009\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −35.2323 −1.41840 −0.709199 0.705008i \(-0.750943\pi\)
−0.709199 + 0.705008i \(0.750943\pi\)
\(618\) 0 0
\(619\) 43.5890i 1.75199i 0.482321 + 0.875995i \(0.339794\pi\)
−0.482321 + 0.875995i \(0.660206\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 2.09967 0.0839868
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) − 10.9836i − 0.437249i −0.975809 0.218624i \(-0.929843\pi\)
0.975809 0.218624i \(-0.0701569\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 48.9736i 1.93133i 0.259791 + 0.965665i \(0.416346\pi\)
−0.259791 + 0.965665i \(0.583654\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 33.0241i 1.29831i 0.760656 + 0.649155i \(0.224878\pi\)
−0.760656 + 0.649155i \(0.775122\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −50.7632 −1.98652 −0.993259 0.115920i \(-0.963018\pi\)
−0.993259 + 0.115920i \(0.963018\pi\)
\(654\) 0 0
\(655\) 20.1934i 0.789020i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −27.3517 −1.06065
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 23.3746i − 0.902366i
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 29.0241 1.10895
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 49.9259i − 1.89927i −0.313355 0.949636i \(-0.601453\pi\)
0.313355 0.949636i \(-0.398547\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.07558i 0.154596i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 17.4356 0.658533 0.329267 0.944237i \(-0.393198\pi\)
0.329267 + 0.944237i \(0.393198\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 83.2990i − 3.13278i
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 43.3746i − 1.61760i −0.588084 0.808800i \(-0.700118\pi\)
0.588084 0.808800i \(-0.299882\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 12.4279i 0.460925i 0.973081 + 0.230463i \(0.0740239\pi\)
−0.973081 + 0.230463i \(0.925976\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 61.0241i − 2.25706i
\(732\) 0 0
\(733\) 14.0000 0.517102 0.258551 0.965998i \(-0.416755\pi\)
0.258551 + 0.965998i \(0.416755\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 54.2273i − 1.99478i −0.0721811 0.997392i \(-0.522996\pi\)
0.0721811 0.997392i \(-0.477004\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) −26.8248 −0.982783
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 55.0241 1.99988 0.999942 0.0107448i \(-0.00342025\pi\)
0.999942 + 0.0107448i \(0.00342025\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −49.8108 −1.80564 −0.902821 0.430017i \(-0.858508\pi\)
−0.902821 + 0.430017i \(0.858508\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 6.62541 0.238919 0.119459 0.992839i \(-0.461884\pi\)
0.119459 + 0.992839i \(0.461884\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 23.6416 0.843806
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) − 84.6820i − 2.99584i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 105.574i 3.72562i
\(804\) 0 0
\(805\) −25.0997 −0.884647
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −24.0027 −0.843891 −0.421945 0.906621i \(-0.638653\pi\)
−0.421945 + 0.906621i \(0.638653\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 11.4502i 0.401082i
\(816\) 0 0
\(817\) −32.2749 −1.12916
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −35.0021 −1.22158 −0.610791 0.791792i \(-0.709148\pi\)
−0.610791 + 0.791792i \(0.709148\pi\)
\(822\) 0 0
\(823\) 20.5386i 0.715931i 0.933735 + 0.357966i \(0.116529\pi\)
−0.933735 + 0.357966i \(0.883471\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 130.422 4.51884
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 17.0745 0.587381
\(846\) 0 0
\(847\) − 135.560i − 4.65791i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 41.3232i 1.40993i 0.709242 + 0.704965i \(0.249037\pi\)
−0.709242 + 0.704965i \(0.750963\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 51.9244i − 1.75537i
\(876\) 0 0
\(877\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6.33694 0.213497 0.106749 0.994286i \(-0.465956\pi\)
0.106749 + 0.994286i \(0.465956\pi\)
\(882\) 0 0
\(883\) 28.9111i 0.972938i 0.873698 + 0.486469i \(0.161715\pi\)
−0.873698 + 0.486469i \(0.838285\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −44.7873 −1.49875
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −100.399 −3.32271
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −73.4525 −2.42561
\(918\) 0 0
\(919\) − 8.71780i − 0.287574i −0.989609 0.143787i \(-0.954072\pi\)
0.989609 0.143787i \(-0.0459280\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 34.8712 1.14409 0.572043 0.820223i \(-0.306151\pi\)
0.572043 + 0.820223i \(0.306151\pi\)
\(930\) 0 0
\(931\) − 68.9785i − 2.26068i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 67.9244i 2.22137i
\(936\) 0 0
\(937\) 10.4743 0.342179 0.171089 0.985255i \(-0.445271\pi\)
0.171089 + 0.985255i \(0.445271\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 8.00000i − 0.259965i −0.991516 0.129983i \(-0.958508\pi\)
0.991516 0.129983i \(-0.0414921\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 35.9544i 1.16346i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 105.574i 3.40916i
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 61.0246i 1.96242i 0.192947 + 0.981209i \(0.438195\pi\)
−0.192947 + 0.981209i \(0.561805\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −14.8248 −0.475260
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 22.9003 0.729665
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −29.6175 −0.941782
\(990\) 0 0
\(991\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 37.0241i 1.17374i
\(996\) 0 0
\(997\) 27.7251 0.878062 0.439031 0.898472i \(-0.355322\pi\)
0.439031 + 0.898472i \(0.355322\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2736.2.k.p.2431.6 yes 8
3.2 odd 2 inner 2736.2.k.p.2431.4 yes 8
4.3 odd 2 inner 2736.2.k.p.2431.5 yes 8
12.11 even 2 inner 2736.2.k.p.2431.3 8
19.18 odd 2 CM 2736.2.k.p.2431.6 yes 8
57.56 even 2 inner 2736.2.k.p.2431.4 yes 8
76.75 even 2 inner 2736.2.k.p.2431.5 yes 8
228.227 odd 2 inner 2736.2.k.p.2431.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2736.2.k.p.2431.3 8 12.11 even 2 inner
2736.2.k.p.2431.3 8 228.227 odd 2 inner
2736.2.k.p.2431.4 yes 8 3.2 odd 2 inner
2736.2.k.p.2431.4 yes 8 57.56 even 2 inner
2736.2.k.p.2431.5 yes 8 4.3 odd 2 inner
2736.2.k.p.2431.5 yes 8 76.75 even 2 inner
2736.2.k.p.2431.6 yes 8 1.1 even 1 trivial
2736.2.k.p.2431.6 yes 8 19.18 odd 2 CM