Properties

Label 2720.2.c.e.1121.7
Level $2720$
Weight $2$
Character 2720.1121
Analytic conductor $21.719$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2720,2,Mod(1121,2720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2720.1121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2720 = 2^{5} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2720.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-12,0,0,0,-16,0,0,0,-4,0,0,0,24,0,0,0,-16,0, 0,0,0,0,0,0,8,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(35)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7193093498\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 30x^{14} + 337x^{12} + 1804x^{10} + 4944x^{8} + 6760x^{6} + 4048x^{4} + 880x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1121.7
Root \(-0.700592i\) of defining polynomial
Character \(\chi\) \(=\) 2720.1121
Dual form 2720.2.c.e.1121.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.700592i q^{3} +1.00000i q^{5} -2.22408i q^{7} +2.50917 q^{9} +3.74422i q^{11} -6.72768 q^{13} +0.700592 q^{15} +(1.62059 - 3.79127i) q^{17} -4.67985 q^{19} -1.55818 q^{21} +6.25760i q^{23} -1.00000 q^{25} -3.85968i q^{27} -9.29954i q^{29} +7.15049i q^{31} +2.62317 q^{33} +2.22408 q^{35} +5.00719i q^{37} +4.71336i q^{39} -1.90591i q^{41} -12.4708 q^{43} +2.50917i q^{45} -9.41849 q^{47} +2.05345 q^{49} +(-2.65613 - 1.13537i) q^{51} -12.9941 q^{53} -3.74422 q^{55} +3.27866i q^{57} +6.01042 q^{59} -4.79708i q^{61} -5.58061i q^{63} -6.72768i q^{65} -0.213042 q^{67} +4.38402 q^{69} +4.16565i q^{71} +5.01604i q^{73} +0.700592i q^{75} +8.32746 q^{77} -12.3859i q^{79} +4.82345 q^{81} +2.24588 q^{83} +(3.79127 + 1.62059i) q^{85} -6.51518 q^{87} -6.35525 q^{89} +14.9629i q^{91} +5.00957 q^{93} -4.67985i q^{95} -0.913832i q^{97} +9.39489i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 12 q^{9} - 16 q^{13} - 4 q^{17} + 24 q^{21} - 16 q^{25} + 8 q^{33} - 12 q^{35} + 4 q^{43} - 24 q^{47} - 24 q^{49} - 20 q^{51} - 8 q^{53} + 24 q^{59} - 28 q^{67} + 16 q^{69} - 24 q^{77} + 56 q^{81}+ \cdots - 48 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2720\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1601\) \(1701\) \(2177\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.700592i 0.404487i −0.979335 0.202243i \(-0.935177\pi\)
0.979335 0.202243i \(-0.0648232\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 2.22408i 0.840625i −0.907379 0.420312i \(-0.861920\pi\)
0.907379 0.420312i \(-0.138080\pi\)
\(8\) 0 0
\(9\) 2.50917 0.836390
\(10\) 0 0
\(11\) 3.74422i 1.12893i 0.825459 + 0.564463i \(0.190917\pi\)
−0.825459 + 0.564463i \(0.809083\pi\)
\(12\) 0 0
\(13\) −6.72768 −1.86592 −0.932961 0.359976i \(-0.882785\pi\)
−0.932961 + 0.359976i \(0.882785\pi\)
\(14\) 0 0
\(15\) 0.700592 0.180892
\(16\) 0 0
\(17\) 1.62059 3.79127i 0.393050 0.919517i
\(18\) 0 0
\(19\) −4.67985 −1.07363 −0.536815 0.843700i \(-0.680373\pi\)
−0.536815 + 0.843700i \(0.680373\pi\)
\(20\) 0 0
\(21\) −1.55818 −0.340022
\(22\) 0 0
\(23\) 6.25760i 1.30480i 0.757875 + 0.652399i \(0.226238\pi\)
−0.757875 + 0.652399i \(0.773762\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 3.85968i 0.742796i
\(28\) 0 0
\(29\) 9.29954i 1.72688i −0.504450 0.863441i \(-0.668305\pi\)
0.504450 0.863441i \(-0.331695\pi\)
\(30\) 0 0
\(31\) 7.15049i 1.28427i 0.766594 + 0.642133i \(0.221950\pi\)
−0.766594 + 0.642133i \(0.778050\pi\)
\(32\) 0 0
\(33\) 2.62317 0.456635
\(34\) 0 0
\(35\) 2.22408 0.375939
\(36\) 0 0
\(37\) 5.00719i 0.823177i 0.911370 + 0.411589i \(0.135026\pi\)
−0.911370 + 0.411589i \(0.864974\pi\)
\(38\) 0 0
\(39\) 4.71336i 0.754741i
\(40\) 0 0
\(41\) 1.90591i 0.297653i −0.988863 0.148827i \(-0.952450\pi\)
0.988863 0.148827i \(-0.0475496\pi\)
\(42\) 0 0
\(43\) −12.4708 −1.90177 −0.950887 0.309537i \(-0.899826\pi\)
−0.950887 + 0.309537i \(0.899826\pi\)
\(44\) 0 0
\(45\) 2.50917i 0.374045i
\(46\) 0 0
\(47\) −9.41849 −1.37383 −0.686914 0.726738i \(-0.741035\pi\)
−0.686914 + 0.726738i \(0.741035\pi\)
\(48\) 0 0
\(49\) 2.05345 0.293350
\(50\) 0 0
\(51\) −2.65613 1.13537i −0.371933 0.158984i
\(52\) 0 0
\(53\) −12.9941 −1.78488 −0.892441 0.451164i \(-0.851009\pi\)
−0.892441 + 0.451164i \(0.851009\pi\)
\(54\) 0 0
\(55\) −3.74422 −0.504871
\(56\) 0 0
\(57\) 3.27866i 0.434270i
\(58\) 0 0
\(59\) 6.01042 0.782490 0.391245 0.920287i \(-0.372044\pi\)
0.391245 + 0.920287i \(0.372044\pi\)
\(60\) 0 0
\(61\) 4.79708i 0.614203i −0.951677 0.307101i \(-0.900641\pi\)
0.951677 0.307101i \(-0.0993591\pi\)
\(62\) 0 0
\(63\) 5.58061i 0.703090i
\(64\) 0 0
\(65\) 6.72768i 0.834466i
\(66\) 0 0
\(67\) −0.213042 −0.0260272 −0.0130136 0.999915i \(-0.504142\pi\)
−0.0130136 + 0.999915i \(0.504142\pi\)
\(68\) 0 0
\(69\) 4.38402 0.527774
\(70\) 0 0
\(71\) 4.16565i 0.494372i 0.968968 + 0.247186i \(0.0795059\pi\)
−0.968968 + 0.247186i \(0.920494\pi\)
\(72\) 0 0
\(73\) 5.01604i 0.587083i 0.955946 + 0.293541i \(0.0948338\pi\)
−0.955946 + 0.293541i \(0.905166\pi\)
\(74\) 0 0
\(75\) 0.700592i 0.0808974i
\(76\) 0 0
\(77\) 8.32746 0.949002
\(78\) 0 0
\(79\) 12.3859i 1.39352i −0.717303 0.696762i \(-0.754623\pi\)
0.717303 0.696762i \(-0.245377\pi\)
\(80\) 0 0
\(81\) 4.82345 0.535939
\(82\) 0 0
\(83\) 2.24588 0.246517 0.123259 0.992375i \(-0.460666\pi\)
0.123259 + 0.992375i \(0.460666\pi\)
\(84\) 0 0
\(85\) 3.79127 + 1.62059i 0.411220 + 0.175777i
\(86\) 0 0
\(87\) −6.51518 −0.698501
\(88\) 0 0
\(89\) −6.35525 −0.673655 −0.336828 0.941566i \(-0.609354\pi\)
−0.336828 + 0.941566i \(0.609354\pi\)
\(90\) 0 0
\(91\) 14.9629i 1.56854i
\(92\) 0 0
\(93\) 5.00957 0.519468
\(94\) 0 0
\(95\) 4.67985i 0.480142i
\(96\) 0 0
\(97\) 0.913832i 0.0927856i −0.998923 0.0463928i \(-0.985227\pi\)
0.998923 0.0463928i \(-0.0147726\pi\)
\(98\) 0 0
\(99\) 9.39489i 0.944222i
\(100\) 0 0
\(101\) 8.37843 0.833685 0.416843 0.908979i \(-0.363137\pi\)
0.416843 + 0.908979i \(0.363137\pi\)
\(102\) 0 0
\(103\) −4.80111 −0.473067 −0.236534 0.971623i \(-0.576011\pi\)
−0.236534 + 0.971623i \(0.576011\pi\)
\(104\) 0 0
\(105\) 1.55818i 0.152062i
\(106\) 0 0
\(107\) 4.52676i 0.437619i −0.975768 0.218809i \(-0.929783\pi\)
0.975768 0.218809i \(-0.0702173\pi\)
\(108\) 0 0
\(109\) 11.8824i 1.13813i 0.822292 + 0.569066i \(0.192695\pi\)
−0.822292 + 0.569066i \(0.807305\pi\)
\(110\) 0 0
\(111\) 3.50800 0.332965
\(112\) 0 0
\(113\) 5.04468i 0.474564i 0.971441 + 0.237282i \(0.0762565\pi\)
−0.971441 + 0.237282i \(0.923744\pi\)
\(114\) 0 0
\(115\) −6.25760 −0.583524
\(116\) 0 0
\(117\) −16.8809 −1.56064
\(118\) 0 0
\(119\) −8.43209 3.60433i −0.772969 0.330408i
\(120\) 0 0
\(121\) −3.01919 −0.274472
\(122\) 0 0
\(123\) −1.33527 −0.120397
\(124\) 0 0
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −16.1088 −1.42942 −0.714711 0.699420i \(-0.753442\pi\)
−0.714711 + 0.699420i \(0.753442\pi\)
\(128\) 0 0
\(129\) 8.73692i 0.769243i
\(130\) 0 0
\(131\) 0.946721i 0.0827154i 0.999144 + 0.0413577i \(0.0131683\pi\)
−0.999144 + 0.0413577i \(0.986832\pi\)
\(132\) 0 0
\(133\) 10.4084i 0.902521i
\(134\) 0 0
\(135\) 3.85968 0.332188
\(136\) 0 0
\(137\) −11.6397 −0.994449 −0.497224 0.867622i \(-0.665647\pi\)
−0.497224 + 0.867622i \(0.665647\pi\)
\(138\) 0 0
\(139\) 14.1812i 1.20284i 0.798934 + 0.601419i \(0.205398\pi\)
−0.798934 + 0.601419i \(0.794602\pi\)
\(140\) 0 0
\(141\) 6.59852i 0.555696i
\(142\) 0 0
\(143\) 25.1899i 2.10649i
\(144\) 0 0
\(145\) 9.29954 0.772285
\(146\) 0 0
\(147\) 1.43863i 0.118656i
\(148\) 0 0
\(149\) −9.58924 −0.785581 −0.392791 0.919628i \(-0.628490\pi\)
−0.392791 + 0.919628i \(0.628490\pi\)
\(150\) 0 0
\(151\) −1.47726 −0.120218 −0.0601090 0.998192i \(-0.519145\pi\)
−0.0601090 + 0.998192i \(0.519145\pi\)
\(152\) 0 0
\(153\) 4.06633 9.51293i 0.328744 0.769075i
\(154\) 0 0
\(155\) −7.15049 −0.574341
\(156\) 0 0
\(157\) −11.6698 −0.931351 −0.465675 0.884956i \(-0.654189\pi\)
−0.465675 + 0.884956i \(0.654189\pi\)
\(158\) 0 0
\(159\) 9.10359i 0.721961i
\(160\) 0 0
\(161\) 13.9174 1.09685
\(162\) 0 0
\(163\) 0.439965i 0.0344607i 0.999852 + 0.0172303i \(0.00548486\pi\)
−0.999852 + 0.0172303i \(0.994515\pi\)
\(164\) 0 0
\(165\) 2.62317i 0.204214i
\(166\) 0 0
\(167\) 20.3369i 1.57371i 0.617135 + 0.786857i \(0.288293\pi\)
−0.617135 + 0.786857i \(0.711707\pi\)
\(168\) 0 0
\(169\) 32.2617 2.48167
\(170\) 0 0
\(171\) −11.7425 −0.897974
\(172\) 0 0
\(173\) 18.9699i 1.44225i −0.692803 0.721127i \(-0.743624\pi\)
0.692803 0.721127i \(-0.256376\pi\)
\(174\) 0 0
\(175\) 2.22408i 0.168125i
\(176\) 0 0
\(177\) 4.21085i 0.316507i
\(178\) 0 0
\(179\) −21.9259 −1.63882 −0.819408 0.573211i \(-0.805698\pi\)
−0.819408 + 0.573211i \(0.805698\pi\)
\(180\) 0 0
\(181\) 1.09659i 0.0815088i −0.999169 0.0407544i \(-0.987024\pi\)
0.999169 0.0407544i \(-0.0129761\pi\)
\(182\) 0 0
\(183\) −3.36079 −0.248437
\(184\) 0 0
\(185\) −5.00719 −0.368136
\(186\) 0 0
\(187\) 14.1953 + 6.06784i 1.03807 + 0.443724i
\(188\) 0 0
\(189\) −8.58426 −0.624413
\(190\) 0 0
\(191\) −6.85889 −0.496292 −0.248146 0.968723i \(-0.579821\pi\)
−0.248146 + 0.968723i \(0.579821\pi\)
\(192\) 0 0
\(193\) 11.8313i 0.851639i 0.904808 + 0.425819i \(0.140014\pi\)
−0.904808 + 0.425819i \(0.859986\pi\)
\(194\) 0 0
\(195\) −4.71336 −0.337531
\(196\) 0 0
\(197\) 8.48740i 0.604702i −0.953197 0.302351i \(-0.902229\pi\)
0.953197 0.302351i \(-0.0977715\pi\)
\(198\) 0 0
\(199\) 15.3125i 1.08548i 0.839901 + 0.542739i \(0.182613\pi\)
−0.839901 + 0.542739i \(0.817387\pi\)
\(200\) 0 0
\(201\) 0.149255i 0.0105277i
\(202\) 0 0
\(203\) −20.6830 −1.45166
\(204\) 0 0
\(205\) 1.90591 0.133115
\(206\) 0 0
\(207\) 15.7014i 1.09132i
\(208\) 0 0
\(209\) 17.5224i 1.21205i
\(210\) 0 0
\(211\) 8.82891i 0.607807i −0.952703 0.303904i \(-0.901710\pi\)
0.952703 0.303904i \(-0.0982901\pi\)
\(212\) 0 0
\(213\) 2.91842 0.199967
\(214\) 0 0
\(215\) 12.4708i 0.850499i
\(216\) 0 0
\(217\) 15.9033 1.07959
\(218\) 0 0
\(219\) 3.51419 0.237467
\(220\) 0 0
\(221\) −10.9028 + 25.5064i −0.733402 + 1.71575i
\(222\) 0 0
\(223\) −3.11863 −0.208839 −0.104419 0.994533i \(-0.533298\pi\)
−0.104419 + 0.994533i \(0.533298\pi\)
\(224\) 0 0
\(225\) −2.50917 −0.167278
\(226\) 0 0
\(227\) 24.9063i 1.65309i 0.562870 + 0.826545i \(0.309697\pi\)
−0.562870 + 0.826545i \(0.690303\pi\)
\(228\) 0 0
\(229\) −10.3978 −0.687107 −0.343554 0.939133i \(-0.611631\pi\)
−0.343554 + 0.939133i \(0.611631\pi\)
\(230\) 0 0
\(231\) 5.83415i 0.383859i
\(232\) 0 0
\(233\) 3.28149i 0.214977i 0.994206 + 0.107489i \(0.0342809\pi\)
−0.994206 + 0.107489i \(0.965719\pi\)
\(234\) 0 0
\(235\) 9.41849i 0.614395i
\(236\) 0 0
\(237\) −8.67747 −0.563662
\(238\) 0 0
\(239\) −26.1678 −1.69266 −0.846328 0.532663i \(-0.821191\pi\)
−0.846328 + 0.532663i \(0.821191\pi\)
\(240\) 0 0
\(241\) 28.3317i 1.82501i −0.409071 0.912503i \(-0.634147\pi\)
0.409071 0.912503i \(-0.365853\pi\)
\(242\) 0 0
\(243\) 14.9583i 0.959576i
\(244\) 0 0
\(245\) 2.05345i 0.131190i
\(246\) 0 0
\(247\) 31.4845 2.00331
\(248\) 0 0
\(249\) 1.57344i 0.0997130i
\(250\) 0 0
\(251\) 10.6718 0.673599 0.336800 0.941576i \(-0.390656\pi\)
0.336800 + 0.941576i \(0.390656\pi\)
\(252\) 0 0
\(253\) −23.4298 −1.47302
\(254\) 0 0
\(255\) 1.13537 2.65613i 0.0710997 0.166333i
\(256\) 0 0
\(257\) 3.45918 0.215778 0.107889 0.994163i \(-0.465591\pi\)
0.107889 + 0.994163i \(0.465591\pi\)
\(258\) 0 0
\(259\) 11.1364 0.691983
\(260\) 0 0
\(261\) 23.3341i 1.44435i
\(262\) 0 0
\(263\) 3.86722 0.238463 0.119232 0.992866i \(-0.461957\pi\)
0.119232 + 0.992866i \(0.461957\pi\)
\(264\) 0 0
\(265\) 12.9941i 0.798223i
\(266\) 0 0
\(267\) 4.45244i 0.272485i
\(268\) 0 0
\(269\) 10.3456i 0.630781i 0.948962 + 0.315390i \(0.102135\pi\)
−0.948962 + 0.315390i \(0.897865\pi\)
\(270\) 0 0
\(271\) −9.67737 −0.587858 −0.293929 0.955827i \(-0.594963\pi\)
−0.293929 + 0.955827i \(0.594963\pi\)
\(272\) 0 0
\(273\) 10.4829 0.634454
\(274\) 0 0
\(275\) 3.74422i 0.225785i
\(276\) 0 0
\(277\) 25.4004i 1.52616i 0.646304 + 0.763080i \(0.276314\pi\)
−0.646304 + 0.763080i \(0.723686\pi\)
\(278\) 0 0
\(279\) 17.9418i 1.07415i
\(280\) 0 0
\(281\) −4.82400 −0.287776 −0.143888 0.989594i \(-0.545960\pi\)
−0.143888 + 0.989594i \(0.545960\pi\)
\(282\) 0 0
\(283\) 15.7626i 0.936991i −0.883466 0.468496i \(-0.844796\pi\)
0.883466 0.468496i \(-0.155204\pi\)
\(284\) 0 0
\(285\) −3.27866 −0.194211
\(286\) 0 0
\(287\) −4.23891 −0.250215
\(288\) 0 0
\(289\) −11.7474 12.2882i −0.691023 0.722833i
\(290\) 0 0
\(291\) −0.640224 −0.0375306
\(292\) 0 0
\(293\) 24.8782 1.45340 0.726700 0.686955i \(-0.241053\pi\)
0.726700 + 0.686955i \(0.241053\pi\)
\(294\) 0 0
\(295\) 6.01042i 0.349940i
\(296\) 0 0
\(297\) 14.4515 0.838561
\(298\) 0 0
\(299\) 42.0991i 2.43465i
\(300\) 0 0
\(301\) 27.7360i 1.59868i
\(302\) 0 0
\(303\) 5.86986i 0.337215i
\(304\) 0 0
\(305\) 4.79708 0.274680
\(306\) 0 0
\(307\) 29.9398 1.70876 0.854378 0.519652i \(-0.173938\pi\)
0.854378 + 0.519652i \(0.173938\pi\)
\(308\) 0 0
\(309\) 3.36362i 0.191349i
\(310\) 0 0
\(311\) 2.52136i 0.142973i −0.997442 0.0714865i \(-0.977226\pi\)
0.997442 0.0714865i \(-0.0227743\pi\)
\(312\) 0 0
\(313\) 15.8801i 0.897594i −0.893634 0.448797i \(-0.851853\pi\)
0.893634 0.448797i \(-0.148147\pi\)
\(314\) 0 0
\(315\) 5.58061 0.314432
\(316\) 0 0
\(317\) 4.28449i 0.240641i −0.992735 0.120321i \(-0.961608\pi\)
0.992735 0.120321i \(-0.0383922\pi\)
\(318\) 0 0
\(319\) 34.8195 1.94952
\(320\) 0 0
\(321\) −3.17141 −0.177011
\(322\) 0 0
\(323\) −7.58411 + 17.7425i −0.421991 + 0.987222i
\(324\) 0 0
\(325\) 6.72768 0.373185
\(326\) 0 0
\(327\) 8.32474 0.460359
\(328\) 0 0
\(329\) 20.9475i 1.15487i
\(330\) 0 0
\(331\) 26.2786 1.44440 0.722200 0.691684i \(-0.243131\pi\)
0.722200 + 0.691684i \(0.243131\pi\)
\(332\) 0 0
\(333\) 12.5639i 0.688498i
\(334\) 0 0
\(335\) 0.213042i 0.0116397i
\(336\) 0 0
\(337\) 7.46162i 0.406461i −0.979131 0.203230i \(-0.934856\pi\)
0.979131 0.203230i \(-0.0651440\pi\)
\(338\) 0 0
\(339\) 3.53426 0.191955
\(340\) 0 0
\(341\) −26.7730 −1.44984
\(342\) 0 0
\(343\) 20.1356i 1.08722i
\(344\) 0 0
\(345\) 4.38402i 0.236028i
\(346\) 0 0
\(347\) 10.7543i 0.577323i 0.957431 + 0.288662i \(0.0932102\pi\)
−0.957431 + 0.288662i \(0.906790\pi\)
\(348\) 0 0
\(349\) −18.0592 −0.966687 −0.483343 0.875431i \(-0.660578\pi\)
−0.483343 + 0.875431i \(0.660578\pi\)
\(350\) 0 0
\(351\) 25.9667i 1.38600i
\(352\) 0 0
\(353\) 8.74508 0.465454 0.232727 0.972542i \(-0.425235\pi\)
0.232727 + 0.972542i \(0.425235\pi\)
\(354\) 0 0
\(355\) −4.16565 −0.221090
\(356\) 0 0
\(357\) −2.52516 + 5.90746i −0.133646 + 0.312656i
\(358\) 0 0
\(359\) 14.4023 0.760123 0.380061 0.924961i \(-0.375903\pi\)
0.380061 + 0.924961i \(0.375903\pi\)
\(360\) 0 0
\(361\) 2.90098 0.152683
\(362\) 0 0
\(363\) 2.11522i 0.111020i
\(364\) 0 0
\(365\) −5.01604 −0.262551
\(366\) 0 0
\(367\) 4.13473i 0.215831i −0.994160 0.107915i \(-0.965582\pi\)
0.994160 0.107915i \(-0.0344176\pi\)
\(368\) 0 0
\(369\) 4.78226i 0.248954i
\(370\) 0 0
\(371\) 28.9001i 1.50042i
\(372\) 0 0
\(373\) 24.6724 1.27749 0.638746 0.769418i \(-0.279454\pi\)
0.638746 + 0.769418i \(0.279454\pi\)
\(374\) 0 0
\(375\) −0.700592 −0.0361784
\(376\) 0 0
\(377\) 62.5643i 3.22223i
\(378\) 0 0
\(379\) 7.29145i 0.374537i 0.982309 + 0.187268i \(0.0599634\pi\)
−0.982309 + 0.187268i \(0.940037\pi\)
\(380\) 0 0
\(381\) 11.2857i 0.578182i
\(382\) 0 0
\(383\) 26.0727 1.33225 0.666127 0.745839i \(-0.267951\pi\)
0.666127 + 0.745839i \(0.267951\pi\)
\(384\) 0 0
\(385\) 8.32746i 0.424407i
\(386\) 0 0
\(387\) −31.2913 −1.59063
\(388\) 0 0
\(389\) 27.2334 1.38079 0.690394 0.723433i \(-0.257437\pi\)
0.690394 + 0.723433i \(0.257437\pi\)
\(390\) 0 0
\(391\) 23.7242 + 10.1410i 1.19978 + 0.512852i
\(392\) 0 0
\(393\) 0.663265 0.0334573
\(394\) 0 0
\(395\) 12.3859 0.623203
\(396\) 0 0
\(397\) 29.6726i 1.48922i −0.667497 0.744612i \(-0.732634\pi\)
0.667497 0.744612i \(-0.267366\pi\)
\(398\) 0 0
\(399\) 7.29203 0.365058
\(400\) 0 0
\(401\) 2.98582i 0.149105i 0.997217 + 0.0745524i \(0.0237528\pi\)
−0.997217 + 0.0745524i \(0.976247\pi\)
\(402\) 0 0
\(403\) 48.1062i 2.39634i
\(404\) 0 0
\(405\) 4.82345i 0.239679i
\(406\) 0 0
\(407\) −18.7480 −0.929306
\(408\) 0 0
\(409\) −18.6869 −0.924008 −0.462004 0.886878i \(-0.652869\pi\)
−0.462004 + 0.886878i \(0.652869\pi\)
\(410\) 0 0
\(411\) 8.15470i 0.402242i
\(412\) 0 0
\(413\) 13.3677i 0.657781i
\(414\) 0 0
\(415\) 2.24588i 0.110246i
\(416\) 0 0
\(417\) 9.93526 0.486532
\(418\) 0 0
\(419\) 12.3530i 0.603485i −0.953389 0.301743i \(-0.902432\pi\)
0.953389 0.301743i \(-0.0975683\pi\)
\(420\) 0 0
\(421\) 23.8308 1.16144 0.580721 0.814102i \(-0.302771\pi\)
0.580721 + 0.814102i \(0.302771\pi\)
\(422\) 0 0
\(423\) −23.6326 −1.14906
\(424\) 0 0
\(425\) −1.62059 + 3.79127i −0.0786101 + 0.183903i
\(426\) 0 0
\(427\) −10.6691 −0.516314
\(428\) 0 0
\(429\) −17.6479 −0.852047
\(430\) 0 0
\(431\) 16.1561i 0.778210i 0.921193 + 0.389105i \(0.127216\pi\)
−0.921193 + 0.389105i \(0.872784\pi\)
\(432\) 0 0
\(433\) 25.5062 1.22575 0.612875 0.790180i \(-0.290013\pi\)
0.612875 + 0.790180i \(0.290013\pi\)
\(434\) 0 0
\(435\) 6.51518i 0.312379i
\(436\) 0 0
\(437\) 29.2846i 1.40087i
\(438\) 0 0
\(439\) 35.8675i 1.71186i −0.517091 0.855931i \(-0.672985\pi\)
0.517091 0.855931i \(-0.327015\pi\)
\(440\) 0 0
\(441\) 5.15245 0.245355
\(442\) 0 0
\(443\) −38.2707 −1.81830 −0.909148 0.416474i \(-0.863266\pi\)
−0.909148 + 0.416474i \(0.863266\pi\)
\(444\) 0 0
\(445\) 6.35525i 0.301268i
\(446\) 0 0
\(447\) 6.71815i 0.317757i
\(448\) 0 0
\(449\) 1.97378i 0.0931485i 0.998915 + 0.0465742i \(0.0148304\pi\)
−0.998915 + 0.0465742i \(0.985170\pi\)
\(450\) 0 0
\(451\) 7.13615 0.336028
\(452\) 0 0
\(453\) 1.03496i 0.0486266i
\(454\) 0 0
\(455\) −14.9629 −0.701473
\(456\) 0 0
\(457\) −7.85804 −0.367584 −0.183792 0.982965i \(-0.558837\pi\)
−0.183792 + 0.982965i \(0.558837\pi\)
\(458\) 0 0
\(459\) −14.6331 6.25495i −0.683013 0.291956i
\(460\) 0 0
\(461\) 5.14444 0.239600 0.119800 0.992798i \(-0.461775\pi\)
0.119800 + 0.992798i \(0.461775\pi\)
\(462\) 0 0
\(463\) −15.8456 −0.736407 −0.368203 0.929745i \(-0.620027\pi\)
−0.368203 + 0.929745i \(0.620027\pi\)
\(464\) 0 0
\(465\) 5.00957i 0.232313i
\(466\) 0 0
\(467\) 13.6018 0.629417 0.314708 0.949188i \(-0.398093\pi\)
0.314708 + 0.949188i \(0.398093\pi\)
\(468\) 0 0
\(469\) 0.473822i 0.0218791i
\(470\) 0 0
\(471\) 8.17576i 0.376719i
\(472\) 0 0
\(473\) 46.6933i 2.14696i
\(474\) 0 0
\(475\) 4.67985 0.214726
\(476\) 0 0
\(477\) −32.6045 −1.49286
\(478\) 0 0
\(479\) 22.6225i 1.03365i −0.856092 0.516824i \(-0.827114\pi\)
0.856092 0.516824i \(-0.172886\pi\)
\(480\) 0 0
\(481\) 33.6868i 1.53599i
\(482\) 0 0
\(483\) 9.75043i 0.443660i
\(484\) 0 0
\(485\) 0.913832 0.0414950
\(486\) 0 0
\(487\) 4.67956i 0.212051i 0.994363 + 0.106025i \(0.0338125\pi\)
−0.994363 + 0.106025i \(0.966187\pi\)
\(488\) 0 0
\(489\) 0.308236 0.0139389
\(490\) 0 0
\(491\) −3.13010 −0.141260 −0.0706298 0.997503i \(-0.522501\pi\)
−0.0706298 + 0.997503i \(0.522501\pi\)
\(492\) 0 0
\(493\) −35.2570 15.0707i −1.58790 0.678752i
\(494\) 0 0
\(495\) −9.39489 −0.422269
\(496\) 0 0
\(497\) 9.26477 0.415582
\(498\) 0 0
\(499\) 8.52188i 0.381492i 0.981639 + 0.190746i \(0.0610906\pi\)
−0.981639 + 0.190746i \(0.938909\pi\)
\(500\) 0 0
\(501\) 14.2479 0.636547
\(502\) 0 0
\(503\) 31.5088i 1.40491i −0.711729 0.702454i \(-0.752088\pi\)
0.711729 0.702454i \(-0.247912\pi\)
\(504\) 0 0
\(505\) 8.37843i 0.372835i
\(506\) 0 0
\(507\) 22.6023i 1.00380i
\(508\) 0 0
\(509\) −12.3922 −0.549274 −0.274637 0.961548i \(-0.588558\pi\)
−0.274637 + 0.961548i \(0.588558\pi\)
\(510\) 0 0
\(511\) 11.1561 0.493516
\(512\) 0 0
\(513\) 18.0627i 0.797489i
\(514\) 0 0
\(515\) 4.80111i 0.211562i
\(516\) 0 0
\(517\) 35.2649i 1.55095i
\(518\) 0 0
\(519\) −13.2902 −0.583373
\(520\) 0 0
\(521\) 27.3319i 1.19743i −0.800962 0.598716i \(-0.795678\pi\)
0.800962 0.598716i \(-0.204322\pi\)
\(522\) 0 0
\(523\) 43.3809 1.89691 0.948456 0.316907i \(-0.102644\pi\)
0.948456 + 0.316907i \(0.102644\pi\)
\(524\) 0 0
\(525\) 1.55818 0.0680044
\(526\) 0 0
\(527\) 27.1094 + 11.5880i 1.18090 + 0.504781i
\(528\) 0 0
\(529\) −16.1575 −0.702500
\(530\) 0 0
\(531\) 15.0812 0.654467
\(532\) 0 0
\(533\) 12.8224i 0.555398i
\(534\) 0 0
\(535\) 4.52676 0.195709
\(536\) 0 0
\(537\) 15.3611i 0.662880i
\(538\) 0 0
\(539\) 7.68857i 0.331170i
\(540\) 0 0
\(541\) 41.8291i 1.79837i 0.437564 + 0.899187i \(0.355841\pi\)
−0.437564 + 0.899187i \(0.644159\pi\)
\(542\) 0 0
\(543\) −0.768261 −0.0329692
\(544\) 0 0
\(545\) −11.8824 −0.508988
\(546\) 0 0
\(547\) 8.94213i 0.382338i −0.981557 0.191169i \(-0.938772\pi\)
0.981557 0.191169i \(-0.0612278\pi\)
\(548\) 0 0
\(549\) 12.0367i 0.513713i
\(550\) 0 0
\(551\) 43.5204i 1.85403i
\(552\) 0 0
\(553\) −27.5473 −1.17143
\(554\) 0 0
\(555\) 3.50800i 0.148906i
\(556\) 0 0
\(557\) −9.48564 −0.401919 −0.200960 0.979600i \(-0.564406\pi\)
−0.200960 + 0.979600i \(0.564406\pi\)
\(558\) 0 0
\(559\) 83.8994 3.54856
\(560\) 0 0
\(561\) 4.25108 9.94514i 0.179481 0.419884i
\(562\) 0 0
\(563\) 22.1943 0.935379 0.467690 0.883893i \(-0.345086\pi\)
0.467690 + 0.883893i \(0.345086\pi\)
\(564\) 0 0
\(565\) −5.04468 −0.212231
\(566\) 0 0
\(567\) 10.7278i 0.450524i
\(568\) 0 0
\(569\) −28.3885 −1.19011 −0.595053 0.803686i \(-0.702869\pi\)
−0.595053 + 0.803686i \(0.702869\pi\)
\(570\) 0 0
\(571\) 14.0578i 0.588301i 0.955759 + 0.294150i \(0.0950366\pi\)
−0.955759 + 0.294150i \(0.904963\pi\)
\(572\) 0 0
\(573\) 4.80528i 0.200744i
\(574\) 0 0
\(575\) 6.25760i 0.260960i
\(576\) 0 0
\(577\) 17.7663 0.739622 0.369811 0.929107i \(-0.379422\pi\)
0.369811 + 0.929107i \(0.379422\pi\)
\(578\) 0 0
\(579\) 8.28894 0.344477
\(580\) 0 0
\(581\) 4.99502i 0.207229i
\(582\) 0 0
\(583\) 48.6529i 2.01500i
\(584\) 0 0
\(585\) 16.8809i 0.697939i
\(586\) 0 0
\(587\) −2.06718 −0.0853217 −0.0426608 0.999090i \(-0.513583\pi\)
−0.0426608 + 0.999090i \(0.513583\pi\)
\(588\) 0 0
\(589\) 33.4632i 1.37883i
\(590\) 0 0
\(591\) −5.94620 −0.244594
\(592\) 0 0
\(593\) 4.28086 0.175794 0.0878969 0.996130i \(-0.471985\pi\)
0.0878969 + 0.996130i \(0.471985\pi\)
\(594\) 0 0
\(595\) 3.60433 8.43209i 0.147763 0.345682i
\(596\) 0 0
\(597\) 10.7278 0.439062
\(598\) 0 0
\(599\) −32.8147 −1.34077 −0.670386 0.742013i \(-0.733871\pi\)
−0.670386 + 0.742013i \(0.733871\pi\)
\(600\) 0 0
\(601\) 14.2950i 0.583103i −0.956555 0.291552i \(-0.905828\pi\)
0.956555 0.291552i \(-0.0941715\pi\)
\(602\) 0 0
\(603\) −0.534558 −0.0217689
\(604\) 0 0
\(605\) 3.01919i 0.122748i
\(606\) 0 0
\(607\) 29.3858i 1.19273i −0.802713 0.596366i \(-0.796611\pi\)
0.802713 0.596366i \(-0.203389\pi\)
\(608\) 0 0
\(609\) 14.4903i 0.587177i
\(610\) 0 0
\(611\) 63.3646 2.56346
\(612\) 0 0
\(613\) −6.62320 −0.267508 −0.133754 0.991015i \(-0.542703\pi\)
−0.133754 + 0.991015i \(0.542703\pi\)
\(614\) 0 0
\(615\) 1.33527i 0.0538431i
\(616\) 0 0
\(617\) 2.78191i 0.111996i 0.998431 + 0.0559978i \(0.0178340\pi\)
−0.998431 + 0.0559978i \(0.982166\pi\)
\(618\) 0 0
\(619\) 39.4925i 1.58734i 0.608351 + 0.793668i \(0.291831\pi\)
−0.608351 + 0.793668i \(0.708169\pi\)
\(620\) 0 0
\(621\) 24.1523 0.969199
\(622\) 0 0
\(623\) 14.1346i 0.566291i
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −12.2760 −0.490258
\(628\) 0 0
\(629\) 18.9836 + 8.11460i 0.756926 + 0.323550i
\(630\) 0 0
\(631\) 30.5437 1.21592 0.607962 0.793966i \(-0.291987\pi\)
0.607962 + 0.793966i \(0.291987\pi\)
\(632\) 0 0
\(633\) −6.18546 −0.245850
\(634\) 0 0
\(635\) 16.1088i 0.639257i
\(636\) 0 0
\(637\) −13.8149 −0.547368
\(638\) 0 0
\(639\) 10.4523i 0.413488i
\(640\) 0 0
\(641\) 8.76788i 0.346311i −0.984895 0.173155i \(-0.944604\pi\)
0.984895 0.173155i \(-0.0553963\pi\)
\(642\) 0 0
\(643\) 35.2679i 1.39083i −0.718607 0.695416i \(-0.755220\pi\)
0.718607 0.695416i \(-0.244780\pi\)
\(644\) 0 0
\(645\) −8.73692 −0.344016
\(646\) 0 0
\(647\) 49.6312 1.95121 0.975603 0.219544i \(-0.0704570\pi\)
0.975603 + 0.219544i \(0.0704570\pi\)
\(648\) 0 0
\(649\) 22.5043i 0.883373i
\(650\) 0 0
\(651\) 11.1417i 0.436678i
\(652\) 0 0
\(653\) 47.8632i 1.87303i 0.350627 + 0.936515i \(0.385968\pi\)
−0.350627 + 0.936515i \(0.614032\pi\)
\(654\) 0 0
\(655\) −0.946721 −0.0369915
\(656\) 0 0
\(657\) 12.5861i 0.491030i
\(658\) 0 0
\(659\) −5.12850 −0.199778 −0.0998889 0.994999i \(-0.531849\pi\)
−0.0998889 + 0.994999i \(0.531849\pi\)
\(660\) 0 0
\(661\) 14.6546 0.569998 0.284999 0.958528i \(-0.408007\pi\)
0.284999 + 0.958528i \(0.408007\pi\)
\(662\) 0 0
\(663\) 17.8696 + 7.63842i 0.693998 + 0.296651i
\(664\) 0 0
\(665\) −10.4084 −0.403620
\(666\) 0 0
\(667\) 58.1928 2.25323
\(668\) 0 0
\(669\) 2.18489i 0.0844726i
\(670\) 0 0
\(671\) 17.9613 0.693389
\(672\) 0 0
\(673\) 22.4658i 0.865995i 0.901395 + 0.432997i \(0.142544\pi\)
−0.901395 + 0.432997i \(0.857456\pi\)
\(674\) 0 0
\(675\) 3.85968i 0.148559i
\(676\) 0 0
\(677\) 40.0309i 1.53851i −0.638939 0.769257i \(-0.720626\pi\)
0.638939 0.769257i \(-0.279374\pi\)
\(678\) 0 0
\(679\) −2.03244 −0.0779979
\(680\) 0 0
\(681\) 17.4492 0.668654
\(682\) 0 0
\(683\) 29.3124i 1.12161i −0.827949 0.560804i \(-0.810492\pi\)
0.827949 0.560804i \(-0.189508\pi\)
\(684\) 0 0
\(685\) 11.6397i 0.444731i
\(686\) 0 0
\(687\) 7.28463i 0.277926i
\(688\) 0 0
\(689\) 87.4204 3.33045
\(690\) 0 0
\(691\) 15.1987i 0.578187i 0.957301 + 0.289094i \(0.0933539\pi\)
−0.957301 + 0.289094i \(0.906646\pi\)
\(692\) 0 0
\(693\) 20.8950 0.793736
\(694\) 0 0
\(695\) −14.1812 −0.537925
\(696\) 0 0
\(697\) −7.22581 3.08870i −0.273697 0.116993i
\(698\) 0 0
\(699\) 2.29898 0.0869555
\(700\) 0 0
\(701\) 15.3696 0.580500 0.290250 0.956951i \(-0.406262\pi\)
0.290250 + 0.956951i \(0.406262\pi\)
\(702\) 0 0
\(703\) 23.4329i 0.883789i
\(704\) 0 0
\(705\) −6.59852 −0.248515
\(706\) 0 0
\(707\) 18.6343i 0.700817i
\(708\) 0 0
\(709\) 0.0958787i 0.00360080i −0.999998 0.00180040i \(-0.999427\pi\)
0.999998 0.00180040i \(-0.000573085\pi\)
\(710\) 0 0
\(711\) 31.0784i 1.16553i
\(712\) 0 0
\(713\) −44.7448 −1.67571
\(714\) 0 0
\(715\) 25.1899 0.942050
\(716\) 0 0
\(717\) 18.3330i 0.684657i
\(718\) 0 0
\(719\) 35.8162i 1.33572i −0.744288 0.667859i \(-0.767211\pi\)
0.744288 0.667859i \(-0.232789\pi\)
\(720\) 0 0
\(721\) 10.6781i 0.397672i
\(722\) 0 0
\(723\) −19.8490 −0.738191
\(724\) 0 0
\(725\) 9.29954i 0.345376i
\(726\) 0 0
\(727\) −2.96901 −0.110115 −0.0550573 0.998483i \(-0.517534\pi\)
−0.0550573 + 0.998483i \(0.517534\pi\)
\(728\) 0 0
\(729\) 3.99068 0.147803
\(730\) 0 0
\(731\) −20.2100 + 47.2800i −0.747493 + 1.74871i
\(732\) 0 0
\(733\) −3.23027 −0.119313 −0.0596564 0.998219i \(-0.519001\pi\)
−0.0596564 + 0.998219i \(0.519001\pi\)
\(734\) 0 0
\(735\) 1.43863 0.0530647
\(736\) 0 0
\(737\) 0.797675i 0.0293827i
\(738\) 0 0
\(739\) −7.14036 −0.262663 −0.131331 0.991339i \(-0.541925\pi\)
−0.131331 + 0.991339i \(0.541925\pi\)
\(740\) 0 0
\(741\) 22.0578i 0.810314i
\(742\) 0 0
\(743\) 13.8353i 0.507570i −0.967261 0.253785i \(-0.918325\pi\)
0.967261 0.253785i \(-0.0816755\pi\)
\(744\) 0 0
\(745\) 9.58924i 0.351323i
\(746\) 0 0
\(747\) 5.63529 0.206185
\(748\) 0 0
\(749\) −10.0679 −0.367873
\(750\) 0 0
\(751\) 34.8612i 1.27210i 0.771647 + 0.636051i \(0.219433\pi\)
−0.771647 + 0.636051i \(0.780567\pi\)
\(752\) 0 0
\(753\) 7.47659i 0.272462i
\(754\) 0 0
\(755\) 1.47726i 0.0537631i
\(756\) 0 0
\(757\) 6.23021 0.226441 0.113220 0.993570i \(-0.463883\pi\)
0.113220 + 0.993570i \(0.463883\pi\)
\(758\) 0 0
\(759\) 16.4147i 0.595817i
\(760\) 0 0
\(761\) −39.9351 −1.44765 −0.723823 0.689986i \(-0.757617\pi\)
−0.723823 + 0.689986i \(0.757617\pi\)
\(762\) 0 0
\(763\) 26.4275 0.956742
\(764\) 0 0
\(765\) 9.51293 + 4.06633i 0.343941 + 0.147019i
\(766\) 0 0
\(767\) −40.4362 −1.46007
\(768\) 0 0
\(769\) 12.8468 0.463267 0.231634 0.972803i \(-0.425593\pi\)
0.231634 + 0.972803i \(0.425593\pi\)
\(770\) 0 0
\(771\) 2.42347i 0.0872792i
\(772\) 0 0
\(773\) −29.7697 −1.07074 −0.535371 0.844617i \(-0.679828\pi\)
−0.535371 + 0.844617i \(0.679828\pi\)
\(774\) 0 0
\(775\) 7.15049i 0.256853i
\(776\) 0 0
\(777\) 7.80209i 0.279898i
\(778\) 0 0
\(779\) 8.91937i 0.319570i
\(780\) 0 0
\(781\) −15.5971 −0.558109
\(782\) 0 0
\(783\) −35.8933 −1.28272
\(784\) 0 0
\(785\) 11.6698i 0.416513i
\(786\) 0 0
\(787\) 37.6997i 1.34385i −0.740620 0.671924i \(-0.765468\pi\)
0.740620 0.671924i \(-0.234532\pi\)
\(788\) 0 0
\(789\) 2.70935i 0.0964553i
\(790\) 0 0
\(791\) 11.2198 0.398930
\(792\) 0 0
\(793\) 32.2732i 1.14605i
\(794\) 0 0
\(795\) −9.10359 −0.322871
\(796\) 0 0
\(797\) 42.9591 1.52169 0.760845 0.648934i \(-0.224785\pi\)
0.760845 + 0.648934i \(0.224785\pi\)
\(798\) 0 0
\(799\) −15.2635 + 35.7080i −0.539984 + 1.26326i
\(800\) 0 0
\(801\) −15.9464 −0.563439
\(802\) 0 0
\(803\) −18.7811 −0.662772
\(804\) 0 0
\(805\) 13.9174i 0.490525i
\(806\) 0 0
\(807\) 7.24803 0.255143
\(808\) 0 0
\(809\) 35.0353i 1.23178i 0.787833 + 0.615888i \(0.211203\pi\)
−0.787833 + 0.615888i \(0.788797\pi\)
\(810\) 0 0
\(811\) 7.51429i 0.263863i −0.991259 0.131931i \(-0.957882\pi\)
0.991259 0.131931i \(-0.0421178\pi\)
\(812\) 0 0
\(813\) 6.77988i 0.237781i
\(814\) 0 0
\(815\) −0.439965 −0.0154113
\(816\) 0 0
\(817\) 58.3613 2.04180
\(818\) 0 0
\(819\) 37.5445i 1.31191i
\(820\) 0 0
\(821\) 31.1545i 1.08730i 0.839312 + 0.543650i \(0.182958\pi\)
−0.839312 + 0.543650i \(0.817042\pi\)
\(822\) 0 0
\(823\) 36.0412i 1.25632i 0.778086 + 0.628158i \(0.216191\pi\)
−0.778086 + 0.628158i \(0.783809\pi\)
\(824\) 0 0
\(825\) −2.62317 −0.0913271
\(826\) 0 0
\(827\) 54.1571i 1.88323i 0.336694 + 0.941614i \(0.390691\pi\)
−0.336694 + 0.941614i \(0.609309\pi\)
\(828\) 0 0
\(829\) −25.4545 −0.884072 −0.442036 0.896997i \(-0.645744\pi\)
−0.442036 + 0.896997i \(0.645744\pi\)
\(830\) 0 0
\(831\) 17.7953 0.617312
\(832\) 0 0
\(833\) 3.32780 7.78517i 0.115301 0.269740i
\(834\) 0 0
\(835\) −20.3369 −0.703787
\(836\) 0 0
\(837\) 27.5986 0.953947
\(838\) 0 0
\(839\) 13.2362i 0.456965i 0.973548 + 0.228482i \(0.0733763\pi\)
−0.973548 + 0.228482i \(0.926624\pi\)
\(840\) 0 0
\(841\) −57.4815 −1.98212
\(842\) 0 0
\(843\) 3.37966i 0.116402i
\(844\) 0 0
\(845\) 32.2617i 1.10984i
\(846\) 0 0
\(847\) 6.71493i 0.230728i
\(848\) 0 0
\(849\) −11.0432 −0.379001
\(850\) 0 0
\(851\) −31.3330 −1.07408
\(852\) 0 0
\(853\) 31.8398i 1.09017i −0.838380 0.545087i \(-0.816497\pi\)
0.838380 0.545087i \(-0.183503\pi\)
\(854\) 0 0
\(855\) 11.7425i 0.401586i
\(856\) 0 0
\(857\) 22.8762i 0.781437i 0.920510 + 0.390718i \(0.127773\pi\)
−0.920510 + 0.390718i \(0.872227\pi\)
\(858\) 0 0
\(859\) −22.5897 −0.770751 −0.385376 0.922760i \(-0.625928\pi\)
−0.385376 + 0.922760i \(0.625928\pi\)
\(860\) 0 0
\(861\) 2.96974i 0.101209i
\(862\) 0 0
\(863\) −13.7660 −0.468600 −0.234300 0.972164i \(-0.575280\pi\)
−0.234300 + 0.972164i \(0.575280\pi\)
\(864\) 0 0
\(865\) 18.9699 0.644996
\(866\) 0 0
\(867\) −8.60899 + 8.23012i −0.292377 + 0.279510i
\(868\) 0 0
\(869\) 46.3756 1.57318
\(870\) 0 0
\(871\) 1.43328 0.0485647
\(872\) 0 0
\(873\) 2.29296i 0.0776050i
\(874\) 0 0
\(875\) −2.22408 −0.0751878
\(876\) 0 0
\(877\) 16.5833i 0.559977i −0.960003 0.279988i \(-0.909669\pi\)
0.960003 0.279988i \(-0.0903306\pi\)
\(878\) 0 0
\(879\) 17.4295i 0.587881i
\(880\) 0 0
\(881\) 40.9275i 1.37888i 0.724341 + 0.689442i \(0.242144\pi\)
−0.724341 + 0.689442i \(0.757856\pi\)
\(882\) 0 0
\(883\) −11.7019 −0.393799 −0.196899 0.980424i \(-0.563087\pi\)
−0.196899 + 0.980424i \(0.563087\pi\)
\(884\) 0 0
\(885\) 4.21085 0.141546
\(886\) 0 0
\(887\) 0.644527i 0.0216411i 0.999941 + 0.0108205i \(0.00344435\pi\)
−0.999941 + 0.0108205i \(0.996556\pi\)
\(888\) 0 0
\(889\) 35.8272i 1.20161i
\(890\) 0 0
\(891\) 18.0601i 0.605035i
\(892\) 0 0
\(893\) 44.0771 1.47498
\(894\) 0 0
\(895\) 21.9259i 0.732901i
\(896\) 0 0
\(897\) −29.4943 −0.984786
\(898\) 0 0
\(899\) 66.4962 2.21777
\(900\) 0 0
\(901\) −21.0581 + 49.2642i −0.701549 + 1.64123i
\(902\) 0 0
\(903\) 19.4317 0.646645
\(904\) 0 0
\(905\) 1.09659 0.0364518
\(906\) 0 0
\(907\) 19.2262i 0.638396i −0.947688 0.319198i \(-0.896587\pi\)
0.947688 0.319198i \(-0.103413\pi\)
\(908\) 0 0
\(909\) 21.0229 0.697286
\(910\) 0 0
\(911\) 33.0601i 1.09533i −0.836697 0.547665i \(-0.815517\pi\)
0.836697 0.547665i \(-0.184483\pi\)
\(912\) 0 0
\(913\) 8.40907i 0.278300i
\(914\) 0 0
\(915\) 3.36079i 0.111104i
\(916\) 0 0
\(917\) 2.10559 0.0695326
\(918\) 0 0
\(919\) 8.40732 0.277332 0.138666 0.990339i \(-0.455719\pi\)
0.138666 + 0.990339i \(0.455719\pi\)
\(920\) 0 0
\(921\) 20.9756i 0.691170i
\(922\) 0 0
\(923\) 28.0252i 0.922460i
\(924\) 0 0
\(925\) 5.00719i 0.164635i
\(926\) 0 0
\(927\) −12.0468 −0.395669
\(928\) 0 0
\(929\) 22.4176i 0.735498i −0.929925 0.367749i \(-0.880129\pi\)
0.929925 0.367749i \(-0.119871\pi\)
\(930\) 0 0
\(931\) −9.60983 −0.314949
\(932\) 0 0
\(933\) −1.76644 −0.0578307
\(934\) 0 0
\(935\) −6.06784 + 14.1953i −0.198440 + 0.464237i
\(936\) 0 0
\(937\) −32.3858 −1.05800 −0.528999 0.848622i \(-0.677433\pi\)
−0.528999 + 0.848622i \(0.677433\pi\)
\(938\) 0 0
\(939\) −11.1254 −0.363065
\(940\) 0 0
\(941\) 29.5171i 0.962231i 0.876657 + 0.481115i \(0.159768\pi\)
−0.876657 + 0.481115i \(0.840232\pi\)
\(942\) 0 0
\(943\) 11.9264 0.388378
\(944\) 0 0
\(945\) 8.58426i 0.279246i
\(946\) 0 0
\(947\) 45.7242i 1.48584i 0.669381 + 0.742919i \(0.266559\pi\)
−0.669381 + 0.742919i \(0.733441\pi\)
\(948\) 0 0
\(949\) 33.7463i 1.09545i
\(950\) 0 0
\(951\) −3.00168 −0.0973362
\(952\) 0 0
\(953\) −24.2760 −0.786376 −0.393188 0.919458i \(-0.628628\pi\)
−0.393188 + 0.919458i \(0.628628\pi\)
\(954\) 0 0
\(955\) 6.85889i 0.221948i
\(956\) 0 0
\(957\) 24.3943i 0.788555i
\(958\) 0 0
\(959\) 25.8877i 0.835958i
\(960\) 0 0
\(961\) −20.1294 −0.649337
\(962\) 0 0
\(963\) 11.3584i 0.366020i
\(964\) 0 0
\(965\) −11.8313 −0.380864
\(966\) 0 0
\(967\) −45.5601 −1.46511 −0.732557 0.680705i \(-0.761673\pi\)
−0.732557 + 0.680705i \(0.761673\pi\)
\(968\) 0 0
\(969\) 12.4303 + 5.31336i 0.399318 + 0.170690i
\(970\) 0 0
\(971\) −16.8044 −0.539280 −0.269640 0.962961i \(-0.586905\pi\)
−0.269640 + 0.962961i \(0.586905\pi\)
\(972\) 0 0
\(973\) 31.5403 1.01113
\(974\) 0 0
\(975\) 4.71336i 0.150948i
\(976\) 0 0
\(977\) −17.2559 −0.552064 −0.276032 0.961148i \(-0.589020\pi\)
−0.276032 + 0.961148i \(0.589020\pi\)
\(978\) 0 0
\(979\) 23.7955i 0.760506i
\(980\) 0 0
\(981\) 29.8151i 0.951922i
\(982\) 0 0
\(983\) 7.24700i 0.231144i −0.993299 0.115572i \(-0.963130\pi\)
0.993299 0.115572i \(-0.0368700\pi\)
\(984\) 0 0
\(985\) 8.48740 0.270431
\(986\) 0 0
\(987\) 14.6757 0.467132
\(988\) 0 0
\(989\) 78.0370i 2.48143i
\(990\) 0 0
\(991\) 26.9695i 0.856714i −0.903610 0.428357i \(-0.859093\pi\)
0.903610 0.428357i \(-0.140907\pi\)
\(992\) 0 0
\(993\) 18.4105i 0.584241i
\(994\) 0 0
\(995\) −15.3125 −0.485440
\(996\) 0 0
\(997\) 41.4864i 1.31389i 0.753939 + 0.656944i \(0.228151\pi\)
−0.753939 + 0.656944i \(0.771849\pi\)
\(998\) 0 0
\(999\) 19.3262 0.611453
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2720.2.c.e.1121.7 16
4.3 odd 2 2720.2.c.f.1121.10 yes 16
17.16 even 2 inner 2720.2.c.e.1121.10 yes 16
68.67 odd 2 2720.2.c.f.1121.7 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2720.2.c.e.1121.7 16 1.1 even 1 trivial
2720.2.c.e.1121.10 yes 16 17.16 even 2 inner
2720.2.c.f.1121.7 yes 16 68.67 odd 2
2720.2.c.f.1121.10 yes 16 4.3 odd 2