Properties

Label 2720.2.c.e
Level $2720$
Weight $2$
Character orbit 2720.c
Analytic conductor $21.719$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2720,2,Mod(1121,2720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2720.1121"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2720 = 2^{5} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2720.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-12,0,0,0,-16,0,0,0,-4,0,0,0,24,0,0,0,-16,0, 0,0,0,0,0,0,8,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(35)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.7193093498\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 30x^{14} + 337x^{12} + 1804x^{10} + 4944x^{8} + 6760x^{6} + 4048x^{4} + 880x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + \beta_{3} q^{5} + (\beta_{3} - \beta_{2}) q^{7} + (\beta_{9} + \beta_{8} - 1) q^{9} + (\beta_{14} - \beta_{12} - \beta_{3}) q^{11} + (\beta_{7} - \beta_{5} - 1) q^{13} + \beta_{10} q^{15}+ \cdots + ( - 3 \beta_{15} + \beta_{14} + \cdots + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 12 q^{9} - 16 q^{13} - 4 q^{17} + 24 q^{21} - 16 q^{25} + 8 q^{33} - 12 q^{35} + 4 q^{43} - 24 q^{47} - 24 q^{49} - 20 q^{51} - 8 q^{53} + 24 q^{59} - 28 q^{67} + 16 q^{69} - 24 q^{77} + 56 q^{81}+ \cdots - 48 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 30x^{14} + 337x^{12} + 1804x^{10} + 4944x^{8} + 6760x^{6} + 4048x^{4} + 880x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{15} - 80\nu^{13} - 743\nu^{11} - 2902\nu^{9} - 4888\nu^{7} - 3252\nu^{5} - 1288\nu^{3} - 352\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 69 \nu^{15} + 1860 \nu^{13} + 17617 \nu^{11} + 71526 \nu^{9} + 129704 \nu^{7} + 96556 \nu^{5} + \cdots + 2000 \nu ) / 208 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 23\nu^{14} + 607\nu^{12} + 5530\nu^{10} + 20735\nu^{8} + 31669\nu^{6} + 14800\nu^{4} + 1932\nu^{2} + 268 ) / 52 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 61\nu^{14} + 1624\nu^{12} + 15039\nu^{10} + 58370\nu^{8} + 96418\nu^{6} + 56740\nu^{4} + 9752\nu^{2} - 128 ) / 104 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -27\nu^{15} - 738\nu^{13} - 7157\nu^{11} - 30303\nu^{9} - 58777\nu^{7} - 47812\nu^{5} - 12304\nu^{3} + 280\nu ) / 52 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 79\nu^{14} + 2142\nu^{12} + 20495\nu^{10} + 84786\nu^{8} + 158734\nu^{6} + 123420\nu^{4} + 33312\nu^{2} + 760 ) / 104 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 50\nu^{14} + 1345\nu^{12} + 12687\nu^{10} + 51038\nu^{8} + 90446\nu^{6} + 62612\nu^{4} + 14288\nu^{2} + 248 ) / 52 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -50\nu^{14} - 1345\nu^{12} - 12687\nu^{10} - 51038\nu^{8} - 90446\nu^{6} - 62612\nu^{4} - 14236\nu^{2} - 40 ) / 52 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 105 \nu^{14} - 2818 \nu^{12} - 26475 \nu^{10} - 105716 \nu^{8} - 184942 \nu^{6} - 125500 \nu^{4} + \cdots - 552 ) / 104 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 50\nu^{15} + 1345\nu^{13} + 12687\nu^{11} + 51038\nu^{9} + 90446\nu^{7} + 62612\nu^{5} + 14288\nu^{3} + 352\nu ) / 52 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 19 \nu^{15} + 146 \nu^{14} + 489 \nu^{13} + 3930 \nu^{12} + 4241 \nu^{11} + 37110 \nu^{10} + \cdots + 408 ) / 104 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 133 \nu^{15} + 292 \nu^{14} + 3514 \nu^{13} + 7860 \nu^{12} + 32053 \nu^{11} + 74220 \nu^{10} + \cdots + 608 ) / 208 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 133 \nu^{15} + 292 \nu^{14} - 3514 \nu^{13} + 7860 \nu^{12} - 32053 \nu^{11} + 74220 \nu^{10} + \cdots + 816 ) / 208 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 159 \nu^{15} + 292 \nu^{14} - 4346 \nu^{13} + 7860 \nu^{12} - 42167 \nu^{11} + 74220 \nu^{10} + \cdots + 816 ) / 208 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{9} + \beta_{8} - 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{14} + \beta_{13} - 2\beta_{12} + 2\beta_{11} + 2\beta_{6} - \beta_{3} + \beta_{2} - 7\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{10} - 11\beta_{9} - 10\beta_{8} + \beta_{7} - \beta_{5} + 2\beta_{4} + 31 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 3 \beta_{15} - 13 \beta_{14} - 13 \beta_{13} + 29 \beta_{12} - 26 \beta_{11} - 25 \beta_{6} + \cdots - 13 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 3 \beta_{14} - 3 \beta_{13} - 40 \beta_{10} + 113 \beta_{9} + 104 \beta_{8} - 19 \beta_{7} + \cdots - 286 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 65 \beta_{15} + 145 \beta_{14} + 139 \beta_{13} - 349 \beta_{12} + 298 \beta_{11} + 267 \beta_{6} + \cdots + 139 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 71 \beta_{14} + 71 \beta_{13} + 592 \beta_{10} - 1145 \beta_{9} - 1112 \beta_{8} + 279 \beta_{7} + \cdots + 2810 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 1013 \beta_{15} - 1565 \beta_{14} - 1423 \beta_{13} + 4001 \beta_{12} - 3322 \beta_{11} - 2763 \beta_{6} + \cdots - 1423 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 1155 \beta_{14} - 1155 \beta_{13} - 7820 \beta_{10} + 11633 \beta_{9} + 12008 \beta_{8} + \cdots - 28366 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 13805 \beta_{15} + 16789 \beta_{14} + 14479 \beta_{13} - 45073 \beta_{12} + 36718 \beta_{11} + \cdots + 14479 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 16115 \beta_{14} + 16115 \beta_{13} + 97348 \beta_{10} - 119077 \beta_{9} - 130172 \beta_{8} + \cdots + 290650 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 175241 \beta_{15} - 180265 \beta_{14} - 148035 \beta_{13} + 503541 \beta_{12} - 404450 \beta_{11} + \cdots - 148035 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 207471 \beta_{14} - 207471 \beta_{13} - 1168852 \beta_{10} + 1229265 \beta_{9} + 1413912 \beta_{8} + \cdots - 3009562 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 2131309 \beta_{15} + 1940277 \beta_{14} + 1525335 \beta_{13} - 5596921 \beta_{12} + 4446774 \beta_{11} + \cdots + 1525335 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2720\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(1601\) \(1701\) \(2177\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1121.1
3.30605i
2.97343i
1.77785i
1.77495i
1.67348i
0.778614i
0.700592i
0.141255i
0.141255i
0.700592i
0.778614i
1.67348i
1.77495i
1.77785i
2.97343i
3.30605i
0 3.30605i 0 1.00000i 0 2.92445i 0 −7.92996 0
1121.2 0 2.97343i 0 1.00000i 0 2.79457i 0 −5.84130 0
1121.3 0 1.77785i 0 1.00000i 0 2.74610i 0 −0.160765 0
1121.4 0 1.77495i 0 1.00000i 0 0.336810i 0 −0.150436 0
1121.5 0 1.67348i 0 1.00000i 0 4.87128i 0 0.199481 0
1121.6 0 0.778614i 0 1.00000i 0 0.401608i 0 2.39376 0
1121.7 0 0.700592i 0 1.00000i 0 2.22408i 0 2.50917 0
1121.8 0 0.141255i 0 1.00000i 0 3.89182i 0 2.98005 0
1121.9 0 0.141255i 0 1.00000i 0 3.89182i 0 2.98005 0
1121.10 0 0.700592i 0 1.00000i 0 2.22408i 0 2.50917 0
1121.11 0 0.778614i 0 1.00000i 0 0.401608i 0 2.39376 0
1121.12 0 1.67348i 0 1.00000i 0 4.87128i 0 0.199481 0
1121.13 0 1.77495i 0 1.00000i 0 0.336810i 0 −0.150436 0
1121.14 0 1.77785i 0 1.00000i 0 2.74610i 0 −0.160765 0
1121.15 0 2.97343i 0 1.00000i 0 2.79457i 0 −5.84130 0
1121.16 0 3.30605i 0 1.00000i 0 2.92445i 0 −7.92996 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1121.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2720.2.c.e 16
4.b odd 2 1 2720.2.c.f yes 16
17.b even 2 1 inner 2720.2.c.e 16
68.d odd 2 1 2720.2.c.f yes 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2720.2.c.e 16 1.a even 1 1 trivial
2720.2.c.e 16 17.b even 2 1 inner
2720.2.c.f yes 16 4.b odd 2 1
2720.2.c.f yes 16 68.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(2720, [\chi])\):

\( T_{3}^{16} + 30T_{3}^{14} + 337T_{3}^{12} + 1804T_{3}^{10} + 4944T_{3}^{8} + 6760T_{3}^{6} + 4048T_{3}^{4} + 880T_{3}^{2} + 16 \) Copy content Toggle raw display
\( T_{19}^{8} - 53T_{19}^{6} + 108T_{19}^{5} + 544T_{19}^{4} - 2272T_{19}^{3} + 3072T_{19}^{2} - 1664T_{19} + 256 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} + 30 T^{14} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{8} \) Copy content Toggle raw display
$7$ \( T^{16} + 68 T^{14} + \cdots + 16384 \) Copy content Toggle raw display
$11$ \( T^{16} + 88 T^{14} + \cdots + 13897984 \) Copy content Toggle raw display
$13$ \( (T^{8} + 8 T^{7} + \cdots - 2672)^{2} \) Copy content Toggle raw display
$17$ \( T^{16} + \cdots + 6975757441 \) Copy content Toggle raw display
$19$ \( (T^{8} - 53 T^{6} + \cdots + 256)^{2} \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 586027264 \) Copy content Toggle raw display
$29$ \( T^{16} + 250 T^{14} + \cdots + 262144 \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 202435984 \) Copy content Toggle raw display
$37$ \( T^{16} + 216 T^{14} + \cdots + 1048576 \) Copy content Toggle raw display
$41$ \( T^{16} + 248 T^{14} + \cdots + 4194304 \) Copy content Toggle raw display
$43$ \( (T^{8} - 2 T^{7} + \cdots + 1030144)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} + 12 T^{7} + \cdots + 84592)^{2} \) Copy content Toggle raw display
$53$ \( (T^{8} + 4 T^{7} + \cdots - 297664)^{2} \) Copy content Toggle raw display
$59$ \( (T^{8} - 12 T^{7} + \cdots - 24951040)^{2} \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 2671158759424 \) Copy content Toggle raw display
$67$ \( (T^{8} + 14 T^{7} + \cdots + 3008)^{2} \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 43207221168400 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 1186670350336 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 1392777625600 \) Copy content Toggle raw display
$83$ \( (T^{8} - 10 T^{7} + \cdots - 753728)^{2} \) Copy content Toggle raw display
$89$ \( (T^{8} + 6 T^{7} + \cdots - 7236496)^{2} \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 9413656576 \) Copy content Toggle raw display
show more
show less