| L(s) = 1 | − 1.67i·3-s − i·5-s + 4.87i·7-s + 0.199·9-s + 1.43i·11-s − 3.49·13-s − 1.67·15-s + (−2.09 − 3.54i)17-s + 1.25·19-s + 8.15·21-s − 4.27i·23-s − 25-s − 5.35i·27-s − 2.30i·29-s + 8.16i·31-s + ⋯ |
| L(s) = 1 | − 0.966i·3-s − 0.447i·5-s + 1.84i·7-s + 0.0664·9-s + 0.432i·11-s − 0.969·13-s − 0.432·15-s + (−0.508 − 0.860i)17-s + 0.287·19-s + 1.77·21-s − 0.891i·23-s − 0.200·25-s − 1.03i·27-s − 0.427i·29-s + 1.46i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.860 - 0.508i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.860 - 0.508i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.521134790\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.521134790\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + iT \) |
| 17 | \( 1 + (2.09 + 3.54i)T \) |
| good | 3 | \( 1 + 1.67iT - 3T^{2} \) |
| 7 | \( 1 - 4.87iT - 7T^{2} \) |
| 11 | \( 1 - 1.43iT - 11T^{2} \) |
| 13 | \( 1 + 3.49T + 13T^{2} \) |
| 19 | \( 1 - 1.25T + 19T^{2} \) |
| 23 | \( 1 + 4.27iT - 23T^{2} \) |
| 29 | \( 1 + 2.30iT - 29T^{2} \) |
| 31 | \( 1 - 8.16iT - 31T^{2} \) |
| 37 | \( 1 - 6.75iT - 37T^{2} \) |
| 41 | \( 1 - 6.23iT - 41T^{2} \) |
| 43 | \( 1 - 10.8T + 43T^{2} \) |
| 47 | \( 1 - 5.26T + 47T^{2} \) |
| 53 | \( 1 - 5.11T + 53T^{2} \) |
| 59 | \( 1 - 7.32T + 59T^{2} \) |
| 61 | \( 1 - 14.0iT - 61T^{2} \) |
| 67 | \( 1 - 7.18T + 67T^{2} \) |
| 71 | \( 1 - 11.1iT - 71T^{2} \) |
| 73 | \( 1 - 15.1iT - 73T^{2} \) |
| 79 | \( 1 - 10.5iT - 79T^{2} \) |
| 83 | \( 1 - 5.75T + 83T^{2} \) |
| 89 | \( 1 + 5.87T + 89T^{2} \) |
| 97 | \( 1 + 0.696iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.726239211717153102085357312634, −8.266020825847877977734743422603, −7.25380969750267246068543861452, −6.75460539693920083406248349493, −5.80446016427373577786530109168, −5.11454631366646905737299282604, −4.36309992561487518060180600494, −2.58541289573999708890696554377, −2.42457349775544429871396314779, −1.11021306691179762533462726365,
0.55077685393170504070492891252, 2.05122076079071418179833524182, 3.49153805482430086651204440036, 3.92037587468389774328322579119, 4.60316962388728404612100940005, 5.56707596343834528253335153480, 6.57212171618504595171674659135, 7.49651093379324703597680607800, 7.63531206865572717232385553800, 9.029846767806673016725758853179