Properties

Label 272.2.l.c.205.3
Level $272$
Weight $2$
Character 272.205
Analytic conductor $2.172$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [272,2,Mod(69,272)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("272.69"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(272, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 272.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17193093498\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 205.3
Character \(\chi\) \(=\) 272.205
Dual form 272.2.l.c.69.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37038 - 0.349388i) q^{2} +(0.724061 + 0.724061i) q^{3} +(1.75586 + 0.957585i) q^{4} +(0.100057 - 0.100057i) q^{5} +(-0.739257 - 1.24521i) q^{6} -2.62804i q^{7} +(-2.07161 - 1.92573i) q^{8} -1.95147i q^{9} +(-0.172075 + 0.102157i) q^{10} +(1.93625 - 1.93625i) q^{11} +(0.577997 + 1.96470i) q^{12} +(1.48714 + 1.48714i) q^{13} +(-0.918206 + 3.60140i) q^{14} +0.144896 q^{15} +(2.16606 + 3.36276i) q^{16} +1.00000 q^{17} +(-0.681820 + 2.67425i) q^{18} +(2.90615 + 2.90615i) q^{19} +(0.271500 - 0.0798729i) q^{20} +(1.90286 - 1.90286i) q^{21} +(-3.32989 + 1.97688i) q^{22} -5.35151i q^{23} +(-0.105630 - 2.89432i) q^{24} +4.97998i q^{25} +(-1.51835 - 2.55753i) q^{26} +(3.58517 - 3.58517i) q^{27} +(2.51657 - 4.61446i) q^{28} +(-0.891113 - 0.891113i) q^{29} +(-0.198561 - 0.0506248i) q^{30} +1.44426 q^{31} +(-1.79341 - 5.36504i) q^{32} +2.80393 q^{33} +(-1.37038 - 0.349388i) q^{34} +(-0.262955 - 0.262955i) q^{35} +(1.86870 - 3.42650i) q^{36} +(-1.18829 + 1.18829i) q^{37} +(-2.96714 - 4.99789i) q^{38} +2.15356i q^{39} +(-0.399964 + 0.0145970i) q^{40} +4.71764i q^{41} +(-3.27247 + 1.94280i) q^{42} +(7.44242 - 7.44242i) q^{43} +(5.25390 - 1.54565i) q^{44} +(-0.195259 - 0.195259i) q^{45} +(-1.86975 + 7.33357i) q^{46} -12.1594 q^{47} +(-0.866487 + 4.00321i) q^{48} +0.0934039 q^{49} +(1.73994 - 6.82444i) q^{50} +(0.724061 + 0.724061i) q^{51} +(1.18714 + 4.03527i) q^{52} +(-4.79265 + 4.79265i) q^{53} +(-6.16564 + 3.66041i) q^{54} -0.387472i q^{55} +(-5.06089 + 5.44428i) q^{56} +4.20846i q^{57} +(0.909815 + 1.53250i) q^{58} +(-6.48840 + 6.48840i) q^{59} +(0.254416 + 0.138750i) q^{60} +(1.30973 + 1.30973i) q^{61} +(-1.97918 - 0.504608i) q^{62} -5.12854 q^{63} +(0.583156 + 7.97872i) q^{64} +0.297599 q^{65} +(-3.84243 - 0.979658i) q^{66} +(-2.81837 - 2.81837i) q^{67} +(1.75586 + 0.957585i) q^{68} +(3.87482 - 3.87482i) q^{69} +(0.268474 + 0.452221i) q^{70} -6.09170i q^{71} +(-3.75800 + 4.04269i) q^{72} +13.5126i q^{73} +(2.04358 - 1.21323i) q^{74} +(-3.60581 + 3.60581i) q^{75} +(2.31989 + 7.88567i) q^{76} +(-5.08854 - 5.08854i) q^{77} +(0.752429 - 2.95119i) q^{78} -2.30465 q^{79} +(0.553200 + 0.119739i) q^{80} -0.662648 q^{81} +(1.64829 - 6.46494i) q^{82} +(0.632423 + 0.632423i) q^{83} +(5.16331 - 1.51900i) q^{84} +(0.100057 - 0.100057i) q^{85} +(-12.7992 + 7.59861i) q^{86} -1.29044i q^{87} +(-7.73984 + 0.282472i) q^{88} +11.0377i q^{89} +(0.199357 + 0.335800i) q^{90} +(3.90827 - 3.90827i) q^{91} +(5.12453 - 9.39648i) q^{92} +(1.04573 + 1.04573i) q^{93} +(16.6629 + 4.24834i) q^{94} +0.581564 q^{95} +(2.58609 - 5.18316i) q^{96} -17.9190 q^{97} +(-0.127998 - 0.0326342i) q^{98} +(-3.77853 - 3.77853i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2 q^{4} - 16 q^{6} - 18 q^{8} - 6 q^{10} - 4 q^{11} + 2 q^{12} + 14 q^{14} + 24 q^{15} + 26 q^{16} + 32 q^{17} + 10 q^{18} - 14 q^{20} - 8 q^{22} - 50 q^{24} - 6 q^{26} + 12 q^{27} - 8 q^{29} + 36 q^{30}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/272\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(239\) \(241\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37038 0.349388i −0.969002 0.247055i
\(3\) 0.724061 + 0.724061i 0.418037 + 0.418037i 0.884527 0.466490i \(-0.154482\pi\)
−0.466490 + 0.884527i \(0.654482\pi\)
\(4\) 1.75586 + 0.957585i 0.877928 + 0.478793i
\(5\) 0.100057 0.100057i 0.0447471 0.0447471i −0.684379 0.729126i \(-0.739927\pi\)
0.729126 + 0.684379i \(0.239927\pi\)
\(6\) −0.739257 1.24521i −0.301801 0.508356i
\(7\) 2.62804i 0.993306i −0.867949 0.496653i \(-0.834562\pi\)
0.867949 0.496653i \(-0.165438\pi\)
\(8\) −2.07161 1.92573i −0.732426 0.680847i
\(9\) 1.95147i 0.650490i
\(10\) −0.172075 + 0.102157i −0.0544150 + 0.0323050i
\(11\) 1.93625 1.93625i 0.583801 0.583801i −0.352145 0.935946i \(-0.614548\pi\)
0.935946 + 0.352145i \(0.114548\pi\)
\(12\) 0.577997 + 1.96470i 0.166853 + 0.567159i
\(13\) 1.48714 + 1.48714i 0.412459 + 0.412459i 0.882594 0.470136i \(-0.155795\pi\)
−0.470136 + 0.882594i \(0.655795\pi\)
\(14\) −0.918206 + 3.60140i −0.245401 + 0.962515i
\(15\) 0.144896 0.0374119
\(16\) 2.16606 + 3.36276i 0.541515 + 0.840691i
\(17\) 1.00000 0.242536
\(18\) −0.681820 + 2.67425i −0.160707 + 0.630326i
\(19\) 2.90615 + 2.90615i 0.666716 + 0.666716i 0.956954 0.290238i \(-0.0937345\pi\)
−0.290238 + 0.956954i \(0.593734\pi\)
\(20\) 0.271500 0.0798729i 0.0607093 0.0178601i
\(21\) 1.90286 1.90286i 0.415239 0.415239i
\(22\) −3.32989 + 1.97688i −0.709935 + 0.421473i
\(23\) 5.35151i 1.11587i −0.829886 0.557933i \(-0.811594\pi\)
0.829886 0.557933i \(-0.188406\pi\)
\(24\) −0.105630 2.89432i −0.0215617 0.590800i
\(25\) 4.97998i 0.995995i
\(26\) −1.51835 2.55753i −0.297773 0.501573i
\(27\) 3.58517 3.58517i 0.689966 0.689966i
\(28\) 2.51657 4.61446i 0.475588 0.872051i
\(29\) −0.891113 0.891113i −0.165476 0.165476i 0.619512 0.784987i \(-0.287331\pi\)
−0.784987 + 0.619512i \(0.787331\pi\)
\(30\) −0.198561 0.0506248i −0.0362522 0.00924277i
\(31\) 1.44426 0.259397 0.129699 0.991553i \(-0.458599\pi\)
0.129699 + 0.991553i \(0.458599\pi\)
\(32\) −1.79341 5.36504i −0.317032 0.948415i
\(33\) 2.80393 0.488101
\(34\) −1.37038 0.349388i −0.235017 0.0599196i
\(35\) −0.262955 0.262955i −0.0444475 0.0444475i
\(36\) 1.86870 3.42650i 0.311450 0.571083i
\(37\) −1.18829 + 1.18829i −0.195354 + 0.195354i −0.798005 0.602651i \(-0.794111\pi\)
0.602651 + 0.798005i \(0.294111\pi\)
\(38\) −2.96714 4.99789i −0.481334 0.810765i
\(39\) 2.15356i 0.344846i
\(40\) −0.399964 + 0.0145970i −0.0632398 + 0.00230799i
\(41\) 4.71764i 0.736772i 0.929673 + 0.368386i \(0.120090\pi\)
−0.929673 + 0.368386i \(0.879910\pi\)
\(42\) −3.27247 + 1.94280i −0.504953 + 0.299780i
\(43\) 7.44242 7.44242i 1.13496 1.13496i 0.145617 0.989341i \(-0.453483\pi\)
0.989341 0.145617i \(-0.0465167\pi\)
\(44\) 5.25390 1.54565i 0.792055 0.233016i
\(45\) −0.195259 0.195259i −0.0291075 0.0291075i
\(46\) −1.86975 + 7.33357i −0.275680 + 1.08128i
\(47\) −12.1594 −1.77363 −0.886813 0.462128i \(-0.847086\pi\)
−0.886813 + 0.462128i \(0.847086\pi\)
\(48\) −0.866487 + 4.00321i −0.125067 + 0.577813i
\(49\) 0.0934039 0.0133434
\(50\) 1.73994 6.82444i 0.246065 0.965121i
\(51\) 0.724061 + 0.724061i 0.101389 + 0.101389i
\(52\) 1.18714 + 4.03527i 0.164627 + 0.559591i
\(53\) −4.79265 + 4.79265i −0.658321 + 0.658321i −0.954983 0.296662i \(-0.904127\pi\)
0.296662 + 0.954983i \(0.404127\pi\)
\(54\) −6.16564 + 3.66041i −0.839037 + 0.498119i
\(55\) 0.387472i 0.0522468i
\(56\) −5.06089 + 5.44428i −0.676289 + 0.727523i
\(57\) 4.20846i 0.557424i
\(58\) 0.909815 + 1.53250i 0.119465 + 0.201228i
\(59\) −6.48840 + 6.48840i −0.844717 + 0.844717i −0.989468 0.144751i \(-0.953762\pi\)
0.144751 + 0.989468i \(0.453762\pi\)
\(60\) 0.254416 + 0.138750i 0.0328449 + 0.0179125i
\(61\) 1.30973 + 1.30973i 0.167693 + 0.167693i 0.785965 0.618271i \(-0.212167\pi\)
−0.618271 + 0.785965i \(0.712167\pi\)
\(62\) −1.97918 0.504608i −0.251356 0.0640853i
\(63\) −5.12854 −0.646136
\(64\) 0.583156 + 7.97872i 0.0728945 + 0.997340i
\(65\) 0.297599 0.0369126
\(66\) −3.84243 0.979658i −0.472970 0.120588i
\(67\) −2.81837 2.81837i −0.344318 0.344318i 0.513670 0.857988i \(-0.328286\pi\)
−0.857988 + 0.513670i \(0.828286\pi\)
\(68\) 1.75586 + 0.957585i 0.212929 + 0.116124i
\(69\) 3.87482 3.87482i 0.466474 0.466474i
\(70\) 0.268474 + 0.452221i 0.0320888 + 0.0540507i
\(71\) 6.09170i 0.722952i −0.932381 0.361476i \(-0.882273\pi\)
0.932381 0.361476i \(-0.117727\pi\)
\(72\) −3.75800 + 4.04269i −0.442884 + 0.476436i
\(73\) 13.5126i 1.58153i 0.612121 + 0.790764i \(0.290317\pi\)
−0.612121 + 0.790764i \(0.709683\pi\)
\(74\) 2.04358 1.21323i 0.237561 0.141035i
\(75\) −3.60581 + 3.60581i −0.416363 + 0.416363i
\(76\) 2.31989 + 7.88567i 0.266110 + 0.904548i
\(77\) −5.08854 5.08854i −0.579893 0.579893i
\(78\) 0.752429 2.95119i 0.0851958 0.334156i
\(79\) −2.30465 −0.259293 −0.129647 0.991560i \(-0.541384\pi\)
−0.129647 + 0.991560i \(0.541384\pi\)
\(80\) 0.553200 + 0.119739i 0.0618497 + 0.0133872i
\(81\) −0.662648 −0.0736275
\(82\) 1.64829 6.46494i 0.182023 0.713933i
\(83\) 0.632423 + 0.632423i 0.0694175 + 0.0694175i 0.740963 0.671546i \(-0.234369\pi\)
−0.671546 + 0.740963i \(0.734369\pi\)
\(84\) 5.16331 1.51900i 0.563363 0.165736i
\(85\) 0.100057 0.100057i 0.0108528 0.0108528i
\(86\) −12.7992 + 7.59861i −1.38017 + 0.819379i
\(87\) 1.29044i 0.138350i
\(88\) −7.73984 + 0.282472i −0.825070 + 0.0301116i
\(89\) 11.0377i 1.16999i 0.811036 + 0.584996i \(0.198904\pi\)
−0.811036 + 0.584996i \(0.801096\pi\)
\(90\) 0.199357 + 0.335800i 0.0210141 + 0.0353964i
\(91\) 3.90827 3.90827i 0.409698 0.409698i
\(92\) 5.12453 9.39648i 0.534269 0.979651i
\(93\) 1.04573 + 1.04573i 0.108438 + 0.108438i
\(94\) 16.6629 + 4.24834i 1.71865 + 0.438183i
\(95\) 0.581564 0.0596672
\(96\) 2.58609 5.18316i 0.263941 0.529004i
\(97\) −17.9190 −1.81939 −0.909697 0.415272i \(-0.863686\pi\)
−0.909697 + 0.415272i \(0.863686\pi\)
\(98\) −0.127998 0.0326342i −0.0129298 0.00329655i
\(99\) −3.77853 3.77853i −0.379757 0.379757i
\(100\) −4.76875 + 8.74412i −0.476875 + 0.874412i
\(101\) 8.80831 8.80831i 0.876460 0.876460i −0.116707 0.993166i \(-0.537234\pi\)
0.993166 + 0.116707i \(0.0372337\pi\)
\(102\) −0.739257 1.24521i −0.0731974 0.123295i
\(103\) 0.748496i 0.0737515i −0.999320 0.0368758i \(-0.988259\pi\)
0.999320 0.0368758i \(-0.0117406\pi\)
\(104\) −0.216953 5.94461i −0.0212740 0.582917i
\(105\) 0.380791i 0.0371614i
\(106\) 8.24222 4.89323i 0.800555 0.475273i
\(107\) 0.777335 0.777335i 0.0751478 0.0751478i −0.668534 0.743682i \(-0.733078\pi\)
0.743682 + 0.668534i \(0.233078\pi\)
\(108\) 9.72814 2.86193i 0.936091 0.275390i
\(109\) 0.462768 + 0.462768i 0.0443251 + 0.0443251i 0.728922 0.684597i \(-0.240022\pi\)
−0.684597 + 0.728922i \(0.740022\pi\)
\(110\) −0.135378 + 0.530982i −0.0129078 + 0.0506272i
\(111\) −1.72079 −0.163330
\(112\) 8.83748 5.69249i 0.835063 0.537890i
\(113\) 4.80084 0.451625 0.225812 0.974171i \(-0.427496\pi\)
0.225812 + 0.974171i \(0.427496\pi\)
\(114\) 1.47039 5.76717i 0.137714 0.540145i
\(115\) −0.535458 0.535458i −0.0499318 0.0499318i
\(116\) −0.711350 2.41798i −0.0660471 0.224504i
\(117\) 2.90211 2.90211i 0.268300 0.268300i
\(118\) 11.1585 6.62457i 1.02722 0.609841i
\(119\) 2.62804i 0.240912i
\(120\) −0.300167 0.279029i −0.0274014 0.0254718i
\(121\) 3.50188i 0.318353i
\(122\) −1.33721 2.25242i −0.121066 0.203925i
\(123\) −3.41586 + 3.41586i −0.307998 + 0.307998i
\(124\) 2.53592 + 1.38300i 0.227732 + 0.124197i
\(125\) 0.998571 + 0.998571i 0.0893149 + 0.0893149i
\(126\) 7.02803 + 1.79185i 0.626106 + 0.159631i
\(127\) −12.7782 −1.13388 −0.566940 0.823759i \(-0.691873\pi\)
−0.566940 + 0.823759i \(0.691873\pi\)
\(128\) 1.98853 11.1376i 0.175763 0.984433i
\(129\) 10.7775 0.948909
\(130\) −0.407822 0.103978i −0.0357684 0.00911944i
\(131\) 9.29049 + 9.29049i 0.811714 + 0.811714i 0.984891 0.173177i \(-0.0554033\pi\)
−0.173177 + 0.984891i \(0.555403\pi\)
\(132\) 4.92329 + 2.68500i 0.428517 + 0.233699i
\(133\) 7.63748 7.63748i 0.662253 0.662253i
\(134\) 2.87752 + 4.84692i 0.248579 + 0.418710i
\(135\) 0.717446i 0.0617479i
\(136\) −2.07161 1.92573i −0.177639 0.165130i
\(137\) 8.56962i 0.732152i −0.930585 0.366076i \(-0.880701\pi\)
0.930585 0.366076i \(-0.119299\pi\)
\(138\) −6.66377 + 3.95614i −0.567258 + 0.336769i
\(139\) 7.33080 7.33080i 0.621790 0.621790i −0.324199 0.945989i \(-0.605095\pi\)
0.945989 + 0.324199i \(0.105095\pi\)
\(140\) −0.209909 0.713513i −0.0177406 0.0603029i
\(141\) −8.80413 8.80413i −0.741441 0.741441i
\(142\) −2.12837 + 8.34791i −0.178609 + 0.700541i
\(143\) 5.75895 0.481587
\(144\) 6.56233 4.22700i 0.546861 0.352250i
\(145\) −0.178325 −0.0148091
\(146\) 4.72114 18.5173i 0.390724 1.53250i
\(147\) 0.0676302 + 0.0676302i 0.00557804 + 0.00557804i
\(148\) −3.22436 + 0.948577i −0.265040 + 0.0779725i
\(149\) −10.3084 + 10.3084i −0.844501 + 0.844501i −0.989440 0.144940i \(-0.953701\pi\)
0.144940 + 0.989440i \(0.453701\pi\)
\(150\) 6.20114 3.68148i 0.506321 0.300592i
\(151\) 6.30991i 0.513493i 0.966479 + 0.256747i \(0.0826506\pi\)
−0.966479 + 0.256747i \(0.917349\pi\)
\(152\) −0.423967 11.6169i −0.0343882 0.942252i
\(153\) 1.95147i 0.157767i
\(154\) 5.19533 + 8.75108i 0.418652 + 0.705182i
\(155\) 0.144509 0.144509i 0.0116073 0.0116073i
\(156\) −2.06222 + 3.78134i −0.165110 + 0.302750i
\(157\) −9.08875 9.08875i −0.725361 0.725361i 0.244331 0.969692i \(-0.421432\pi\)
−0.969692 + 0.244331i \(0.921432\pi\)
\(158\) 3.15823 + 0.805217i 0.251256 + 0.0640596i
\(159\) −6.94034 −0.550405
\(160\) −0.716256 0.357369i −0.0566250 0.0282525i
\(161\) −14.0640 −1.10840
\(162\) 0.908076 + 0.231521i 0.0713452 + 0.0181900i
\(163\) 2.71120 + 2.71120i 0.212357 + 0.212357i 0.805268 0.592911i \(-0.202021\pi\)
−0.592911 + 0.805268i \(0.702021\pi\)
\(164\) −4.51755 + 8.28350i −0.352761 + 0.646833i
\(165\) 0.280554 0.280554i 0.0218411 0.0218411i
\(166\) −0.645696 1.08762i −0.0501157 0.0844155i
\(167\) 13.1921i 1.02084i 0.859927 + 0.510418i \(0.170509\pi\)
−0.859927 + 0.510418i \(0.829491\pi\)
\(168\) −7.60639 + 0.277601i −0.586845 + 0.0214174i
\(169\) 8.57682i 0.659756i
\(170\) −0.172075 + 0.102157i −0.0131976 + 0.00783511i
\(171\) 5.67127 5.67127i 0.433692 0.433692i
\(172\) 20.1946 5.94106i 1.53982 0.453002i
\(173\) 12.2454 + 12.2454i 0.931000 + 0.931000i 0.997768 0.0667688i \(-0.0212690\pi\)
−0.0667688 + 0.997768i \(0.521269\pi\)
\(174\) −0.450865 + 1.76839i −0.0341800 + 0.134061i
\(175\) 13.0876 0.989328
\(176\) 10.7052 + 2.31712i 0.806933 + 0.174659i
\(177\) −9.39599 −0.706246
\(178\) 3.85643 15.1258i 0.289052 1.13372i
\(179\) 16.5720 + 16.5720i 1.23865 + 1.23865i 0.960554 + 0.278094i \(0.0897028\pi\)
0.278094 + 0.960554i \(0.410297\pi\)
\(180\) −0.155870 0.529824i −0.0116178 0.0394908i
\(181\) −7.36115 + 7.36115i −0.547150 + 0.547150i −0.925615 0.378465i \(-0.876452\pi\)
0.378465 + 0.925615i \(0.376452\pi\)
\(182\) −6.72129 + 3.99029i −0.498215 + 0.295780i
\(183\) 1.89665i 0.140204i
\(184\) −10.3055 + 11.0863i −0.759735 + 0.817289i
\(185\) 0.237795i 0.0174830i
\(186\) −1.06768 1.79842i −0.0782862 0.131866i
\(187\) 1.93625 1.93625i 0.141593 0.141593i
\(188\) −21.3501 11.6436i −1.55712 0.849199i
\(189\) −9.42197 9.42197i −0.685347 0.685347i
\(190\) −0.796961 0.203192i −0.0578176 0.0147411i
\(191\) −15.7409 −1.13897 −0.569485 0.822002i \(-0.692857\pi\)
−0.569485 + 0.822002i \(0.692857\pi\)
\(192\) −5.35484 + 6.19932i −0.386452 + 0.447397i
\(193\) −17.4282 −1.25451 −0.627256 0.778813i \(-0.715822\pi\)
−0.627256 + 0.778813i \(0.715822\pi\)
\(194\) 24.5557 + 6.26067i 1.76300 + 0.449490i
\(195\) 0.215480 + 0.215480i 0.0154308 + 0.0154308i
\(196\) 0.164004 + 0.0894422i 0.0117146 + 0.00638873i
\(197\) 19.1709 19.1709i 1.36587 1.36587i 0.499625 0.866242i \(-0.333471\pi\)
0.866242 0.499625i \(-0.166529\pi\)
\(198\) 3.85783 + 6.49818i 0.274164 + 0.461806i
\(199\) 20.4340i 1.44853i 0.689523 + 0.724264i \(0.257820\pi\)
−0.689523 + 0.724264i \(0.742180\pi\)
\(200\) 9.59007 10.3166i 0.678121 0.729493i
\(201\) 4.08134i 0.287876i
\(202\) −15.1482 + 8.99317i −1.06582 + 0.632757i
\(203\) −2.34188 + 2.34188i −0.164368 + 0.164368i
\(204\) 0.577997 + 1.96470i 0.0404679 + 0.137556i
\(205\) 0.472036 + 0.472036i 0.0329684 + 0.0329684i
\(206\) −0.261516 + 1.02572i −0.0182207 + 0.0714653i
\(207\) −10.4433 −0.725860
\(208\) −1.77967 + 8.22214i −0.123398 + 0.570103i
\(209\) 11.2541 0.778459
\(210\) −0.133044 + 0.521827i −0.00918090 + 0.0360095i
\(211\) 2.87667 + 2.87667i 0.198038 + 0.198038i 0.799158 0.601121i \(-0.205279\pi\)
−0.601121 + 0.799158i \(0.705279\pi\)
\(212\) −13.0046 + 3.82583i −0.893157 + 0.262759i
\(213\) 4.41076 4.41076i 0.302221 0.302221i
\(214\) −1.33683 + 0.793649i −0.0913840 + 0.0542527i
\(215\) 1.48934i 0.101572i
\(216\) −14.3311 + 0.523026i −0.975110 + 0.0355874i
\(217\) 3.79558i 0.257661i
\(218\) −0.472480 0.795851i −0.0320004 0.0539019i
\(219\) −9.78394 + 9.78394i −0.661137 + 0.661137i
\(220\) 0.371038 0.680346i 0.0250154 0.0458689i
\(221\) 1.48714 + 1.48714i 0.100036 + 0.100036i
\(222\) 2.35813 + 0.601223i 0.158267 + 0.0403515i
\(223\) 7.95897 0.532972 0.266486 0.963839i \(-0.414137\pi\)
0.266486 + 0.963839i \(0.414137\pi\)
\(224\) −14.0996 + 4.71314i −0.942066 + 0.314910i
\(225\) 9.71828 0.647885
\(226\) −6.57895 1.67735i −0.437625 0.111576i
\(227\) −9.46740 9.46740i −0.628373 0.628373i 0.319285 0.947659i \(-0.396557\pi\)
−0.947659 + 0.319285i \(0.896557\pi\)
\(228\) −4.02996 + 7.38945i −0.266891 + 0.489378i
\(229\) −6.64475 + 6.64475i −0.439097 + 0.439097i −0.891708 0.452611i \(-0.850493\pi\)
0.452611 + 0.891708i \(0.350493\pi\)
\(230\) 0.546696 + 0.920862i 0.0360481 + 0.0607198i
\(231\) 7.36883i 0.484833i
\(232\) 0.130001 + 3.56208i 0.00853498 + 0.233862i
\(233\) 9.69196i 0.634941i 0.948268 + 0.317471i \(0.102834\pi\)
−0.948268 + 0.317471i \(0.897166\pi\)
\(234\) −4.99094 + 2.96302i −0.326268 + 0.193699i
\(235\) −1.21664 + 1.21664i −0.0793646 + 0.0793646i
\(236\) −17.6059 + 5.17950i −1.14605 + 0.337156i
\(237\) −1.66871 1.66871i −0.108394 0.108394i
\(238\) −0.918206 + 3.60140i −0.0595185 + 0.233444i
\(239\) 24.0720 1.55709 0.778544 0.627590i \(-0.215958\pi\)
0.778544 + 0.627590i \(0.215958\pi\)
\(240\) 0.313852 + 0.487249i 0.0202591 + 0.0314518i
\(241\) 16.5827 1.06819 0.534094 0.845425i \(-0.320653\pi\)
0.534094 + 0.845425i \(0.320653\pi\)
\(242\) 1.22352 4.79889i 0.0786506 0.308485i
\(243\) −11.2353 11.2353i −0.720745 0.720745i
\(244\) 1.04552 + 3.55387i 0.0669324 + 0.227513i
\(245\) 0.00934576 0.00934576i 0.000597079 0.000597079i
\(246\) 5.87448 3.48755i 0.374543 0.222358i
\(247\) 8.64371i 0.549986i
\(248\) −2.99195 2.78125i −0.189989 0.176610i
\(249\) 0.915826i 0.0580381i
\(250\) −1.01953 1.71731i −0.0644806 0.108612i
\(251\) −8.65825 + 8.65825i −0.546504 + 0.546504i −0.925428 0.378924i \(-0.876294\pi\)
0.378924 + 0.925428i \(0.376294\pi\)
\(252\) −9.00498 4.91102i −0.567261 0.309365i
\(253\) −10.3618 10.3618i −0.651444 0.651444i
\(254\) 17.5109 + 4.46454i 1.09873 + 0.280130i
\(255\) 0.144896 0.00907371
\(256\) −6.61637 + 14.5679i −0.413523 + 0.910494i
\(257\) −1.98761 −0.123984 −0.0619919 0.998077i \(-0.519745\pi\)
−0.0619919 + 0.998077i \(0.519745\pi\)
\(258\) −14.7693 3.76554i −0.919494 0.234432i
\(259\) 3.12287 + 3.12287i 0.194046 + 0.194046i
\(260\) 0.522541 + 0.284977i 0.0324066 + 0.0176735i
\(261\) −1.73898 + 1.73898i −0.107640 + 0.107640i
\(262\) −9.48547 15.9774i −0.586014 0.987090i
\(263\) 12.2436i 0.754970i 0.926016 + 0.377485i \(0.123211\pi\)
−0.926016 + 0.377485i \(0.876789\pi\)
\(264\) −5.80865 5.39959i −0.357497 0.332322i
\(265\) 0.959081i 0.0589158i
\(266\) −13.1347 + 7.79777i −0.805337 + 0.478112i
\(267\) −7.99195 + 7.99195i −0.489100 + 0.489100i
\(268\) −2.24982 7.64747i −0.137430 0.467144i
\(269\) 7.98261 + 7.98261i 0.486708 + 0.486708i 0.907266 0.420558i \(-0.138166\pi\)
−0.420558 + 0.907266i \(0.638166\pi\)
\(270\) −0.250667 + 0.983170i −0.0152551 + 0.0598338i
\(271\) 0.445628 0.0270700 0.0135350 0.999908i \(-0.495692\pi\)
0.0135350 + 0.999908i \(0.495692\pi\)
\(272\) 2.16606 + 3.36276i 0.131337 + 0.203898i
\(273\) 5.65965 0.342537
\(274\) −2.99412 + 11.7436i −0.180882 + 0.709457i
\(275\) 9.64247 + 9.64247i 0.581463 + 0.581463i
\(276\) 10.5141 3.09315i 0.632874 0.186186i
\(277\) 22.1926 22.1926i 1.33342 1.33342i 0.431133 0.902289i \(-0.358114\pi\)
0.902289 0.431133i \(-0.141886\pi\)
\(278\) −12.6072 + 7.48465i −0.756132 + 0.448899i
\(279\) 2.81844i 0.168735i
\(280\) 0.0383615 + 1.05112i 0.00229254 + 0.0628165i
\(281\) 29.1670i 1.73996i −0.493087 0.869980i \(-0.664132\pi\)
0.493087 0.869980i \(-0.335868\pi\)
\(282\) 8.98890 + 15.1410i 0.535281 + 0.901635i
\(283\) 7.50613 7.50613i 0.446193 0.446193i −0.447894 0.894087i \(-0.647826\pi\)
0.894087 + 0.447894i \(0.147826\pi\)
\(284\) 5.83332 10.6961i 0.346144 0.634699i
\(285\) 0.421088 + 0.421088i 0.0249431 + 0.0249431i
\(286\) −7.89192 2.01211i −0.466659 0.118978i
\(287\) 12.3982 0.731840
\(288\) −10.4697 + 3.49978i −0.616934 + 0.206226i
\(289\) 1.00000 0.0588235
\(290\) 0.244372 + 0.0623047i 0.0143500 + 0.00365866i
\(291\) −12.9744 12.9744i −0.760574 0.760574i
\(292\) −12.9395 + 23.7262i −0.757224 + 1.38847i
\(293\) −6.90203 + 6.90203i −0.403221 + 0.403221i −0.879366 0.476146i \(-0.842033\pi\)
0.476146 + 0.879366i \(0.342033\pi\)
\(294\) −0.0690495 0.116308i −0.00402705 0.00678321i
\(295\) 1.29843i 0.0755972i
\(296\) 4.75000 0.173355i 0.276088 0.0100761i
\(297\) 13.8836i 0.805605i
\(298\) 17.7281 10.5248i 1.02696 0.609685i
\(299\) 7.95845 7.95845i 0.460249 0.460249i
\(300\) −9.78415 + 2.87841i −0.564888 + 0.166185i
\(301\) −19.5590 19.5590i −1.12736 1.12736i
\(302\) 2.20461 8.64695i 0.126861 0.497576i
\(303\) 12.7555 0.732785
\(304\) −3.47780 + 16.0676i −0.199466 + 0.921540i
\(305\) 0.262096 0.0150076
\(306\) −0.681820 + 2.67425i −0.0389771 + 0.152876i
\(307\) 3.04718 + 3.04718i 0.173912 + 0.173912i 0.788696 0.614784i \(-0.210757\pi\)
−0.614784 + 0.788696i \(0.710757\pi\)
\(308\) −4.06203 13.8075i −0.231456 0.786753i
\(309\) 0.541957 0.541957i 0.0308309 0.0308309i
\(310\) −0.248522 + 0.147542i −0.0141151 + 0.00837983i
\(311\) 20.0156i 1.13498i −0.823381 0.567489i \(-0.807915\pi\)
0.823381 0.567489i \(-0.192085\pi\)
\(312\) 4.14717 4.46135i 0.234787 0.252574i
\(313\) 27.5542i 1.55746i −0.627362 0.778728i \(-0.715865\pi\)
0.627362 0.778728i \(-0.284135\pi\)
\(314\) 9.27950 + 15.6305i 0.523672 + 0.882080i
\(315\) −0.513149 + 0.513149i −0.0289127 + 0.0289127i
\(316\) −4.04663 2.20690i −0.227641 0.124148i
\(317\) 21.4263 + 21.4263i 1.20342 + 1.20342i 0.973119 + 0.230302i \(0.0739714\pi\)
0.230302 + 0.973119i \(0.426029\pi\)
\(318\) 9.51087 + 2.42487i 0.533343 + 0.135980i
\(319\) −3.45083 −0.193210
\(320\) 0.856680 + 0.739981i 0.0478898 + 0.0413662i
\(321\) 1.12568 0.0628291
\(322\) 19.2729 + 4.91379i 1.07404 + 0.273835i
\(323\) 2.90615 + 2.90615i 0.161702 + 0.161702i
\(324\) −1.16351 0.634542i −0.0646397 0.0352523i
\(325\) −7.40593 + 7.40593i −0.410807 + 0.410807i
\(326\) −2.76810 4.66262i −0.153311 0.258238i
\(327\) 0.670145i 0.0370591i
\(328\) 9.08489 9.77313i 0.501629 0.539631i
\(329\) 31.9553i 1.76175i
\(330\) −0.482486 + 0.286442i −0.0265600 + 0.0157681i
\(331\) 0.466937 0.466937i 0.0256652 0.0256652i −0.694158 0.719823i \(-0.744223\pi\)
0.719823 + 0.694158i \(0.244223\pi\)
\(332\) 0.504845 + 1.71604i 0.0277070 + 0.0941801i
\(333\) 2.31891 + 2.31891i 0.127076 + 0.127076i
\(334\) 4.60916 18.0781i 0.252202 0.989191i
\(335\) −0.563997 −0.0308145
\(336\) 10.5206 + 2.27716i 0.573945 + 0.124229i
\(337\) 13.5762 0.739541 0.369770 0.929123i \(-0.379436\pi\)
0.369770 + 0.929123i \(0.379436\pi\)
\(338\) −2.99664 + 11.7535i −0.162996 + 0.639304i
\(339\) 3.47610 + 3.47610i 0.188796 + 0.188796i
\(340\) 0.271500 0.0798729i 0.0147242 0.00433172i
\(341\) 2.79645 2.79645i 0.151436 0.151436i
\(342\) −9.75323 + 5.79029i −0.527394 + 0.313103i
\(343\) 18.6418i 1.00656i
\(344\) −29.7499 + 1.08574i −1.60401 + 0.0585394i
\(345\) 0.775410i 0.0417466i
\(346\) −12.5024 21.0592i −0.672132 1.13215i
\(347\) −22.0844 + 22.0844i −1.18555 + 1.18555i −0.207266 + 0.978285i \(0.566457\pi\)
−0.978285 + 0.207266i \(0.933543\pi\)
\(348\) 1.23571 2.26583i 0.0662409 0.121461i
\(349\) 1.79835 + 1.79835i 0.0962633 + 0.0962633i 0.753598 0.657335i \(-0.228316\pi\)
−0.657335 + 0.753598i \(0.728316\pi\)
\(350\) −17.9349 4.57264i −0.958660 0.244418i
\(351\) 10.6633 0.569165
\(352\) −13.8605 6.91558i −0.738769 0.368602i
\(353\) −2.22119 −0.118222 −0.0591110 0.998251i \(-0.518827\pi\)
−0.0591110 + 0.998251i \(0.518827\pi\)
\(354\) 12.8760 + 3.28285i 0.684354 + 0.174481i
\(355\) −0.609520 0.609520i −0.0323500 0.0323500i
\(356\) −10.5695 + 19.3806i −0.560183 + 1.02717i
\(357\) 1.90286 1.90286i 0.100710 0.100710i
\(358\) −16.9198 28.4999i −0.894238 1.50627i
\(359\) 1.52104i 0.0802776i −0.999194 0.0401388i \(-0.987220\pi\)
0.999194 0.0401388i \(-0.0127800\pi\)
\(360\) 0.0284856 + 0.780517i 0.00150132 + 0.0411369i
\(361\) 2.10859i 0.110978i
\(362\) 12.6594 7.51564i 0.665365 0.395013i
\(363\) −2.53558 + 2.53558i −0.133083 + 0.133083i
\(364\) 10.6049 3.11985i 0.555845 0.163525i
\(365\) 1.35204 + 1.35204i 0.0707688 + 0.0707688i
\(366\) 0.662666 2.59912i 0.0346381 0.135858i
\(367\) 33.3249 1.73955 0.869774 0.493451i \(-0.164265\pi\)
0.869774 + 0.493451i \(0.164265\pi\)
\(368\) 17.9959 11.5917i 0.938099 0.604259i
\(369\) 9.20634 0.479263
\(370\) 0.0830826 0.325868i 0.00431926 0.0169411i
\(371\) 12.5953 + 12.5953i 0.653914 + 0.653914i
\(372\) 0.834779 + 2.83754i 0.0432813 + 0.147120i
\(373\) −24.8863 + 24.8863i −1.28856 + 1.28856i −0.352906 + 0.935659i \(0.614806\pi\)
−0.935659 + 0.352906i \(0.885194\pi\)
\(374\) −3.32989 + 1.97688i −0.172184 + 0.102222i
\(375\) 1.44605i 0.0746739i
\(376\) 25.1895 + 23.4156i 1.29905 + 1.20757i
\(377\) 2.65042i 0.136504i
\(378\) 9.61971 + 16.2036i 0.494784 + 0.833421i
\(379\) 12.4894 12.4894i 0.641536 0.641536i −0.309397 0.950933i \(-0.600127\pi\)
0.950933 + 0.309397i \(0.100127\pi\)
\(380\) 1.02114 + 0.556897i 0.0523835 + 0.0285682i
\(381\) −9.25219 9.25219i −0.474004 0.474004i
\(382\) 21.5709 + 5.49967i 1.10366 + 0.281388i
\(383\) −26.7131 −1.36498 −0.682488 0.730897i \(-0.739102\pi\)
−0.682488 + 0.730897i \(0.739102\pi\)
\(384\) 9.50411 6.62448i 0.485004 0.338054i
\(385\) −1.01829 −0.0518970
\(386\) 23.8832 + 6.08921i 1.21562 + 0.309933i
\(387\) −14.5237 14.5237i −0.738279 0.738279i
\(388\) −31.4631 17.1589i −1.59730 0.871113i
\(389\) −2.66266 + 2.66266i −0.135002 + 0.135002i −0.771379 0.636376i \(-0.780433\pi\)
0.636376 + 0.771379i \(0.280433\pi\)
\(390\) −0.220002 0.370575i −0.0111403 0.0187648i
\(391\) 5.35151i 0.270637i
\(392\) −0.193497 0.179870i −0.00977306 0.00908483i
\(393\) 13.4538i 0.678653i
\(394\) −32.9693 + 19.5732i −1.66097 + 0.986083i
\(395\) −0.230597 + 0.230597i −0.0116026 + 0.0116026i
\(396\) −3.01629 10.2528i −0.151574 0.515224i
\(397\) 12.2181 + 12.2181i 0.613209 + 0.613209i 0.943781 0.330572i \(-0.107241\pi\)
−0.330572 + 0.943781i \(0.607241\pi\)
\(398\) 7.13940 28.0023i 0.357866 1.40363i
\(399\) 11.0600 0.553693
\(400\) −16.7465 + 10.7869i −0.837324 + 0.539347i
\(401\) −26.8473 −1.34069 −0.670346 0.742049i \(-0.733854\pi\)
−0.670346 + 0.742049i \(0.733854\pi\)
\(402\) −1.42597 + 5.59297i −0.0711210 + 0.278952i
\(403\) 2.14782 + 2.14782i 0.106991 + 0.106991i
\(404\) 23.9008 7.03142i 1.18911 0.349826i
\(405\) −0.0663029 + 0.0663029i −0.00329462 + 0.00329462i
\(406\) 4.02748 2.39103i 0.199881 0.118665i
\(407\) 4.60165i 0.228095i
\(408\) −0.105630 2.89432i −0.00522949 0.143290i
\(409\) 17.8962i 0.884910i −0.896791 0.442455i \(-0.854108\pi\)
0.896791 0.442455i \(-0.145892\pi\)
\(410\) −0.481942 0.811789i −0.0238014 0.0400914i
\(411\) 6.20493 6.20493i 0.306067 0.306067i
\(412\) 0.716749 1.31425i 0.0353117 0.0647485i
\(413\) 17.0518 + 17.0518i 0.839063 + 0.839063i
\(414\) 14.3113 + 3.64877i 0.703360 + 0.179327i
\(415\) 0.126557 0.00621246
\(416\) 5.31153 10.6456i 0.260419 0.521945i
\(417\) 10.6159 0.519862
\(418\) −15.4223 3.93203i −0.754328 0.192322i
\(419\) −17.1549 17.1549i −0.838073 0.838073i 0.150533 0.988605i \(-0.451901\pi\)
−0.988605 + 0.150533i \(0.951901\pi\)
\(420\) 0.364640 0.668615i 0.0177926 0.0326251i
\(421\) −28.2854 + 28.2854i −1.37855 + 1.37855i −0.531471 + 0.847077i \(0.678360\pi\)
−0.847077 + 0.531471i \(0.821640\pi\)
\(422\) −2.93704 4.94719i −0.142973 0.240825i
\(423\) 23.7287i 1.15373i
\(424\) 19.1578 0.699180i 0.930387 0.0339552i
\(425\) 4.97998i 0.241564i
\(426\) −7.58547 + 4.50333i −0.367517 + 0.218187i
\(427\) 3.44202 3.44202i 0.166571 0.166571i
\(428\) 2.10925 0.620524i 0.101955 0.0299941i
\(429\) 4.16983 + 4.16983i 0.201321 + 0.201321i
\(430\) −0.520357 + 2.04095i −0.0250939 + 0.0984235i
\(431\) −11.5554 −0.556605 −0.278303 0.960493i \(-0.589772\pi\)
−0.278303 + 0.960493i \(0.589772\pi\)
\(432\) 19.8218 + 4.29038i 0.953675 + 0.206421i
\(433\) 0.357537 0.0171821 0.00859107 0.999963i \(-0.497265\pi\)
0.00859107 + 0.999963i \(0.497265\pi\)
\(434\) −1.32613 + 5.20137i −0.0636563 + 0.249674i
\(435\) −0.129118 0.129118i −0.00619075 0.00619075i
\(436\) 0.369414 + 1.25569i 0.0176917 + 0.0601368i
\(437\) 15.5523 15.5523i 0.743967 0.743967i
\(438\) 16.8261 9.98928i 0.803980 0.477306i
\(439\) 7.54117i 0.359920i −0.983674 0.179960i \(-0.942403\pi\)
0.983674 0.179960i \(-0.0575969\pi\)
\(440\) −0.746166 + 0.802692i −0.0355721 + 0.0382669i
\(441\) 0.182275i 0.00867976i
\(442\) −1.51835 2.55753i −0.0722206 0.121649i
\(443\) −18.1559 + 18.1559i −0.862613 + 0.862613i −0.991641 0.129028i \(-0.958814\pi\)
0.129028 + 0.991641i \(0.458814\pi\)
\(444\) −3.02146 1.64780i −0.143392 0.0782013i
\(445\) 1.10440 + 1.10440i 0.0523537 + 0.0523537i
\(446\) −10.9068 2.78077i −0.516450 0.131673i
\(447\) −14.9279 −0.706065
\(448\) 20.9684 1.53256i 0.990663 0.0724065i
\(449\) 18.0732 0.852927 0.426463 0.904505i \(-0.359759\pi\)
0.426463 + 0.904505i \(0.359759\pi\)
\(450\) −13.3177 3.39545i −0.627802 0.160063i
\(451\) 9.13453 + 9.13453i 0.430128 + 0.430128i
\(452\) 8.42958 + 4.59721i 0.396494 + 0.216235i
\(453\) −4.56876 + 4.56876i −0.214659 + 0.214659i
\(454\) 9.66609 + 16.2817i 0.453652 + 0.764137i
\(455\) 0.782103i 0.0366655i
\(456\) 8.10434 8.71830i 0.379521 0.408272i
\(457\) 37.4375i 1.75125i −0.482991 0.875625i \(-0.660450\pi\)
0.482991 0.875625i \(-0.339550\pi\)
\(458\) 11.4274 6.78420i 0.533967 0.317005i
\(459\) 3.58517 3.58517i 0.167341 0.167341i
\(460\) −0.427441 1.45294i −0.0199295 0.0677435i
\(461\) 14.0370 + 14.0370i 0.653770 + 0.653770i 0.953899 0.300129i \(-0.0970297\pi\)
−0.300129 + 0.953899i \(0.597030\pi\)
\(462\) −2.57458 + 10.0981i −0.119780 + 0.469804i
\(463\) −18.3120 −0.851030 −0.425515 0.904951i \(-0.639907\pi\)
−0.425515 + 0.904951i \(0.639907\pi\)
\(464\) 1.06640 4.92681i 0.0495063 0.228721i
\(465\) 0.209267 0.00970453
\(466\) 3.38626 13.2816i 0.156865 0.615259i
\(467\) −8.99457 8.99457i −0.416219 0.416219i 0.467679 0.883898i \(-0.345090\pi\)
−0.883898 + 0.467679i \(0.845090\pi\)
\(468\) 7.87471 2.31667i 0.364009 0.107088i
\(469\) −7.40678 + 7.40678i −0.342013 + 0.342013i
\(470\) 2.09233 1.24217i 0.0965118 0.0572970i
\(471\) 13.1616i 0.606456i
\(472\) 25.9363 0.946567i 1.19382 0.0435693i
\(473\) 28.8207i 1.32518i
\(474\) 1.70373 + 2.86978i 0.0782549 + 0.131813i
\(475\) −14.4726 + 14.4726i −0.664047 + 0.664047i
\(476\) 2.51657 4.61446i 0.115347 0.211503i
\(477\) 9.35271 + 9.35271i 0.428231 + 0.428231i
\(478\) −32.9877 8.41047i −1.50882 0.384686i
\(479\) −6.50691 −0.297308 −0.148654 0.988889i \(-0.547494\pi\)
−0.148654 + 0.988889i \(0.547494\pi\)
\(480\) −0.259856 0.777371i −0.0118608 0.0354820i
\(481\) −3.53431 −0.161151
\(482\) −22.7246 5.79381i −1.03508 0.263901i
\(483\) −10.1832 10.1832i −0.463351 0.463351i
\(484\) −3.35335 + 6.14880i −0.152425 + 0.279491i
\(485\) −1.79293 + 1.79293i −0.0814126 + 0.0814126i
\(486\) 11.4711 + 19.3221i 0.520340 + 0.876466i
\(487\) 19.6338i 0.889694i −0.895606 0.444847i \(-0.853258\pi\)
0.895606 0.444847i \(-0.146742\pi\)
\(488\) −0.191071 5.23543i −0.00864938 0.236997i
\(489\) 3.92615i 0.177546i
\(490\) −0.0160725 + 0.00954190i −0.000726081 + 0.000431059i
\(491\) 7.46270 7.46270i 0.336787 0.336787i −0.518370 0.855157i \(-0.673461\pi\)
0.855157 + 0.518370i \(0.173461\pi\)
\(492\) −9.26875 + 2.72678i −0.417867 + 0.122933i
\(493\) −0.891113 0.891113i −0.0401337 0.0401337i
\(494\) 3.02001 11.8451i 0.135877 0.532937i
\(495\) −0.756141 −0.0339860
\(496\) 3.12836 + 4.85671i 0.140467 + 0.218073i
\(497\) −16.0092 −0.718112
\(498\) 0.319979 1.25503i 0.0143386 0.0562390i
\(499\) −29.7678 29.7678i −1.33259 1.33259i −0.903044 0.429548i \(-0.858673\pi\)
−0.429548 0.903044i \(-0.641327\pi\)
\(500\) 0.797130 + 2.70957i 0.0356487 + 0.121175i
\(501\) −9.55189 + 9.55189i −0.426747 + 0.426747i
\(502\) 14.8901 8.83996i 0.664579 0.394547i
\(503\) 2.48521i 0.110810i −0.998464 0.0554051i \(-0.982355\pi\)
0.998464 0.0554051i \(-0.0176450\pi\)
\(504\) 10.6244 + 9.87617i 0.473246 + 0.439920i
\(505\) 1.76267i 0.0784380i
\(506\) 10.5793 + 17.8199i 0.470308 + 0.792192i
\(507\) 6.21015 6.21015i 0.275802 0.275802i
\(508\) −22.4366 12.2362i −0.995465 0.542894i
\(509\) 1.18351 + 1.18351i 0.0524581 + 0.0524581i 0.732849 0.680391i \(-0.238190\pi\)
−0.680391 + 0.732849i \(0.738190\pi\)
\(510\) −0.198561 0.0506248i −0.00879244 0.00224170i
\(511\) 35.5116 1.57094
\(512\) 14.1568 17.6518i 0.625646 0.780107i
\(513\) 20.8381 0.920023
\(514\) 2.72377 + 0.694448i 0.120141 + 0.0306308i
\(515\) −0.0748926 0.0748926i −0.00330016 0.00330016i
\(516\) 18.9238 + 10.3204i 0.833074 + 0.454331i
\(517\) −23.5436 + 23.5436i −1.03544 + 1.03544i
\(518\) −3.18841 5.37060i −0.140091 0.235971i
\(519\) 17.7328i 0.778385i
\(520\) −0.616510 0.573094i −0.0270358 0.0251319i
\(521\) 16.5566i 0.725358i −0.931914 0.362679i \(-0.881862\pi\)
0.931914 0.362679i \(-0.118138\pi\)
\(522\) 2.99064 1.77548i 0.130897 0.0777105i
\(523\) 3.85369 3.85369i 0.168510 0.168510i −0.617814 0.786324i \(-0.711982\pi\)
0.786324 + 0.617814i \(0.211982\pi\)
\(524\) 7.41632 + 25.2092i 0.323984 + 1.10127i
\(525\) 9.47621 + 9.47621i 0.413576 + 0.413576i
\(526\) 4.27775 16.7783i 0.186519 0.731567i
\(527\) 1.44426 0.0629131
\(528\) 6.07347 + 9.42894i 0.264314 + 0.410342i
\(529\) −5.63864 −0.245158
\(530\) 0.335091 1.31430i 0.0145554 0.0570895i
\(531\) 12.6619 + 12.6619i 0.549480 + 0.549480i
\(532\) 20.7239 6.09677i 0.898493 0.264329i
\(533\) −7.01580 + 7.01580i −0.303888 + 0.303888i
\(534\) 13.7443 8.15968i 0.594773 0.353104i
\(535\) 0.155556i 0.00672529i
\(536\) 0.411160 + 11.2660i 0.0177594 + 0.486616i
\(537\) 23.9983i 1.03560i
\(538\) −8.15014 13.7282i −0.351377 0.591864i
\(539\) 0.180853 0.180853i 0.00778990 0.00778990i
\(540\) 0.687016 1.25973i 0.0295644 0.0542102i
\(541\) −27.1691 27.1691i −1.16809 1.16809i −0.982657 0.185433i \(-0.940631\pi\)
−0.185433 0.982657i \(-0.559369\pi\)
\(542\) −0.610678 0.155697i −0.0262309 0.00668777i
\(543\) −10.6599 −0.457458
\(544\) −1.79341 5.36504i −0.0768916 0.230024i
\(545\) 0.0926068 0.00396684
\(546\) −7.75584 1.97741i −0.331919 0.0846255i
\(547\) −1.77642 1.77642i −0.0759544 0.0759544i 0.668109 0.744063i \(-0.267104\pi\)
−0.744063 + 0.668109i \(0.767104\pi\)
\(548\) 8.20615 15.0470i 0.350549 0.642777i
\(549\) 2.55589 2.55589i 0.109083 0.109083i
\(550\) −9.84484 16.5828i −0.419785 0.707092i
\(551\) 5.17942i 0.220651i
\(552\) −15.4890 + 0.565282i −0.659254 + 0.0240600i
\(553\) 6.05671i 0.257558i
\(554\) −38.1659 + 22.6583i −1.62152 + 0.962659i
\(555\) −0.172178 + 0.172178i −0.00730854 + 0.00730854i
\(556\) 19.8917 5.85196i 0.843595 0.248178i
\(557\) 11.1562 + 11.1562i 0.472702 + 0.472702i 0.902788 0.430086i \(-0.141517\pi\)
−0.430086 + 0.902788i \(0.641517\pi\)
\(558\) −0.984728 + 3.86231i −0.0416868 + 0.163505i
\(559\) 22.1358 0.936246
\(560\) 0.314679 1.45383i 0.0132976 0.0614356i
\(561\) 2.80393 0.118382
\(562\) −10.1906 + 39.9698i −0.429865 + 1.68602i
\(563\) −5.69060 5.69060i −0.239830 0.239830i 0.576950 0.816780i \(-0.304243\pi\)
−0.816780 + 0.576950i \(0.804243\pi\)
\(564\) −7.02808 23.8895i −0.295935 1.00593i
\(565\) 0.480360 0.480360i 0.0202089 0.0202089i
\(566\) −12.9088 + 7.66366i −0.542596 + 0.322128i
\(567\) 1.74147i 0.0731347i
\(568\) −11.7309 + 12.6196i −0.492219 + 0.529508i
\(569\) 8.79716i 0.368796i 0.982852 + 0.184398i \(0.0590335\pi\)
−0.982852 + 0.184398i \(0.940966\pi\)
\(570\) −0.429925 0.724172i −0.0180076 0.0303322i
\(571\) −1.80244 + 1.80244i −0.0754297 + 0.0754297i −0.743815 0.668385i \(-0.766986\pi\)
0.668385 + 0.743815i \(0.266986\pi\)
\(572\) 10.1119 + 5.51468i 0.422799 + 0.230581i
\(573\) −11.3974 11.3974i −0.476132 0.476132i
\(574\) −16.9901 4.33177i −0.709154 0.180805i
\(575\) 26.6504 1.11140
\(576\) 15.5702 1.13801i 0.648760 0.0474171i
\(577\) −28.9174 −1.20385 −0.601924 0.798554i \(-0.705599\pi\)
−0.601924 + 0.798554i \(0.705599\pi\)
\(578\) −1.37038 0.349388i −0.0570001 0.0145326i
\(579\) −12.6191 12.6191i −0.524432 0.524432i
\(580\) −0.313113 0.170762i −0.0130013 0.00709049i
\(581\) 1.66203 1.66203i 0.0689528 0.0689528i
\(582\) 13.2467 + 22.3129i 0.549094 + 0.924901i
\(583\) 18.5595i 0.768656i
\(584\) 26.0215 27.9928i 1.07678 1.15835i
\(585\) 0.580756i 0.0240113i
\(586\) 11.8698 7.04688i 0.490339 0.291104i
\(587\) −28.3756 + 28.3756i −1.17119 + 1.17119i −0.189258 + 0.981927i \(0.560608\pi\)
−0.981927 + 0.189258i \(0.939392\pi\)
\(588\) 0.0539872 + 0.183511i 0.00222639 + 0.00756785i
\(589\) 4.19724 + 4.19724i 0.172944 + 0.172944i
\(590\) 0.453654 1.77933i 0.0186767 0.0732538i
\(591\) 27.7617 1.14197
\(592\) −6.56985 1.42203i −0.270019 0.0584451i
\(593\) −14.7813 −0.606995 −0.303498 0.952832i \(-0.598154\pi\)
−0.303498 + 0.952832i \(0.598154\pi\)
\(594\) −4.85075 + 19.0257i −0.199029 + 0.780633i
\(595\) −0.262955 0.262955i −0.0107801 0.0107801i
\(596\) −27.9714 + 8.22893i −1.14575 + 0.337070i
\(597\) −14.7955 + 14.7955i −0.605538 + 0.605538i
\(598\) −13.6866 + 8.12547i −0.559688 + 0.332275i
\(599\) 20.9554i 0.856213i −0.903728 0.428106i \(-0.859181\pi\)
0.903728 0.428106i \(-0.140819\pi\)
\(600\) 14.4136 0.526037i 0.588434 0.0214754i
\(601\) 43.8547i 1.78887i 0.447199 + 0.894435i \(0.352422\pi\)
−0.447199 + 0.894435i \(0.647578\pi\)
\(602\) 19.9695 + 33.6368i 0.813894 + 1.37093i
\(603\) −5.49996 + 5.49996i −0.223976 + 0.223976i
\(604\) −6.04228 + 11.0793i −0.245857 + 0.450810i
\(605\) 0.350390 + 0.350390i 0.0142454 + 0.0142454i
\(606\) −17.4798 4.45662i −0.710070 0.181038i
\(607\) −41.3621 −1.67884 −0.839418 0.543487i \(-0.817104\pi\)
−0.839418 + 0.543487i \(0.817104\pi\)
\(608\) 10.3797 20.8035i 0.420953 0.843694i
\(609\) −3.39133 −0.137424
\(610\) −0.359170 0.0915733i −0.0145424 0.00370769i
\(611\) −18.0827 18.0827i −0.731548 0.731548i
\(612\) 1.86870 3.42650i 0.0755377 0.138508i
\(613\) −26.7053 + 26.7053i −1.07862 + 1.07862i −0.0819848 + 0.996634i \(0.526126\pi\)
−0.996634 + 0.0819848i \(0.973874\pi\)
\(614\) −3.11113 5.24043i −0.125555 0.211487i
\(615\) 0.683565i 0.0275640i
\(616\) 0.742347 + 20.3406i 0.0299100 + 0.819547i
\(617\) 19.4571i 0.783314i 0.920111 + 0.391657i \(0.128098\pi\)
−0.920111 + 0.391657i \(0.871902\pi\)
\(618\) −0.932038 + 0.553331i −0.0374921 + 0.0222582i
\(619\) 9.08683 9.08683i 0.365231 0.365231i −0.500504 0.865734i \(-0.666852\pi\)
0.865734 + 0.500504i \(0.166852\pi\)
\(620\) 0.392117 0.115357i 0.0157478 0.00463287i
\(621\) −19.1861 19.1861i −0.769910 0.769910i
\(622\) −6.99319 + 27.4288i −0.280402 + 1.09980i
\(623\) 29.0075 1.16216
\(624\) −7.24192 + 4.66475i −0.289909 + 0.186739i
\(625\) −24.7001 −0.988002
\(626\) −9.62711 + 37.7596i −0.384777 + 1.50918i
\(627\) 8.14863 + 8.14863i 0.325425 + 0.325425i
\(628\) −7.25528 24.6618i −0.289517 0.984113i
\(629\) −1.18829 + 1.18829i −0.0473802 + 0.0473802i
\(630\) 0.882495 0.523919i 0.0351594 0.0208734i
\(631\) 17.7992i 0.708577i −0.935136 0.354288i \(-0.884723\pi\)
0.935136 0.354288i \(-0.115277\pi\)
\(632\) 4.77434 + 4.43812i 0.189913 + 0.176539i
\(633\) 4.16577i 0.165574i
\(634\) −21.8760 36.8482i −0.868806 1.46343i
\(635\) −1.27855 + 1.27855i −0.0507378 + 0.0507378i
\(636\) −12.1862 6.64597i −0.483216 0.263530i
\(637\) 0.138905 + 0.138905i 0.00550361 + 0.00550361i
\(638\) 4.72894 + 1.20568i 0.187220 + 0.0477333i
\(639\) −11.8878 −0.470273
\(640\) −0.915432 1.31337i −0.0361856 0.0519153i
\(641\) −3.54239 −0.139916 −0.0699580 0.997550i \(-0.522287\pi\)
−0.0699580 + 0.997550i \(0.522287\pi\)
\(642\) −1.54260 0.393298i −0.0608815 0.0155222i
\(643\) −6.39752 6.39752i −0.252294 0.252294i 0.569617 0.821910i \(-0.307092\pi\)
−0.821910 + 0.569617i \(0.807092\pi\)
\(644\) −24.6943 13.4675i −0.973093 0.530692i
\(645\) 1.07837 1.07837i 0.0424609 0.0424609i
\(646\) −2.96714 4.99789i −0.116741 0.196639i
\(647\) 2.11694i 0.0832255i −0.999134 0.0416127i \(-0.986750\pi\)
0.999134 0.0416127i \(-0.0132496\pi\)
\(648\) 1.37275 + 1.27608i 0.0539267 + 0.0501291i
\(649\) 25.1263i 0.986293i
\(650\) 12.7364 7.56136i 0.499564 0.296581i
\(651\) 2.74823 2.74823i 0.107712 0.107712i
\(652\) 2.16427 + 7.35667i 0.0847593 + 0.288110i
\(653\) 19.0110 + 19.0110i 0.743958 + 0.743958i 0.973337 0.229379i \(-0.0736695\pi\)
−0.229379 + 0.973337i \(0.573670\pi\)
\(654\) 0.234141 0.918350i 0.00915562 0.0359103i
\(655\) 1.85917 0.0726436
\(656\) −15.8643 + 10.2187i −0.619398 + 0.398973i
\(657\) 26.3694 1.02877
\(658\) 11.1648 43.7908i 0.435249 1.70714i
\(659\) −4.51444 4.51444i −0.175858 0.175858i 0.613690 0.789547i \(-0.289685\pi\)
−0.789547 + 0.613690i \(0.789685\pi\)
\(660\) 0.761266 0.223958i 0.0296322 0.00871754i
\(661\) 9.76412 9.76412i 0.379780 0.379780i −0.491243 0.871023i \(-0.663457\pi\)
0.871023 + 0.491243i \(0.163457\pi\)
\(662\) −0.803021 + 0.476737i −0.0312103 + 0.0185289i
\(663\) 2.15356i 0.0836374i
\(664\) −0.0922617 2.52801i −0.00358045 0.0981058i
\(665\) 1.52837i 0.0592678i
\(666\) −2.36758 3.98798i −0.0917419 0.154531i
\(667\) −4.76880 + 4.76880i −0.184649 + 0.184649i
\(668\) −12.6326 + 23.1634i −0.488769 + 0.896220i
\(669\) 5.76278 + 5.76278i 0.222802 + 0.222802i
\(670\) 0.772888 + 0.197054i 0.0298593 + 0.00761286i
\(671\) 5.07192 0.195799
\(672\) −13.6215 6.79634i −0.525462 0.262174i
\(673\) 21.9260 0.845186 0.422593 0.906319i \(-0.361120\pi\)
0.422593 + 0.906319i \(0.361120\pi\)
\(674\) −18.6044 4.74335i −0.716616 0.182707i
\(675\) 17.8541 + 17.8541i 0.687203 + 0.687203i
\(676\) 8.21304 15.0597i 0.315886 0.579218i
\(677\) 23.4977 23.4977i 0.903088 0.903088i −0.0926137 0.995702i \(-0.529522\pi\)
0.995702 + 0.0926137i \(0.0295222\pi\)
\(678\) −3.54905 5.97807i −0.136301 0.229586i
\(679\) 47.0917i 1.80722i
\(680\) −0.399964 + 0.0145970i −0.0153379 + 0.000559769i
\(681\) 13.7100i 0.525367i
\(682\) −4.80923 + 2.85514i −0.184155 + 0.109329i
\(683\) 23.6192 23.6192i 0.903765 0.903765i −0.0919944 0.995760i \(-0.529324\pi\)
0.995760 + 0.0919944i \(0.0293242\pi\)
\(684\) 15.3886 4.52720i 0.588400 0.173102i
\(685\) −0.857455 0.857455i −0.0327617 0.0327617i
\(686\) −6.51321 + 25.5462i −0.248675 + 0.975358i
\(687\) −9.62241 −0.367118
\(688\) 41.1478 + 8.90637i 1.56875 + 0.339552i
\(689\) −14.2547 −0.543060
\(690\) −0.270919 + 1.06260i −0.0103137 + 0.0404526i
\(691\) −26.2542 26.2542i −0.998755 0.998755i 0.00124381 0.999999i \(-0.499604\pi\)
−0.999999 + 0.00124381i \(0.999604\pi\)
\(692\) 9.77513 + 33.2271i 0.371595 + 1.26311i
\(693\) −9.93013 + 9.93013i −0.377215 + 0.377215i
\(694\) 37.9799 22.5478i 1.44170 0.855905i
\(695\) 1.46700i 0.0556466i
\(696\) −2.48504 + 2.67329i −0.0941951 + 0.101331i
\(697\) 4.71764i 0.178694i
\(698\) −1.83609 3.09273i −0.0694970 0.117062i
\(699\) −7.01757 + 7.01757i −0.265429 + 0.265429i
\(700\) 22.9799 + 12.5325i 0.868559 + 0.473683i
\(701\) −10.9200 10.9200i −0.412444 0.412444i 0.470145 0.882589i \(-0.344202\pi\)
−0.882589 + 0.470145i \(0.844202\pi\)
\(702\) −14.6127 3.72563i −0.551522 0.140615i
\(703\) −6.90670 −0.260491
\(704\) 16.5779 + 14.3196i 0.624804 + 0.539692i
\(705\) −1.76184 −0.0663547
\(706\) 3.04386 + 0.776058i 0.114557 + 0.0292073i
\(707\) −23.1486 23.1486i −0.870593 0.870593i
\(708\) −16.4980 8.99747i −0.620033 0.338146i
\(709\) 33.1421 33.1421i 1.24468 1.24468i 0.286638 0.958039i \(-0.407462\pi\)
0.958039 0.286638i \(-0.0925377\pi\)
\(710\) 0.622312 + 1.04823i 0.0233550 + 0.0393394i
\(711\) 4.49745i 0.168668i
\(712\) 21.2555 22.8658i 0.796585 0.856931i
\(713\) 7.72898i 0.289453i
\(714\) −3.27247 + 1.94280i −0.122469 + 0.0727074i
\(715\) 0.576226 0.576226i 0.0215496 0.0215496i
\(716\) 13.2289 + 44.9671i 0.494388 + 1.68050i
\(717\) 17.4296 + 17.4296i 0.650921 + 0.650921i
\(718\) −0.531435 + 2.08440i −0.0198330 + 0.0777891i
\(719\) 9.31625 0.347437 0.173719 0.984795i \(-0.444422\pi\)
0.173719 + 0.984795i \(0.444422\pi\)
\(720\) 0.233667 1.07955i 0.00870827 0.0402326i
\(721\) −1.96708 −0.0732578
\(722\) −0.736716 + 2.88956i −0.0274177 + 0.107538i
\(723\) 12.0069 + 12.0069i 0.446542 + 0.446542i
\(724\) −19.9741 + 5.87619i −0.742330 + 0.218387i
\(725\) 4.43772 4.43772i 0.164813 0.164813i
\(726\) 4.36059 2.58879i 0.161837 0.0960791i
\(727\) 50.6097i 1.87701i −0.345266 0.938505i \(-0.612211\pi\)
0.345266 0.938505i \(-0.387789\pi\)
\(728\) −15.6227 + 0.570161i −0.579014 + 0.0211316i
\(729\) 14.2822i 0.528969i
\(730\) −1.38041 2.32518i −0.0510913 0.0860588i
\(731\) 7.44242 7.44242i 0.275268 0.275268i
\(732\) −1.81620 + 3.33024i −0.0671287 + 0.123089i
\(733\) 27.4040 + 27.4040i 1.01219 + 1.01219i 0.999925 + 0.0122657i \(0.00390438\pi\)
0.0122657 + 0.999925i \(0.496096\pi\)
\(734\) −45.6677 11.6433i −1.68562 0.429763i
\(735\) 0.0135338 0.000499202
\(736\) −28.7111 + 9.59742i −1.05830 + 0.353766i
\(737\) −10.9141 −0.402027
\(738\) −12.6161 3.21659i −0.464407 0.118404i
\(739\) −13.2619 13.2619i −0.487848 0.487848i 0.419779 0.907626i \(-0.362108\pi\)
−0.907626 + 0.419779i \(0.862108\pi\)
\(740\) −0.227709 + 0.417533i −0.00837074 + 0.0153488i
\(741\) −6.25857 + 6.25857i −0.229914 + 0.229914i
\(742\) −12.8596 21.6609i −0.472091 0.795196i
\(743\) 23.9937i 0.880244i 0.897938 + 0.440122i \(0.145065\pi\)
−0.897938 + 0.440122i \(0.854935\pi\)
\(744\) −0.152558 4.18016i −0.00559305 0.153252i
\(745\) 2.06287i 0.0755779i
\(746\) 42.7986 25.4086i 1.56697 0.930275i
\(747\) 1.23416 1.23416i 0.0451554 0.0451554i
\(748\) 5.25390 1.54565i 0.192101 0.0565146i
\(749\) −2.04287 2.04287i −0.0746448 0.0746448i
\(750\) 0.505234 1.98164i 0.0184485 0.0723591i
\(751\) 28.4233 1.03718 0.518590 0.855023i \(-0.326457\pi\)
0.518590 + 0.855023i \(0.326457\pi\)
\(752\) −26.3379 40.8891i −0.960445 1.49107i
\(753\) −12.5382 −0.456918
\(754\) −0.926026 + 3.63207i −0.0337239 + 0.132272i
\(755\) 0.631354 + 0.631354i 0.0229773 + 0.0229773i
\(756\) −7.52128 25.5660i −0.273546 0.929825i
\(757\) 24.5037 24.5037i 0.890602 0.890602i −0.103977 0.994580i \(-0.533157\pi\)
0.994580 + 0.103977i \(0.0331570\pi\)
\(758\) −21.4788 + 12.7515i −0.780143 + 0.463155i
\(759\) 15.0052i 0.544655i
\(760\) −1.20478 1.11993i −0.0437018 0.0406242i
\(761\) 9.53970i 0.345814i −0.984938 0.172907i \(-0.944684\pi\)
0.984938 0.172907i \(-0.0553160\pi\)
\(762\) 9.44636 + 15.9116i 0.342206 + 0.576415i
\(763\) 1.21617 1.21617i 0.0440284 0.0440284i
\(764\) −27.6387 15.0732i −0.999934 0.545331i
\(765\) −0.195259 0.195259i −0.00705961 0.00705961i
\(766\) 36.6070 + 9.33324i 1.32266 + 0.337224i
\(767\) −19.2983 −0.696822
\(768\) −15.3387 + 5.75740i −0.553488 + 0.207752i
\(769\) 25.2175 0.909366 0.454683 0.890653i \(-0.349753\pi\)
0.454683 + 0.890653i \(0.349753\pi\)
\(770\) 1.39544 + 0.355779i 0.0502883 + 0.0128214i
\(771\) −1.43915 1.43915i −0.0518298 0.0518298i
\(772\) −30.6015 16.6890i −1.10137 0.600651i
\(773\) 33.4601 33.4601i 1.20348 1.20348i 0.230375 0.973102i \(-0.426005\pi\)
0.973102 0.230375i \(-0.0739954\pi\)
\(774\) 14.8285 + 24.9772i 0.532998 + 0.897789i
\(775\) 7.19239i 0.258358i
\(776\) 37.1211 + 34.5070i 1.33257 + 1.23873i
\(777\) 4.52230i 0.162237i
\(778\) 4.57914 2.71854i 0.164170 0.0974644i
\(779\) −13.7102 + 13.7102i −0.491218 + 0.491218i
\(780\) 0.172011 + 0.584692i 0.00615899 + 0.0209353i
\(781\) −11.7950 11.7950i −0.422060 0.422060i
\(782\) −1.86975 + 7.33357i −0.0668622 + 0.262248i
\(783\) −6.38958 −0.228345
\(784\) 0.202319 + 0.314095i 0.00722566 + 0.0112177i
\(785\) −1.81880 −0.0649156
\(786\) 4.70059 18.4367i 0.167664 0.657616i
\(787\) 25.7204 + 25.7204i 0.916832 + 0.916832i 0.996798 0.0799660i \(-0.0254812\pi\)
−0.0799660 + 0.996798i \(0.525481\pi\)
\(788\) 52.0190 15.3035i 1.85310 0.545166i
\(789\) −8.86508 + 8.86508i −0.315605 + 0.315605i
\(790\) 0.396573 0.235437i 0.0141094 0.00837647i
\(791\) 12.6168i 0.448601i
\(792\) 0.551235 + 15.1041i 0.0195873 + 0.536700i
\(793\) 3.89550i 0.138333i
\(794\) −12.4745 21.0123i −0.442705 0.745697i
\(795\) −0.694433 + 0.694433i −0.0246290 + 0.0246290i
\(796\) −19.5673 + 35.8792i −0.693545 + 1.27170i
\(797\) 31.1741 + 31.1741i 1.10424 + 1.10424i 0.993893 + 0.110352i \(0.0351978\pi\)
0.110352 + 0.993893i \(0.464802\pi\)
\(798\) −15.1564 3.86423i −0.536529 0.136792i
\(799\) −12.1594 −0.430168
\(800\) 26.7178 8.93112i 0.944617 0.315763i
\(801\) 21.5397 0.761068
\(802\) 36.7909 + 9.38014i 1.29913 + 0.331224i
\(803\) 26.1637 + 26.1637i 0.923298 + 0.923298i
\(804\) 3.90823 7.16624i 0.137833 0.252734i
\(805\) −1.40721 + 1.40721i −0.0495975 + 0.0495975i
\(806\) −2.19290 3.69374i −0.0772415 0.130107i
\(807\) 11.5598i 0.406924i
\(808\) −35.2098 + 1.28501i −1.23868 + 0.0452065i
\(809\) 23.8830i 0.839681i −0.907598 0.419840i \(-0.862086\pi\)
0.907598 0.419840i \(-0.137914\pi\)
\(810\) 0.114025 0.0676944i 0.00400644 0.00237854i
\(811\) 29.5247 29.5247i 1.03675 1.03675i 0.0374533 0.999298i \(-0.488075\pi\)
0.999298 0.0374533i \(-0.0119246\pi\)
\(812\) −6.35456 + 1.86946i −0.223001 + 0.0656050i
\(813\) 0.322662 + 0.322662i 0.0113163 + 0.0113163i
\(814\) 1.60776 6.30599i 0.0563520 0.221025i
\(815\) 0.542551 0.0190047
\(816\) −0.866487 + 4.00321i −0.0303331 + 0.140140i
\(817\) 43.2576 1.51339
\(818\) −6.25272 + 24.5245i −0.218621 + 0.857479i
\(819\) −7.62687 7.62687i −0.266504 0.266504i
\(820\) 0.376812 + 1.28084i 0.0131588 + 0.0447289i
\(821\) −10.1861 + 10.1861i −0.355496 + 0.355496i −0.862150 0.506654i \(-0.830882\pi\)
0.506654 + 0.862150i \(0.330882\pi\)
\(822\) −10.6710 + 6.33516i −0.372194 + 0.220964i
\(823\) 55.6252i 1.93897i 0.245148 + 0.969486i \(0.421163\pi\)
−0.245148 + 0.969486i \(0.578837\pi\)
\(824\) −1.44140 + 1.55059i −0.0502135 + 0.0540175i
\(825\) 13.9635i 0.486146i
\(826\) −17.4096 29.3250i −0.605759 1.02035i
\(827\) −18.1650 + 18.1650i −0.631660 + 0.631660i −0.948484 0.316824i \(-0.897383\pi\)
0.316824 + 0.948484i \(0.397383\pi\)
\(828\) −18.3369 10.0004i −0.637253 0.347537i
\(829\) −10.1346 10.1346i −0.351989 0.351989i 0.508860 0.860849i \(-0.330067\pi\)
−0.860849 + 0.508860i \(0.830067\pi\)
\(830\) −0.173431 0.0442176i −0.00601988 0.00153482i
\(831\) 32.1375 1.11484
\(832\) −10.9982 + 12.7327i −0.381295 + 0.441427i
\(833\) 0.0934039 0.00323625
\(834\) −14.5478 3.70907i −0.503748 0.128434i
\(835\) 1.31997 + 1.31997i 0.0456794 + 0.0456794i
\(836\) 19.7605 + 10.7767i 0.683431 + 0.372721i
\(837\) 5.17792 5.17792i 0.178975 0.178975i
\(838\) 17.5149 + 29.5024i 0.605044 + 1.01914i
\(839\) 44.9141i 1.55061i −0.631589 0.775303i \(-0.717597\pi\)
0.631589 0.775303i \(-0.282403\pi\)
\(840\) −0.733300 + 0.788852i −0.0253012 + 0.0272180i
\(841\) 27.4118i 0.945236i
\(842\) 48.6442 28.8791i 1.67639 0.995238i
\(843\) 21.1187 21.1187i 0.727367 0.727367i
\(844\) 2.29636 + 7.80567i 0.0790439 + 0.268682i
\(845\) −0.858176 0.858176i −0.0295221 0.0295221i
\(846\) 8.29051 32.5172i 0.285034 1.11796i
\(847\) 9.20309 0.316222
\(848\) −26.4977 5.73538i −0.909935 0.196954i
\(849\) 10.8698 0.373050
\(850\) 1.73994 6.82444i 0.0596796 0.234076i
\(851\) 6.35914 + 6.35914i 0.217989 + 0.217989i
\(852\) 11.9683 3.52098i 0.410029 0.120627i
\(853\) 23.6486 23.6486i 0.809714 0.809714i −0.174876 0.984590i \(-0.555953\pi\)
0.984590 + 0.174876i \(0.0559526\pi\)
\(854\) −5.91945 + 3.51425i −0.202560 + 0.120255i
\(855\) 1.13491i 0.0388129i
\(856\) −3.10727 + 0.113402i −0.106204 + 0.00387601i
\(857\) 33.0162i 1.12781i −0.825839 0.563906i \(-0.809298\pi\)
0.825839 0.563906i \(-0.190702\pi\)
\(858\) −4.25734 7.17112i −0.145343 0.244818i
\(859\) −5.16428 + 5.16428i −0.176203 + 0.176203i −0.789698 0.613495i \(-0.789763\pi\)
0.613495 + 0.789698i \(0.289763\pi\)
\(860\) 1.42617 2.61506i 0.0486320 0.0891730i
\(861\) 8.97703 + 8.97703i 0.305936 + 0.305936i
\(862\) 15.8353 + 4.03733i 0.539352 + 0.137512i
\(863\) 6.25192 0.212818 0.106409 0.994322i \(-0.466065\pi\)
0.106409 + 0.994322i \(0.466065\pi\)
\(864\) −25.6642 12.8049i −0.873115 0.435632i
\(865\) 2.45049 0.0833190
\(866\) −0.489960 0.124919i −0.0166495 0.00424493i
\(867\) 0.724061 + 0.724061i 0.0245904 + 0.0245904i
\(868\) 3.63459 6.66449i 0.123366 0.226208i
\(869\) −4.46237 + 4.46237i −0.151376 + 0.151376i
\(870\) 0.131828 + 0.222053i 0.00446939 + 0.00752830i
\(871\) 8.38261i 0.284034i
\(872\) −0.0675114 1.84984i −0.00228622 0.0626435i
\(873\) 34.9683i 1.18350i
\(874\) −26.7462 + 15.8787i −0.904705 + 0.537104i
\(875\) 2.62429 2.62429i 0.0887171 0.0887171i
\(876\) −26.5482 + 7.81023i −0.896979 + 0.263883i
\(877\) 5.65049 + 5.65049i 0.190804 + 0.190804i 0.796043 0.605240i \(-0.206923\pi\)
−0.605240 + 0.796043i \(0.706923\pi\)
\(878\) −2.63480 + 10.3342i −0.0889200 + 0.348763i
\(879\) −9.99498 −0.337122
\(880\) 1.30298 0.839288i 0.0439234 0.0282924i
\(881\) −4.36508 −0.147063 −0.0735316 0.997293i \(-0.523427\pi\)
−0.0735316 + 0.997293i \(0.523427\pi\)
\(882\) −0.0636847 + 0.249785i −0.00214438 + 0.00841070i
\(883\) 29.4447 + 29.4447i 0.990893 + 0.990893i 0.999959 0.00906586i \(-0.00288579\pi\)
−0.00906586 + 0.999959i \(0.502886\pi\)
\(884\) 1.18714 + 4.03527i 0.0399279 + 0.135721i
\(885\) −0.940140 + 0.940140i −0.0316024 + 0.0316024i
\(886\) 31.2239 18.5369i 1.04899 0.622761i
\(887\) 44.5674i 1.49643i −0.663458 0.748214i \(-0.730912\pi\)
0.663458 0.748214i \(-0.269088\pi\)
\(888\) 3.56481 + 3.31377i 0.119627 + 0.111203i
\(889\) 33.5816i 1.12629i
\(890\) −1.12758 1.89931i −0.0377966 0.0636650i
\(891\) −1.28305 + 1.28305i −0.0429838 + 0.0429838i
\(892\) 13.9748 + 7.62139i 0.467911 + 0.255183i
\(893\) −35.3369 35.3369i −1.18251 1.18251i
\(894\) 20.4568 + 5.21563i 0.684178 + 0.174437i
\(895\) 3.31630 0.110852
\(896\) −29.2700 5.22593i −0.977843 0.174586i
\(897\) 11.5248 0.384802
\(898\) −24.7671 6.31456i −0.826487 0.210720i
\(899\) −1.28700 1.28700i −0.0429239 0.0429239i
\(900\) 17.0639 + 9.30608i 0.568797 + 0.310203i
\(901\) −4.79265 + 4.79265i −0.159666 + 0.159666i
\(902\) −9.32624 15.7092i −0.310530 0.523060i
\(903\) 28.3238i 0.942557i
\(904\) −9.94547 9.24510i −0.330781 0.307487i
\(905\) 1.47308i 0.0489667i
\(906\) 7.85719 4.66465i 0.261038 0.154973i
\(907\) 34.7519 34.7519i 1.15392 1.15392i 0.168157 0.985760i \(-0.446219\pi\)
0.985760 0.168157i \(-0.0537814\pi\)
\(908\) −7.55754 25.6892i −0.250806 0.852527i
\(909\) −17.1892 17.1892i −0.570128 0.570128i
\(910\) −0.273257 + 1.07177i −0.00905839 + 0.0355290i
\(911\) −40.9415 −1.35645 −0.678226 0.734853i \(-0.737251\pi\)
−0.678226 + 0.734853i \(0.737251\pi\)
\(912\) −14.1521 + 9.11578i −0.468622 + 0.301854i
\(913\) 2.44906 0.0810520
\(914\) −13.0802 + 51.3034i −0.432655 + 1.69696i
\(915\) 0.189774 + 0.189774i 0.00627372 + 0.00627372i
\(916\) −18.0301 + 5.30431i −0.595732 + 0.175259i
\(917\) 24.4158 24.4158i 0.806280 0.806280i
\(918\) −6.16564 + 3.66041i −0.203496 + 0.120812i
\(919\) 17.6406i 0.581911i 0.956737 + 0.290956i \(0.0939732\pi\)
−0.956737 + 0.290956i \(0.906027\pi\)
\(920\) 0.0781159 + 2.14041i 0.00257541 + 0.0705672i
\(921\) 4.41269i 0.145403i
\(922\) −14.3316 24.1404i −0.471987 0.795021i
\(923\) 9.05921 9.05921i 0.298188 0.298188i
\(924\) 7.05628 12.9386i 0.232135 0.425649i
\(925\) −5.91766 5.91766i −0.194571 0.194571i
\(926\) 25.0943 + 6.39799i 0.824649 + 0.210251i
\(927\) −1.46067 −0.0479746
\(928\) −3.18273 + 6.37899i −0.104478 + 0.209401i
\(929\) −8.34203 −0.273693 −0.136847 0.990592i \(-0.543697\pi\)
−0.136847 + 0.990592i \(0.543697\pi\)
\(930\) −0.286774 0.0731154i −0.00940371 0.00239755i
\(931\) 0.271446 + 0.271446i 0.00889628 + 0.00889628i
\(932\) −9.28088 + 17.0177i −0.304005 + 0.557433i
\(933\) 14.4925 14.4925i 0.474463 0.474463i
\(934\) 9.18334 + 15.4685i 0.300488 + 0.506146i
\(935\) 0.387472i 0.0126717i
\(936\) −11.6007 + 0.423377i −0.379181 + 0.0138385i
\(937\) 14.1664i 0.462796i −0.972859 0.231398i \(-0.925670\pi\)
0.972859 0.231398i \(-0.0743300\pi\)
\(938\) 12.7379 7.56223i 0.415907 0.246915i
\(939\) 19.9509 19.9509i 0.651074 0.651074i
\(940\) −3.30127 + 0.971205i −0.107676 + 0.0316772i
\(941\) −22.4415 22.4415i −0.731572 0.731572i 0.239359 0.970931i \(-0.423063\pi\)
−0.970931 + 0.239359i \(0.923063\pi\)
\(942\) −4.59852 + 18.0364i −0.149828 + 0.587657i
\(943\) 25.2465 0.822140
\(944\) −35.8732 7.76469i −1.16757 0.252719i
\(945\) −1.88548 −0.0613346
\(946\) −10.0696 + 39.4952i −0.327392 + 1.28410i
\(947\) 31.2571 + 31.2571i 1.01572 + 1.01572i 0.999874 + 0.0158460i \(0.00504415\pi\)
0.0158460 + 0.999874i \(0.494956\pi\)
\(948\) −1.33208 4.52794i −0.0432639 0.147061i
\(949\) −20.0951 + 20.0951i −0.652315 + 0.652315i
\(950\) 24.8894 14.7763i 0.807518 0.479406i
\(951\) 31.0279i 1.00615i
\(952\) −5.06089 + 5.44428i −0.164024 + 0.176450i
\(953\) 54.5167i 1.76597i −0.469402 0.882985i \(-0.655530\pi\)
0.469402 0.882985i \(-0.344470\pi\)
\(954\) −9.54900 16.0844i −0.309160 0.520753i
\(955\) −1.57499 + 1.57499i −0.0509656 + 0.0509656i
\(956\) 42.2670 + 23.0510i 1.36701 + 0.745523i
\(957\) −2.49862 2.49862i −0.0807688 0.0807688i
\(958\) 8.91691 + 2.27344i 0.288092 + 0.0734514i
\(959\) −22.5213 −0.727251
\(960\) 0.0844967 + 1.15608i 0.00272712 + 0.0373123i
\(961\) −28.9141 −0.932713
\(962\) 4.84333 + 1.23485i 0.156155 + 0.0398130i
\(963\) −1.51695 1.51695i −0.0488829 0.0488829i
\(964\) 29.1169 + 15.8794i 0.937792 + 0.511440i
\(965\) −1.74382 + 1.74382i −0.0561357 + 0.0561357i
\(966\) 10.3969 + 17.5127i 0.334515 + 0.563461i
\(967\) 6.88781i 0.221497i 0.993848 + 0.110749i \(0.0353248\pi\)
−0.993848 + 0.110749i \(0.964675\pi\)
\(968\) 6.74367 7.25455i 0.216750 0.233170i
\(969\) 4.20846i 0.135195i
\(970\) 3.08341 1.83055i 0.0990023 0.0587755i
\(971\) 25.1974 25.1974i 0.808623 0.808623i −0.175803 0.984425i \(-0.556252\pi\)
0.984425 + 0.175803i \(0.0562521\pi\)
\(972\) −8.96881 30.4863i −0.287675 0.977850i
\(973\) −19.2656 19.2656i −0.617628 0.617628i
\(974\) −6.85983 + 26.9057i −0.219803 + 0.862115i
\(975\) −10.7247 −0.343465
\(976\) −1.56736 + 7.24125i −0.0501698 + 0.231787i
\(977\) −8.31259 −0.265943 −0.132972 0.991120i \(-0.542452\pi\)
−0.132972 + 0.991120i \(0.542452\pi\)
\(978\) 1.37175 5.38029i 0.0438637 0.172043i
\(979\) 21.3717 + 21.3717i 0.683042 + 0.683042i
\(980\) 0.0253592 0.00746045i 0.000810069 0.000238315i
\(981\) 0.903078 0.903078i 0.0288331 0.0288331i
\(982\) −12.8341 + 7.61932i −0.409552 + 0.243142i
\(983\) 38.9586i 1.24259i 0.783578 + 0.621293i \(0.213392\pi\)
−0.783578 + 0.621293i \(0.786608\pi\)
\(984\) 13.6544 0.498327i 0.435285 0.0158861i
\(985\) 3.83637i 0.122237i
\(986\) 0.909815 + 1.53250i 0.0289744 + 0.0488049i
\(987\) −23.1376 + 23.1376i −0.736478 + 0.736478i
\(988\) −8.27709 + 15.1771i −0.263329 + 0.482848i
\(989\) −39.8282 39.8282i −1.26646 1.26646i
\(990\) 1.03620 + 0.264187i 0.0329325 + 0.00839640i
\(991\) −60.2776 −1.91478 −0.957391 0.288796i \(-0.906745\pi\)
−0.957391 + 0.288796i \(0.906745\pi\)
\(992\) −2.59015 7.74853i −0.0822373 0.246016i
\(993\) 0.676182 0.0214580
\(994\) 21.9386 + 5.59343i 0.695852 + 0.177413i
\(995\) 2.04458 + 2.04458i 0.0648174 + 0.0648174i
\(996\) −0.876982 + 1.60806i −0.0277882 + 0.0509533i
\(997\) −8.55785 + 8.55785i −0.271030 + 0.271030i −0.829515 0.558485i \(-0.811383\pi\)
0.558485 + 0.829515i \(0.311383\pi\)
\(998\) 30.3926 + 51.1936i 0.962060 + 1.62051i
\(999\) 8.52044i 0.269575i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 272.2.l.c.205.3 yes 32
4.3 odd 2 1088.2.l.c.273.6 32
16.5 even 4 inner 272.2.l.c.69.3 32
16.11 odd 4 1088.2.l.c.817.6 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
272.2.l.c.69.3 32 16.5 even 4 inner
272.2.l.c.205.3 yes 32 1.1 even 1 trivial
1088.2.l.c.273.6 32 4.3 odd 2
1088.2.l.c.817.6 32 16.11 odd 4