Defining parameters
Level: | \( N \) | \(=\) | \( 272 = 2^{4} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 272.l (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(272, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 64 | 12 |
Cusp forms | 68 | 64 | 4 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(272, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
272.2.l.a | $2$ | $2.172$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(2\) | \(2\) | \(0\) | \(q+(-i-1)q^{2}+(-i+1)q^{3}+2 i q^{4}+\cdots\) |
272.2.l.b | $30$ | $2.172$ | None | \(2\) | \(-2\) | \(-2\) | \(0\) | ||
272.2.l.c | $32$ | $2.172$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(272, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(272, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 2}\)