Properties

Label 272.2.l
Level $272$
Weight $2$
Character orbit 272.l
Rep. character $\chi_{272}(69,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $64$
Newform subspaces $3$
Sturm bound $72$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 272.l (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(72\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(272, [\chi])\).

Total New Old
Modular forms 76 64 12
Cusp forms 68 64 4
Eisenstein series 8 0 8

Trace form

\( 64 q - 4 q^{4} - 12 q^{6} - 12 q^{8} - 12 q^{10} - 8 q^{11} + 4 q^{12} - 4 q^{14} + 20 q^{16} + 20 q^{18} - 28 q^{20} + 20 q^{22} - 32 q^{24} - 12 q^{26} + 24 q^{27} - 16 q^{29} - 24 q^{30} + 24 q^{31}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(272, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
272.2.l.a 272.l 16.e $2$ $2.172$ \(\Q(\sqrt{-1}) \) None 272.2.l.a \(-2\) \(2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i-1)q^{2}+(-i+1)q^{3}+2 i q^{4}+\cdots\)
272.2.l.b 272.l 16.e $30$ $2.172$ None 272.2.l.b \(2\) \(-2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{4}]$
272.2.l.c 272.l 16.e $32$ $2.172$ None 272.2.l.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(272, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(272, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 2}\)