Properties

Label 1088.2.l.c.817.6
Level $1088$
Weight $2$
Character 1088.817
Analytic conductor $8.688$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1088,2,Mod(273,1088)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1088.273"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1088, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1088 = 2^{6} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1088.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.68772373992\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 272)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 817.6
Character \(\chi\) \(=\) 1088.817
Dual form 1088.2.l.c.273.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.724061 + 0.724061i) q^{3} +(0.100057 + 0.100057i) q^{5} -2.62804i q^{7} +1.95147i q^{9} +(-1.93625 - 1.93625i) q^{11} +(1.48714 - 1.48714i) q^{13} -0.144896 q^{15} +1.00000 q^{17} +(-2.90615 + 2.90615i) q^{19} +(1.90286 + 1.90286i) q^{21} -5.35151i q^{23} -4.97998i q^{25} +(-3.58517 - 3.58517i) q^{27} +(-0.891113 + 0.891113i) q^{29} -1.44426 q^{31} +2.80393 q^{33} +(0.262955 - 0.262955i) q^{35} +(-1.18829 - 1.18829i) q^{37} +2.15356i q^{39} -4.71764i q^{41} +(-7.44242 - 7.44242i) q^{43} +(-0.195259 + 0.195259i) q^{45} +12.1594 q^{47} +0.0934039 q^{49} +(-0.724061 + 0.724061i) q^{51} +(-4.79265 - 4.79265i) q^{53} -0.387472i q^{55} -4.20846i q^{57} +(6.48840 + 6.48840i) q^{59} +(1.30973 - 1.30973i) q^{61} +5.12854 q^{63} +0.297599 q^{65} +(2.81837 - 2.81837i) q^{67} +(3.87482 + 3.87482i) q^{69} -6.09170i q^{71} -13.5126i q^{73} +(3.60581 + 3.60581i) q^{75} +(-5.08854 + 5.08854i) q^{77} +2.30465 q^{79} -0.662648 q^{81} +(-0.632423 + 0.632423i) q^{83} +(0.100057 + 0.100057i) q^{85} -1.29044i q^{87} -11.0377i q^{89} +(-3.90827 - 3.90827i) q^{91} +(1.04573 - 1.04573i) q^{93} -0.581564 q^{95} -17.9190 q^{97} +(3.77853 - 3.77853i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{11} - 24 q^{15} + 32 q^{17} - 12 q^{27} - 8 q^{29} + 24 q^{31} - 12 q^{35} - 8 q^{37} + 12 q^{43} - 40 q^{45} - 32 q^{47} - 32 q^{49} + 8 q^{53} + 12 q^{59} + 40 q^{63} - 8 q^{67} - 8 q^{75}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1088\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.724061 + 0.724061i −0.418037 + 0.418037i −0.884527 0.466490i \(-0.845518\pi\)
0.466490 + 0.884527i \(0.345518\pi\)
\(4\) 0 0
\(5\) 0.100057 + 0.100057i 0.0447471 + 0.0447471i 0.729126 0.684379i \(-0.239927\pi\)
−0.684379 + 0.729126i \(0.739927\pi\)
\(6\) 0 0
\(7\) 2.62804i 0.993306i −0.867949 0.496653i \(-0.834562\pi\)
0.867949 0.496653i \(-0.165438\pi\)
\(8\) 0 0
\(9\) 1.95147i 0.650490i
\(10\) 0 0
\(11\) −1.93625 1.93625i −0.583801 0.583801i 0.352145 0.935946i \(-0.385452\pi\)
−0.935946 + 0.352145i \(0.885452\pi\)
\(12\) 0 0
\(13\) 1.48714 1.48714i 0.412459 0.412459i −0.470136 0.882594i \(-0.655795\pi\)
0.882594 + 0.470136i \(0.155795\pi\)
\(14\) 0 0
\(15\) −0.144896 −0.0374119
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −2.90615 + 2.90615i −0.666716 + 0.666716i −0.956954 0.290238i \(-0.906266\pi\)
0.290238 + 0.956954i \(0.406266\pi\)
\(20\) 0 0
\(21\) 1.90286 + 1.90286i 0.415239 + 0.415239i
\(22\) 0 0
\(23\) 5.35151i 1.11587i −0.829886 0.557933i \(-0.811594\pi\)
0.829886 0.557933i \(-0.188406\pi\)
\(24\) 0 0
\(25\) 4.97998i 0.995995i
\(26\) 0 0
\(27\) −3.58517 3.58517i −0.689966 0.689966i
\(28\) 0 0
\(29\) −0.891113 + 0.891113i −0.165476 + 0.165476i −0.784987 0.619512i \(-0.787331\pi\)
0.619512 + 0.784987i \(0.287331\pi\)
\(30\) 0 0
\(31\) −1.44426 −0.259397 −0.129699 0.991553i \(-0.541401\pi\)
−0.129699 + 0.991553i \(0.541401\pi\)
\(32\) 0 0
\(33\) 2.80393 0.488101
\(34\) 0 0
\(35\) 0.262955 0.262955i 0.0444475 0.0444475i
\(36\) 0 0
\(37\) −1.18829 1.18829i −0.195354 0.195354i 0.602651 0.798005i \(-0.294111\pi\)
−0.798005 + 0.602651i \(0.794111\pi\)
\(38\) 0 0
\(39\) 2.15356i 0.344846i
\(40\) 0 0
\(41\) 4.71764i 0.736772i −0.929673 0.368386i \(-0.879910\pi\)
0.929673 0.368386i \(-0.120090\pi\)
\(42\) 0 0
\(43\) −7.44242 7.44242i −1.13496 1.13496i −0.989341 0.145617i \(-0.953483\pi\)
−0.145617 0.989341i \(-0.546517\pi\)
\(44\) 0 0
\(45\) −0.195259 + 0.195259i −0.0291075 + 0.0291075i
\(46\) 0 0
\(47\) 12.1594 1.77363 0.886813 0.462128i \(-0.152914\pi\)
0.886813 + 0.462128i \(0.152914\pi\)
\(48\) 0 0
\(49\) 0.0934039 0.0133434
\(50\) 0 0
\(51\) −0.724061 + 0.724061i −0.101389 + 0.101389i
\(52\) 0 0
\(53\) −4.79265 4.79265i −0.658321 0.658321i 0.296662 0.954983i \(-0.404127\pi\)
−0.954983 + 0.296662i \(0.904127\pi\)
\(54\) 0 0
\(55\) 0.387472i 0.0522468i
\(56\) 0 0
\(57\) 4.20846i 0.557424i
\(58\) 0 0
\(59\) 6.48840 + 6.48840i 0.844717 + 0.844717i 0.989468 0.144751i \(-0.0462381\pi\)
−0.144751 + 0.989468i \(0.546238\pi\)
\(60\) 0 0
\(61\) 1.30973 1.30973i 0.167693 0.167693i −0.618271 0.785965i \(-0.712167\pi\)
0.785965 + 0.618271i \(0.212167\pi\)
\(62\) 0 0
\(63\) 5.12854 0.646136
\(64\) 0 0
\(65\) 0.297599 0.0369126
\(66\) 0 0
\(67\) 2.81837 2.81837i 0.344318 0.344318i −0.513670 0.857988i \(-0.671714\pi\)
0.857988 + 0.513670i \(0.171714\pi\)
\(68\) 0 0
\(69\) 3.87482 + 3.87482i 0.466474 + 0.466474i
\(70\) 0 0
\(71\) 6.09170i 0.722952i −0.932381 0.361476i \(-0.882273\pi\)
0.932381 0.361476i \(-0.117727\pi\)
\(72\) 0 0
\(73\) 13.5126i 1.58153i −0.612121 0.790764i \(-0.709683\pi\)
0.612121 0.790764i \(-0.290317\pi\)
\(74\) 0 0
\(75\) 3.60581 + 3.60581i 0.416363 + 0.416363i
\(76\) 0 0
\(77\) −5.08854 + 5.08854i −0.579893 + 0.579893i
\(78\) 0 0
\(79\) 2.30465 0.259293 0.129647 0.991560i \(-0.458616\pi\)
0.129647 + 0.991560i \(0.458616\pi\)
\(80\) 0 0
\(81\) −0.662648 −0.0736275
\(82\) 0 0
\(83\) −0.632423 + 0.632423i −0.0694175 + 0.0694175i −0.740963 0.671546i \(-0.765631\pi\)
0.671546 + 0.740963i \(0.265631\pi\)
\(84\) 0 0
\(85\) 0.100057 + 0.100057i 0.0108528 + 0.0108528i
\(86\) 0 0
\(87\) 1.29044i 0.138350i
\(88\) 0 0
\(89\) 11.0377i 1.16999i −0.811036 0.584996i \(-0.801096\pi\)
0.811036 0.584996i \(-0.198904\pi\)
\(90\) 0 0
\(91\) −3.90827 3.90827i −0.409698 0.409698i
\(92\) 0 0
\(93\) 1.04573 1.04573i 0.108438 0.108438i
\(94\) 0 0
\(95\) −0.581564 −0.0596672
\(96\) 0 0
\(97\) −17.9190 −1.81939 −0.909697 0.415272i \(-0.863686\pi\)
−0.909697 + 0.415272i \(0.863686\pi\)
\(98\) 0 0
\(99\) 3.77853 3.77853i 0.379757 0.379757i
\(100\) 0 0
\(101\) 8.80831 + 8.80831i 0.876460 + 0.876460i 0.993166 0.116707i \(-0.0372337\pi\)
−0.116707 + 0.993166i \(0.537234\pi\)
\(102\) 0 0
\(103\) 0.748496i 0.0737515i −0.999320 0.0368758i \(-0.988259\pi\)
0.999320 0.0368758i \(-0.0117406\pi\)
\(104\) 0 0
\(105\) 0.380791i 0.0371614i
\(106\) 0 0
\(107\) −0.777335 0.777335i −0.0751478 0.0751478i 0.668534 0.743682i \(-0.266922\pi\)
−0.743682 + 0.668534i \(0.766922\pi\)
\(108\) 0 0
\(109\) 0.462768 0.462768i 0.0443251 0.0443251i −0.684597 0.728922i \(-0.740022\pi\)
0.728922 + 0.684597i \(0.240022\pi\)
\(110\) 0 0
\(111\) 1.72079 0.163330
\(112\) 0 0
\(113\) 4.80084 0.451625 0.225812 0.974171i \(-0.427496\pi\)
0.225812 + 0.974171i \(0.427496\pi\)
\(114\) 0 0
\(115\) 0.535458 0.535458i 0.0499318 0.0499318i
\(116\) 0 0
\(117\) 2.90211 + 2.90211i 0.268300 + 0.268300i
\(118\) 0 0
\(119\) 2.62804i 0.240912i
\(120\) 0 0
\(121\) 3.50188i 0.318353i
\(122\) 0 0
\(123\) 3.41586 + 3.41586i 0.307998 + 0.307998i
\(124\) 0 0
\(125\) 0.998571 0.998571i 0.0893149 0.0893149i
\(126\) 0 0
\(127\) 12.7782 1.13388 0.566940 0.823759i \(-0.308127\pi\)
0.566940 + 0.823759i \(0.308127\pi\)
\(128\) 0 0
\(129\) 10.7775 0.948909
\(130\) 0 0
\(131\) −9.29049 + 9.29049i −0.811714 + 0.811714i −0.984891 0.173177i \(-0.944597\pi\)
0.173177 + 0.984891i \(0.444597\pi\)
\(132\) 0 0
\(133\) 7.63748 + 7.63748i 0.662253 + 0.662253i
\(134\) 0 0
\(135\) 0.717446i 0.0617479i
\(136\) 0 0
\(137\) 8.56962i 0.732152i 0.930585 + 0.366076i \(0.119299\pi\)
−0.930585 + 0.366076i \(0.880701\pi\)
\(138\) 0 0
\(139\) −7.33080 7.33080i −0.621790 0.621790i 0.324199 0.945989i \(-0.394905\pi\)
−0.945989 + 0.324199i \(0.894905\pi\)
\(140\) 0 0
\(141\) −8.80413 + 8.80413i −0.741441 + 0.741441i
\(142\) 0 0
\(143\) −5.75895 −0.481587
\(144\) 0 0
\(145\) −0.178325 −0.0148091
\(146\) 0 0
\(147\) −0.0676302 + 0.0676302i −0.00557804 + 0.00557804i
\(148\) 0 0
\(149\) −10.3084 10.3084i −0.844501 0.844501i 0.144940 0.989440i \(-0.453701\pi\)
−0.989440 + 0.144940i \(0.953701\pi\)
\(150\) 0 0
\(151\) 6.30991i 0.513493i 0.966479 + 0.256747i \(0.0826506\pi\)
−0.966479 + 0.256747i \(0.917349\pi\)
\(152\) 0 0
\(153\) 1.95147i 0.157767i
\(154\) 0 0
\(155\) −0.144509 0.144509i −0.0116073 0.0116073i
\(156\) 0 0
\(157\) −9.08875 + 9.08875i −0.725361 + 0.725361i −0.969692 0.244331i \(-0.921432\pi\)
0.244331 + 0.969692i \(0.421432\pi\)
\(158\) 0 0
\(159\) 6.94034 0.550405
\(160\) 0 0
\(161\) −14.0640 −1.10840
\(162\) 0 0
\(163\) −2.71120 + 2.71120i −0.212357 + 0.212357i −0.805268 0.592911i \(-0.797979\pi\)
0.592911 + 0.805268i \(0.297979\pi\)
\(164\) 0 0
\(165\) 0.280554 + 0.280554i 0.0218411 + 0.0218411i
\(166\) 0 0
\(167\) 13.1921i 1.02084i 0.859927 + 0.510418i \(0.170509\pi\)
−0.859927 + 0.510418i \(0.829491\pi\)
\(168\) 0 0
\(169\) 8.57682i 0.659756i
\(170\) 0 0
\(171\) −5.67127 5.67127i −0.433692 0.433692i
\(172\) 0 0
\(173\) 12.2454 12.2454i 0.931000 0.931000i −0.0667688 0.997768i \(-0.521269\pi\)
0.997768 + 0.0667688i \(0.0212690\pi\)
\(174\) 0 0
\(175\) −13.0876 −0.989328
\(176\) 0 0
\(177\) −9.39599 −0.706246
\(178\) 0 0
\(179\) −16.5720 + 16.5720i −1.23865 + 1.23865i −0.278094 + 0.960554i \(0.589703\pi\)
−0.960554 + 0.278094i \(0.910297\pi\)
\(180\) 0 0
\(181\) −7.36115 7.36115i −0.547150 0.547150i 0.378465 0.925615i \(-0.376452\pi\)
−0.925615 + 0.378465i \(0.876452\pi\)
\(182\) 0 0
\(183\) 1.89665i 0.140204i
\(184\) 0 0
\(185\) 0.237795i 0.0174830i
\(186\) 0 0
\(187\) −1.93625 1.93625i −0.141593 0.141593i
\(188\) 0 0
\(189\) −9.42197 + 9.42197i −0.685347 + 0.685347i
\(190\) 0 0
\(191\) 15.7409 1.13897 0.569485 0.822002i \(-0.307143\pi\)
0.569485 + 0.822002i \(0.307143\pi\)
\(192\) 0 0
\(193\) −17.4282 −1.25451 −0.627256 0.778813i \(-0.715822\pi\)
−0.627256 + 0.778813i \(0.715822\pi\)
\(194\) 0 0
\(195\) −0.215480 + 0.215480i −0.0154308 + 0.0154308i
\(196\) 0 0
\(197\) 19.1709 + 19.1709i 1.36587 + 1.36587i 0.866242 + 0.499625i \(0.166529\pi\)
0.499625 + 0.866242i \(0.333471\pi\)
\(198\) 0 0
\(199\) 20.4340i 1.44853i 0.689523 + 0.724264i \(0.257820\pi\)
−0.689523 + 0.724264i \(0.742180\pi\)
\(200\) 0 0
\(201\) 4.08134i 0.287876i
\(202\) 0 0
\(203\) 2.34188 + 2.34188i 0.164368 + 0.164368i
\(204\) 0 0
\(205\) 0.472036 0.472036i 0.0329684 0.0329684i
\(206\) 0 0
\(207\) 10.4433 0.725860
\(208\) 0 0
\(209\) 11.2541 0.778459
\(210\) 0 0
\(211\) −2.87667 + 2.87667i −0.198038 + 0.198038i −0.799158 0.601121i \(-0.794721\pi\)
0.601121 + 0.799158i \(0.294721\pi\)
\(212\) 0 0
\(213\) 4.41076 + 4.41076i 0.302221 + 0.302221i
\(214\) 0 0
\(215\) 1.48934i 0.101572i
\(216\) 0 0
\(217\) 3.79558i 0.257661i
\(218\) 0 0
\(219\) 9.78394 + 9.78394i 0.661137 + 0.661137i
\(220\) 0 0
\(221\) 1.48714 1.48714i 0.100036 0.100036i
\(222\) 0 0
\(223\) −7.95897 −0.532972 −0.266486 0.963839i \(-0.585863\pi\)
−0.266486 + 0.963839i \(0.585863\pi\)
\(224\) 0 0
\(225\) 9.71828 0.647885
\(226\) 0 0
\(227\) 9.46740 9.46740i 0.628373 0.628373i −0.319285 0.947659i \(-0.603443\pi\)
0.947659 + 0.319285i \(0.103443\pi\)
\(228\) 0 0
\(229\) −6.64475 6.64475i −0.439097 0.439097i 0.452611 0.891708i \(-0.350493\pi\)
−0.891708 + 0.452611i \(0.850493\pi\)
\(230\) 0 0
\(231\) 7.36883i 0.484833i
\(232\) 0 0
\(233\) 9.69196i 0.634941i −0.948268 0.317471i \(-0.897166\pi\)
0.948268 0.317471i \(-0.102834\pi\)
\(234\) 0 0
\(235\) 1.21664 + 1.21664i 0.0793646 + 0.0793646i
\(236\) 0 0
\(237\) −1.66871 + 1.66871i −0.108394 + 0.108394i
\(238\) 0 0
\(239\) −24.0720 −1.55709 −0.778544 0.627590i \(-0.784042\pi\)
−0.778544 + 0.627590i \(0.784042\pi\)
\(240\) 0 0
\(241\) 16.5827 1.06819 0.534094 0.845425i \(-0.320653\pi\)
0.534094 + 0.845425i \(0.320653\pi\)
\(242\) 0 0
\(243\) 11.2353 11.2353i 0.720745 0.720745i
\(244\) 0 0
\(245\) 0.00934576 + 0.00934576i 0.000597079 + 0.000597079i
\(246\) 0 0
\(247\) 8.64371i 0.549986i
\(248\) 0 0
\(249\) 0.915826i 0.0580381i
\(250\) 0 0
\(251\) 8.65825 + 8.65825i 0.546504 + 0.546504i 0.925428 0.378924i \(-0.123706\pi\)
−0.378924 + 0.925428i \(0.623706\pi\)
\(252\) 0 0
\(253\) −10.3618 + 10.3618i −0.651444 + 0.651444i
\(254\) 0 0
\(255\) −0.144896 −0.00907371
\(256\) 0 0
\(257\) −1.98761 −0.123984 −0.0619919 0.998077i \(-0.519745\pi\)
−0.0619919 + 0.998077i \(0.519745\pi\)
\(258\) 0 0
\(259\) −3.12287 + 3.12287i −0.194046 + 0.194046i
\(260\) 0 0
\(261\) −1.73898 1.73898i −0.107640 0.107640i
\(262\) 0 0
\(263\) 12.2436i 0.754970i 0.926016 + 0.377485i \(0.123211\pi\)
−0.926016 + 0.377485i \(0.876789\pi\)
\(264\) 0 0
\(265\) 0.959081i 0.0589158i
\(266\) 0 0
\(267\) 7.99195 + 7.99195i 0.489100 + 0.489100i
\(268\) 0 0
\(269\) 7.98261 7.98261i 0.486708 0.486708i −0.420558 0.907266i \(-0.638166\pi\)
0.907266 + 0.420558i \(0.138166\pi\)
\(270\) 0 0
\(271\) −0.445628 −0.0270700 −0.0135350 0.999908i \(-0.504308\pi\)
−0.0135350 + 0.999908i \(0.504308\pi\)
\(272\) 0 0
\(273\) 5.65965 0.342537
\(274\) 0 0
\(275\) −9.64247 + 9.64247i −0.581463 + 0.581463i
\(276\) 0 0
\(277\) 22.1926 + 22.1926i 1.33342 + 1.33342i 0.902289 + 0.431133i \(0.141886\pi\)
0.431133 + 0.902289i \(0.358114\pi\)
\(278\) 0 0
\(279\) 2.81844i 0.168735i
\(280\) 0 0
\(281\) 29.1670i 1.73996i 0.493087 + 0.869980i \(0.335868\pi\)
−0.493087 + 0.869980i \(0.664132\pi\)
\(282\) 0 0
\(283\) −7.50613 7.50613i −0.446193 0.446193i 0.447894 0.894087i \(-0.352174\pi\)
−0.894087 + 0.447894i \(0.852174\pi\)
\(284\) 0 0
\(285\) 0.421088 0.421088i 0.0249431 0.0249431i
\(286\) 0 0
\(287\) −12.3982 −0.731840
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 12.9744 12.9744i 0.760574 0.760574i
\(292\) 0 0
\(293\) −6.90203 6.90203i −0.403221 0.403221i 0.476146 0.879366i \(-0.342033\pi\)
−0.879366 + 0.476146i \(0.842033\pi\)
\(294\) 0 0
\(295\) 1.29843i 0.0755972i
\(296\) 0 0
\(297\) 13.8836i 0.805605i
\(298\) 0 0
\(299\) −7.95845 7.95845i −0.460249 0.460249i
\(300\) 0 0
\(301\) −19.5590 + 19.5590i −1.12736 + 1.12736i
\(302\) 0 0
\(303\) −12.7555 −0.732785
\(304\) 0 0
\(305\) 0.262096 0.0150076
\(306\) 0 0
\(307\) −3.04718 + 3.04718i −0.173912 + 0.173912i −0.788696 0.614784i \(-0.789243\pi\)
0.614784 + 0.788696i \(0.289243\pi\)
\(308\) 0 0
\(309\) 0.541957 + 0.541957i 0.0308309 + 0.0308309i
\(310\) 0 0
\(311\) 20.0156i 1.13498i −0.823381 0.567489i \(-0.807915\pi\)
0.823381 0.567489i \(-0.192085\pi\)
\(312\) 0 0
\(313\) 27.5542i 1.55746i 0.627362 + 0.778728i \(0.284135\pi\)
−0.627362 + 0.778728i \(0.715865\pi\)
\(314\) 0 0
\(315\) 0.513149 + 0.513149i 0.0289127 + 0.0289127i
\(316\) 0 0
\(317\) 21.4263 21.4263i 1.20342 1.20342i 0.230302 0.973119i \(-0.426029\pi\)
0.973119 0.230302i \(-0.0739714\pi\)
\(318\) 0 0
\(319\) 3.45083 0.193210
\(320\) 0 0
\(321\) 1.12568 0.0628291
\(322\) 0 0
\(323\) −2.90615 + 2.90615i −0.161702 + 0.161702i
\(324\) 0 0
\(325\) −7.40593 7.40593i −0.410807 0.410807i
\(326\) 0 0
\(327\) 0.670145i 0.0370591i
\(328\) 0 0
\(329\) 31.9553i 1.76175i
\(330\) 0 0
\(331\) −0.466937 0.466937i −0.0256652 0.0256652i 0.694158 0.719823i \(-0.255777\pi\)
−0.719823 + 0.694158i \(0.755777\pi\)
\(332\) 0 0
\(333\) 2.31891 2.31891i 0.127076 0.127076i
\(334\) 0 0
\(335\) 0.563997 0.0308145
\(336\) 0 0
\(337\) 13.5762 0.739541 0.369770 0.929123i \(-0.379436\pi\)
0.369770 + 0.929123i \(0.379436\pi\)
\(338\) 0 0
\(339\) −3.47610 + 3.47610i −0.188796 + 0.188796i
\(340\) 0 0
\(341\) 2.79645 + 2.79645i 0.151436 + 0.151436i
\(342\) 0 0
\(343\) 18.6418i 1.00656i
\(344\) 0 0
\(345\) 0.775410i 0.0417466i
\(346\) 0 0
\(347\) 22.0844 + 22.0844i 1.18555 + 1.18555i 0.978285 + 0.207266i \(0.0664566\pi\)
0.207266 + 0.978285i \(0.433543\pi\)
\(348\) 0 0
\(349\) 1.79835 1.79835i 0.0962633 0.0962633i −0.657335 0.753598i \(-0.728316\pi\)
0.753598 + 0.657335i \(0.228316\pi\)
\(350\) 0 0
\(351\) −10.6633 −0.569165
\(352\) 0 0
\(353\) −2.22119 −0.118222 −0.0591110 0.998251i \(-0.518827\pi\)
−0.0591110 + 0.998251i \(0.518827\pi\)
\(354\) 0 0
\(355\) 0.609520 0.609520i 0.0323500 0.0323500i
\(356\) 0 0
\(357\) 1.90286 + 1.90286i 0.100710 + 0.100710i
\(358\) 0 0
\(359\) 1.52104i 0.0802776i −0.999194 0.0401388i \(-0.987220\pi\)
0.999194 0.0401388i \(-0.0127800\pi\)
\(360\) 0 0
\(361\) 2.10859i 0.110978i
\(362\) 0 0
\(363\) 2.53558 + 2.53558i 0.133083 + 0.133083i
\(364\) 0 0
\(365\) 1.35204 1.35204i 0.0707688 0.0707688i
\(366\) 0 0
\(367\) −33.3249 −1.73955 −0.869774 0.493451i \(-0.835735\pi\)
−0.869774 + 0.493451i \(0.835735\pi\)
\(368\) 0 0
\(369\) 9.20634 0.479263
\(370\) 0 0
\(371\) −12.5953 + 12.5953i −0.653914 + 0.653914i
\(372\) 0 0
\(373\) −24.8863 24.8863i −1.28856 1.28856i −0.935659 0.352906i \(-0.885194\pi\)
−0.352906 0.935659i \(-0.614806\pi\)
\(374\) 0 0
\(375\) 1.44605i 0.0746739i
\(376\) 0 0
\(377\) 2.65042i 0.136504i
\(378\) 0 0
\(379\) −12.4894 12.4894i −0.641536 0.641536i 0.309397 0.950933i \(-0.399873\pi\)
−0.950933 + 0.309397i \(0.899873\pi\)
\(380\) 0 0
\(381\) −9.25219 + 9.25219i −0.474004 + 0.474004i
\(382\) 0 0
\(383\) 26.7131 1.36498 0.682488 0.730897i \(-0.260898\pi\)
0.682488 + 0.730897i \(0.260898\pi\)
\(384\) 0 0
\(385\) −1.01829 −0.0518970
\(386\) 0 0
\(387\) 14.5237 14.5237i 0.738279 0.738279i
\(388\) 0 0
\(389\) −2.66266 2.66266i −0.135002 0.135002i 0.636376 0.771379i \(-0.280433\pi\)
−0.771379 + 0.636376i \(0.780433\pi\)
\(390\) 0 0
\(391\) 5.35151i 0.270637i
\(392\) 0 0
\(393\) 13.4538i 0.678653i
\(394\) 0 0
\(395\) 0.230597 + 0.230597i 0.0116026 + 0.0116026i
\(396\) 0 0
\(397\) 12.2181 12.2181i 0.613209 0.613209i −0.330572 0.943781i \(-0.607241\pi\)
0.943781 + 0.330572i \(0.107241\pi\)
\(398\) 0 0
\(399\) −11.0600 −0.553693
\(400\) 0 0
\(401\) −26.8473 −1.34069 −0.670346 0.742049i \(-0.733854\pi\)
−0.670346 + 0.742049i \(0.733854\pi\)
\(402\) 0 0
\(403\) −2.14782 + 2.14782i −0.106991 + 0.106991i
\(404\) 0 0
\(405\) −0.0663029 0.0663029i −0.00329462 0.00329462i
\(406\) 0 0
\(407\) 4.60165i 0.228095i
\(408\) 0 0
\(409\) 17.8962i 0.884910i 0.896791 + 0.442455i \(0.145892\pi\)
−0.896791 + 0.442455i \(0.854108\pi\)
\(410\) 0 0
\(411\) −6.20493 6.20493i −0.306067 0.306067i
\(412\) 0 0
\(413\) 17.0518 17.0518i 0.839063 0.839063i
\(414\) 0 0
\(415\) −0.126557 −0.00621246
\(416\) 0 0
\(417\) 10.6159 0.519862
\(418\) 0 0
\(419\) 17.1549 17.1549i 0.838073 0.838073i −0.150533 0.988605i \(-0.548099\pi\)
0.988605 + 0.150533i \(0.0480988\pi\)
\(420\) 0 0
\(421\) −28.2854 28.2854i −1.37855 1.37855i −0.847077 0.531471i \(-0.821640\pi\)
−0.531471 0.847077i \(-0.678360\pi\)
\(422\) 0 0
\(423\) 23.7287i 1.15373i
\(424\) 0 0
\(425\) 4.97998i 0.241564i
\(426\) 0 0
\(427\) −3.44202 3.44202i −0.166571 0.166571i
\(428\) 0 0
\(429\) 4.16983 4.16983i 0.201321 0.201321i
\(430\) 0 0
\(431\) 11.5554 0.556605 0.278303 0.960493i \(-0.410228\pi\)
0.278303 + 0.960493i \(0.410228\pi\)
\(432\) 0 0
\(433\) 0.357537 0.0171821 0.00859107 0.999963i \(-0.497265\pi\)
0.00859107 + 0.999963i \(0.497265\pi\)
\(434\) 0 0
\(435\) 0.129118 0.129118i 0.00619075 0.00619075i
\(436\) 0 0
\(437\) 15.5523 + 15.5523i 0.743967 + 0.743967i
\(438\) 0 0
\(439\) 7.54117i 0.359920i −0.983674 0.179960i \(-0.942403\pi\)
0.983674 0.179960i \(-0.0575969\pi\)
\(440\) 0 0
\(441\) 0.182275i 0.00867976i
\(442\) 0 0
\(443\) 18.1559 + 18.1559i 0.862613 + 0.862613i 0.991641 0.129028i \(-0.0411856\pi\)
−0.129028 + 0.991641i \(0.541186\pi\)
\(444\) 0 0
\(445\) 1.10440 1.10440i 0.0523537 0.0523537i
\(446\) 0 0
\(447\) 14.9279 0.706065
\(448\) 0 0
\(449\) 18.0732 0.852927 0.426463 0.904505i \(-0.359759\pi\)
0.426463 + 0.904505i \(0.359759\pi\)
\(450\) 0 0
\(451\) −9.13453 + 9.13453i −0.430128 + 0.430128i
\(452\) 0 0
\(453\) −4.56876 4.56876i −0.214659 0.214659i
\(454\) 0 0
\(455\) 0.782103i 0.0366655i
\(456\) 0 0
\(457\) 37.4375i 1.75125i 0.482991 + 0.875625i \(0.339550\pi\)
−0.482991 + 0.875625i \(0.660450\pi\)
\(458\) 0 0
\(459\) −3.58517 3.58517i −0.167341 0.167341i
\(460\) 0 0
\(461\) 14.0370 14.0370i 0.653770 0.653770i −0.300129 0.953899i \(-0.597030\pi\)
0.953899 + 0.300129i \(0.0970297\pi\)
\(462\) 0 0
\(463\) 18.3120 0.851030 0.425515 0.904951i \(-0.360093\pi\)
0.425515 + 0.904951i \(0.360093\pi\)
\(464\) 0 0
\(465\) 0.209267 0.00970453
\(466\) 0 0
\(467\) 8.99457 8.99457i 0.416219 0.416219i −0.467679 0.883898i \(-0.654910\pi\)
0.883898 + 0.467679i \(0.154910\pi\)
\(468\) 0 0
\(469\) −7.40678 7.40678i −0.342013 0.342013i
\(470\) 0 0
\(471\) 13.1616i 0.606456i
\(472\) 0 0
\(473\) 28.8207i 1.32518i
\(474\) 0 0
\(475\) 14.4726 + 14.4726i 0.664047 + 0.664047i
\(476\) 0 0
\(477\) 9.35271 9.35271i 0.428231 0.428231i
\(478\) 0 0
\(479\) 6.50691 0.297308 0.148654 0.988889i \(-0.452506\pi\)
0.148654 + 0.988889i \(0.452506\pi\)
\(480\) 0 0
\(481\) −3.53431 −0.161151
\(482\) 0 0
\(483\) 10.1832 10.1832i 0.463351 0.463351i
\(484\) 0 0
\(485\) −1.79293 1.79293i −0.0814126 0.0814126i
\(486\) 0 0
\(487\) 19.6338i 0.889694i −0.895606 0.444847i \(-0.853258\pi\)
0.895606 0.444847i \(-0.146742\pi\)
\(488\) 0 0
\(489\) 3.92615i 0.177546i
\(490\) 0 0
\(491\) −7.46270 7.46270i −0.336787 0.336787i 0.518370 0.855157i \(-0.326539\pi\)
−0.855157 + 0.518370i \(0.826539\pi\)
\(492\) 0 0
\(493\) −0.891113 + 0.891113i −0.0401337 + 0.0401337i
\(494\) 0 0
\(495\) 0.756141 0.0339860
\(496\) 0 0
\(497\) −16.0092 −0.718112
\(498\) 0 0
\(499\) 29.7678 29.7678i 1.33259 1.33259i 0.429548 0.903044i \(-0.358673\pi\)
0.903044 0.429548i \(-0.141327\pi\)
\(500\) 0 0
\(501\) −9.55189 9.55189i −0.426747 0.426747i
\(502\) 0 0
\(503\) 2.48521i 0.110810i −0.998464 0.0554051i \(-0.982355\pi\)
0.998464 0.0554051i \(-0.0176450\pi\)
\(504\) 0 0
\(505\) 1.76267i 0.0784380i
\(506\) 0 0
\(507\) −6.21015 6.21015i −0.275802 0.275802i
\(508\) 0 0
\(509\) 1.18351 1.18351i 0.0524581 0.0524581i −0.680391 0.732849i \(-0.738190\pi\)
0.732849 + 0.680391i \(0.238190\pi\)
\(510\) 0 0
\(511\) −35.5116 −1.57094
\(512\) 0 0
\(513\) 20.8381 0.920023
\(514\) 0 0
\(515\) 0.0748926 0.0748926i 0.00330016 0.00330016i
\(516\) 0 0
\(517\) −23.5436 23.5436i −1.03544 1.03544i
\(518\) 0 0
\(519\) 17.7328i 0.778385i
\(520\) 0 0
\(521\) 16.5566i 0.725358i 0.931914 + 0.362679i \(0.118138\pi\)
−0.931914 + 0.362679i \(0.881862\pi\)
\(522\) 0 0
\(523\) −3.85369 3.85369i −0.168510 0.168510i 0.617814 0.786324i \(-0.288018\pi\)
−0.786324 + 0.617814i \(0.788018\pi\)
\(524\) 0 0
\(525\) 9.47621 9.47621i 0.413576 0.413576i
\(526\) 0 0
\(527\) −1.44426 −0.0629131
\(528\) 0 0
\(529\) −5.63864 −0.245158
\(530\) 0 0
\(531\) −12.6619 + 12.6619i −0.549480 + 0.549480i
\(532\) 0 0
\(533\) −7.01580 7.01580i −0.303888 0.303888i
\(534\) 0 0
\(535\) 0.155556i 0.00672529i
\(536\) 0 0
\(537\) 23.9983i 1.03560i
\(538\) 0 0
\(539\) −0.180853 0.180853i −0.00778990 0.00778990i
\(540\) 0 0
\(541\) −27.1691 + 27.1691i −1.16809 + 1.16809i −0.185433 + 0.982657i \(0.559369\pi\)
−0.982657 + 0.185433i \(0.940631\pi\)
\(542\) 0 0
\(543\) 10.6599 0.457458
\(544\) 0 0
\(545\) 0.0926068 0.00396684
\(546\) 0 0
\(547\) 1.77642 1.77642i 0.0759544 0.0759544i −0.668109 0.744063i \(-0.732896\pi\)
0.744063 + 0.668109i \(0.232896\pi\)
\(548\) 0 0
\(549\) 2.55589 + 2.55589i 0.109083 + 0.109083i
\(550\) 0 0
\(551\) 5.17942i 0.220651i
\(552\) 0 0
\(553\) 6.05671i 0.257558i
\(554\) 0 0
\(555\) 0.172178 + 0.172178i 0.00730854 + 0.00730854i
\(556\) 0 0
\(557\) 11.1562 11.1562i 0.472702 0.472702i −0.430086 0.902788i \(-0.641517\pi\)
0.902788 + 0.430086i \(0.141517\pi\)
\(558\) 0 0
\(559\) −22.1358 −0.936246
\(560\) 0 0
\(561\) 2.80393 0.118382
\(562\) 0 0
\(563\) 5.69060 5.69060i 0.239830 0.239830i −0.576950 0.816780i \(-0.695757\pi\)
0.816780 + 0.576950i \(0.195757\pi\)
\(564\) 0 0
\(565\) 0.480360 + 0.480360i 0.0202089 + 0.0202089i
\(566\) 0 0
\(567\) 1.74147i 0.0731347i
\(568\) 0 0
\(569\) 8.79716i 0.368796i −0.982852 0.184398i \(-0.940966\pi\)
0.982852 0.184398i \(-0.0590335\pi\)
\(570\) 0 0
\(571\) 1.80244 + 1.80244i 0.0754297 + 0.0754297i 0.743815 0.668385i \(-0.233014\pi\)
−0.668385 + 0.743815i \(0.733014\pi\)
\(572\) 0 0
\(573\) −11.3974 + 11.3974i −0.476132 + 0.476132i
\(574\) 0 0
\(575\) −26.6504 −1.11140
\(576\) 0 0
\(577\) −28.9174 −1.20385 −0.601924 0.798554i \(-0.705599\pi\)
−0.601924 + 0.798554i \(0.705599\pi\)
\(578\) 0 0
\(579\) 12.6191 12.6191i 0.524432 0.524432i
\(580\) 0 0
\(581\) 1.66203 + 1.66203i 0.0689528 + 0.0689528i
\(582\) 0 0
\(583\) 18.5595i 0.768656i
\(584\) 0 0
\(585\) 0.580756i 0.0240113i
\(586\) 0 0
\(587\) 28.3756 + 28.3756i 1.17119 + 1.17119i 0.981927 + 0.189258i \(0.0606083\pi\)
0.189258 + 0.981927i \(0.439392\pi\)
\(588\) 0 0
\(589\) 4.19724 4.19724i 0.172944 0.172944i
\(590\) 0 0
\(591\) −27.7617 −1.14197
\(592\) 0 0
\(593\) −14.7813 −0.606995 −0.303498 0.952832i \(-0.598154\pi\)
−0.303498 + 0.952832i \(0.598154\pi\)
\(594\) 0 0
\(595\) 0.262955 0.262955i 0.0107801 0.0107801i
\(596\) 0 0
\(597\) −14.7955 14.7955i −0.605538 0.605538i
\(598\) 0 0
\(599\) 20.9554i 0.856213i −0.903728 0.428106i \(-0.859181\pi\)
0.903728 0.428106i \(-0.140819\pi\)
\(600\) 0 0
\(601\) 43.8547i 1.78887i −0.447199 0.894435i \(-0.647578\pi\)
0.447199 0.894435i \(-0.352422\pi\)
\(602\) 0 0
\(603\) 5.49996 + 5.49996i 0.223976 + 0.223976i
\(604\) 0 0
\(605\) 0.350390 0.350390i 0.0142454 0.0142454i
\(606\) 0 0
\(607\) 41.3621 1.67884 0.839418 0.543487i \(-0.182896\pi\)
0.839418 + 0.543487i \(0.182896\pi\)
\(608\) 0 0
\(609\) −3.39133 −0.137424
\(610\) 0 0
\(611\) 18.0827 18.0827i 0.731548 0.731548i
\(612\) 0 0
\(613\) −26.7053 26.7053i −1.07862 1.07862i −0.996634 0.0819848i \(-0.973874\pi\)
−0.0819848 0.996634i \(-0.526126\pi\)
\(614\) 0 0
\(615\) 0.683565i 0.0275640i
\(616\) 0 0
\(617\) 19.4571i 0.783314i −0.920111 0.391657i \(-0.871902\pi\)
0.920111 0.391657i \(-0.128098\pi\)
\(618\) 0 0
\(619\) −9.08683 9.08683i −0.365231 0.365231i 0.500504 0.865734i \(-0.333148\pi\)
−0.865734 + 0.500504i \(0.833148\pi\)
\(620\) 0 0
\(621\) −19.1861 + 19.1861i −0.769910 + 0.769910i
\(622\) 0 0
\(623\) −29.0075 −1.16216
\(624\) 0 0
\(625\) −24.7001 −0.988002
\(626\) 0 0
\(627\) −8.14863 + 8.14863i −0.325425 + 0.325425i
\(628\) 0 0
\(629\) −1.18829 1.18829i −0.0473802 0.0473802i
\(630\) 0 0
\(631\) 17.7992i 0.708577i −0.935136 0.354288i \(-0.884723\pi\)
0.935136 0.354288i \(-0.115277\pi\)
\(632\) 0 0
\(633\) 4.16577i 0.165574i
\(634\) 0 0
\(635\) 1.27855 + 1.27855i 0.0507378 + 0.0507378i
\(636\) 0 0
\(637\) 0.138905 0.138905i 0.00550361 0.00550361i
\(638\) 0 0
\(639\) 11.8878 0.470273
\(640\) 0 0
\(641\) −3.54239 −0.139916 −0.0699580 0.997550i \(-0.522287\pi\)
−0.0699580 + 0.997550i \(0.522287\pi\)
\(642\) 0 0
\(643\) 6.39752 6.39752i 0.252294 0.252294i −0.569617 0.821910i \(-0.692908\pi\)
0.821910 + 0.569617i \(0.192908\pi\)
\(644\) 0 0
\(645\) 1.07837 + 1.07837i 0.0424609 + 0.0424609i
\(646\) 0 0
\(647\) 2.11694i 0.0832255i −0.999134 0.0416127i \(-0.986750\pi\)
0.999134 0.0416127i \(-0.0132496\pi\)
\(648\) 0 0
\(649\) 25.1263i 0.986293i
\(650\) 0 0
\(651\) −2.74823 2.74823i −0.107712 0.107712i
\(652\) 0 0
\(653\) 19.0110 19.0110i 0.743958 0.743958i −0.229379 0.973337i \(-0.573670\pi\)
0.973337 + 0.229379i \(0.0736695\pi\)
\(654\) 0 0
\(655\) −1.85917 −0.0726436
\(656\) 0 0
\(657\) 26.3694 1.02877
\(658\) 0 0
\(659\) 4.51444 4.51444i 0.175858 0.175858i −0.613690 0.789547i \(-0.710315\pi\)
0.789547 + 0.613690i \(0.210315\pi\)
\(660\) 0 0
\(661\) 9.76412 + 9.76412i 0.379780 + 0.379780i 0.871023 0.491243i \(-0.163457\pi\)
−0.491243 + 0.871023i \(0.663457\pi\)
\(662\) 0 0
\(663\) 2.15356i 0.0836374i
\(664\) 0 0
\(665\) 1.52837i 0.0592678i
\(666\) 0 0
\(667\) 4.76880 + 4.76880i 0.184649 + 0.184649i
\(668\) 0 0
\(669\) 5.76278 5.76278i 0.222802 0.222802i
\(670\) 0 0
\(671\) −5.07192 −0.195799
\(672\) 0 0
\(673\) 21.9260 0.845186 0.422593 0.906319i \(-0.361120\pi\)
0.422593 + 0.906319i \(0.361120\pi\)
\(674\) 0 0
\(675\) −17.8541 + 17.8541i −0.687203 + 0.687203i
\(676\) 0 0
\(677\) 23.4977 + 23.4977i 0.903088 + 0.903088i 0.995702 0.0926137i \(-0.0295222\pi\)
−0.0926137 + 0.995702i \(0.529522\pi\)
\(678\) 0 0
\(679\) 47.0917i 1.80722i
\(680\) 0 0
\(681\) 13.7100i 0.525367i
\(682\) 0 0
\(683\) −23.6192 23.6192i −0.903765 0.903765i 0.0919944 0.995760i \(-0.470676\pi\)
−0.995760 + 0.0919944i \(0.970676\pi\)
\(684\) 0 0
\(685\) −0.857455 + 0.857455i −0.0327617 + 0.0327617i
\(686\) 0 0
\(687\) 9.62241 0.367118
\(688\) 0 0
\(689\) −14.2547 −0.543060
\(690\) 0 0
\(691\) 26.2542 26.2542i 0.998755 0.998755i −0.00124381 0.999999i \(-0.500396\pi\)
0.999999 + 0.00124381i \(0.000395918\pi\)
\(692\) 0 0
\(693\) −9.93013 9.93013i −0.377215 0.377215i
\(694\) 0 0
\(695\) 1.46700i 0.0556466i
\(696\) 0 0
\(697\) 4.71764i 0.178694i
\(698\) 0 0
\(699\) 7.01757 + 7.01757i 0.265429 + 0.265429i
\(700\) 0 0
\(701\) −10.9200 + 10.9200i −0.412444 + 0.412444i −0.882589 0.470145i \(-0.844202\pi\)
0.470145 + 0.882589i \(0.344202\pi\)
\(702\) 0 0
\(703\) 6.90670 0.260491
\(704\) 0 0
\(705\) −1.76184 −0.0663547
\(706\) 0 0
\(707\) 23.1486 23.1486i 0.870593 0.870593i
\(708\) 0 0
\(709\) 33.1421 + 33.1421i 1.24468 + 1.24468i 0.958039 + 0.286638i \(0.0925377\pi\)
0.286638 + 0.958039i \(0.407462\pi\)
\(710\) 0 0
\(711\) 4.49745i 0.168668i
\(712\) 0 0
\(713\) 7.72898i 0.289453i
\(714\) 0 0
\(715\) −0.576226 0.576226i −0.0215496 0.0215496i
\(716\) 0 0
\(717\) 17.4296 17.4296i 0.650921 0.650921i
\(718\) 0 0
\(719\) −9.31625 −0.347437 −0.173719 0.984795i \(-0.555578\pi\)
−0.173719 + 0.984795i \(0.555578\pi\)
\(720\) 0 0
\(721\) −1.96708 −0.0732578
\(722\) 0 0
\(723\) −12.0069 + 12.0069i −0.446542 + 0.446542i
\(724\) 0 0
\(725\) 4.43772 + 4.43772i 0.164813 + 0.164813i
\(726\) 0 0
\(727\) 50.6097i 1.87701i −0.345266 0.938505i \(-0.612211\pi\)
0.345266 0.938505i \(-0.387789\pi\)
\(728\) 0 0
\(729\) 14.2822i 0.528969i
\(730\) 0 0
\(731\) −7.44242 7.44242i −0.275268 0.275268i
\(732\) 0 0
\(733\) 27.4040 27.4040i 1.01219 1.01219i 0.0122657 0.999925i \(-0.496096\pi\)
0.999925 0.0122657i \(-0.00390438\pi\)
\(734\) 0 0
\(735\) −0.0135338 −0.000499202
\(736\) 0 0
\(737\) −10.9141 −0.402027
\(738\) 0 0
\(739\) 13.2619 13.2619i 0.487848 0.487848i −0.419779 0.907626i \(-0.637892\pi\)
0.907626 + 0.419779i \(0.137892\pi\)
\(740\) 0 0
\(741\) −6.25857 6.25857i −0.229914 0.229914i
\(742\) 0 0
\(743\) 23.9937i 0.880244i 0.897938 + 0.440122i \(0.145065\pi\)
−0.897938 + 0.440122i \(0.854935\pi\)
\(744\) 0 0
\(745\) 2.06287i 0.0755779i
\(746\) 0 0
\(747\) −1.23416 1.23416i −0.0451554 0.0451554i
\(748\) 0 0
\(749\) −2.04287 + 2.04287i −0.0746448 + 0.0746448i
\(750\) 0 0
\(751\) −28.4233 −1.03718 −0.518590 0.855023i \(-0.673543\pi\)
−0.518590 + 0.855023i \(0.673543\pi\)
\(752\) 0 0
\(753\) −12.5382 −0.456918
\(754\) 0 0
\(755\) −0.631354 + 0.631354i −0.0229773 + 0.0229773i
\(756\) 0 0
\(757\) 24.5037 + 24.5037i 0.890602 + 0.890602i 0.994580 0.103977i \(-0.0331570\pi\)
−0.103977 + 0.994580i \(0.533157\pi\)
\(758\) 0 0
\(759\) 15.0052i 0.544655i
\(760\) 0 0
\(761\) 9.53970i 0.345814i 0.984938 + 0.172907i \(0.0553160\pi\)
−0.984938 + 0.172907i \(0.944684\pi\)
\(762\) 0 0
\(763\) −1.21617 1.21617i −0.0440284 0.0440284i
\(764\) 0 0
\(765\) −0.195259 + 0.195259i −0.00705961 + 0.00705961i
\(766\) 0 0
\(767\) 19.2983 0.696822
\(768\) 0 0
\(769\) 25.2175 0.909366 0.454683 0.890653i \(-0.349753\pi\)
0.454683 + 0.890653i \(0.349753\pi\)
\(770\) 0 0
\(771\) 1.43915 1.43915i 0.0518298 0.0518298i
\(772\) 0 0
\(773\) 33.4601 + 33.4601i 1.20348 + 1.20348i 0.973102 + 0.230375i \(0.0739954\pi\)
0.230375 + 0.973102i \(0.426005\pi\)
\(774\) 0 0
\(775\) 7.19239i 0.258358i
\(776\) 0 0
\(777\) 4.52230i 0.162237i
\(778\) 0 0
\(779\) 13.7102 + 13.7102i 0.491218 + 0.491218i
\(780\) 0 0
\(781\) −11.7950 + 11.7950i −0.422060 + 0.422060i
\(782\) 0 0
\(783\) 6.38958 0.228345
\(784\) 0 0
\(785\) −1.81880 −0.0649156
\(786\) 0 0
\(787\) −25.7204 + 25.7204i −0.916832 + 0.916832i −0.996798 0.0799660i \(-0.974519\pi\)
0.0799660 + 0.996798i \(0.474519\pi\)
\(788\) 0 0
\(789\) −8.86508 8.86508i −0.315605 0.315605i
\(790\) 0 0
\(791\) 12.6168i 0.448601i
\(792\) 0 0
\(793\) 3.89550i 0.138333i
\(794\) 0 0
\(795\) 0.694433 + 0.694433i 0.0246290 + 0.0246290i
\(796\) 0 0
\(797\) 31.1741 31.1741i 1.10424 1.10424i 0.110352 0.993893i \(-0.464802\pi\)
0.993893 0.110352i \(-0.0351978\pi\)
\(798\) 0 0
\(799\) 12.1594 0.430168
\(800\) 0 0
\(801\) 21.5397 0.761068
\(802\) 0 0
\(803\) −26.1637 + 26.1637i −0.923298 + 0.923298i
\(804\) 0 0
\(805\) −1.40721 1.40721i −0.0495975 0.0495975i
\(806\) 0 0
\(807\) 11.5598i 0.406924i
\(808\) 0 0
\(809\) 23.8830i 0.839681i 0.907598 + 0.419840i \(0.137914\pi\)
−0.907598 + 0.419840i \(0.862086\pi\)
\(810\) 0 0
\(811\) −29.5247 29.5247i −1.03675 1.03675i −0.999298 0.0374533i \(-0.988075\pi\)
−0.0374533 0.999298i \(-0.511925\pi\)
\(812\) 0 0
\(813\) 0.322662 0.322662i 0.0113163 0.0113163i
\(814\) 0 0
\(815\) −0.542551 −0.0190047
\(816\) 0 0
\(817\) 43.2576 1.51339
\(818\) 0 0
\(819\) 7.62687 7.62687i 0.266504 0.266504i
\(820\) 0 0
\(821\) −10.1861 10.1861i −0.355496 0.355496i 0.506654 0.862150i \(-0.330882\pi\)
−0.862150 + 0.506654i \(0.830882\pi\)
\(822\) 0 0
\(823\) 55.6252i 1.93897i 0.245148 + 0.969486i \(0.421163\pi\)
−0.245148 + 0.969486i \(0.578837\pi\)
\(824\) 0 0
\(825\) 13.9635i 0.486146i
\(826\) 0 0
\(827\) 18.1650 + 18.1650i 0.631660 + 0.631660i 0.948484 0.316824i \(-0.102617\pi\)
−0.316824 + 0.948484i \(0.602617\pi\)
\(828\) 0 0
\(829\) −10.1346 + 10.1346i −0.351989 + 0.351989i −0.860849 0.508860i \(-0.830067\pi\)
0.508860 + 0.860849i \(0.330067\pi\)
\(830\) 0 0
\(831\) −32.1375 −1.11484
\(832\) 0 0
\(833\) 0.0934039 0.00323625
\(834\) 0 0
\(835\) −1.31997 + 1.31997i −0.0456794 + 0.0456794i
\(836\) 0 0
\(837\) 5.17792 + 5.17792i 0.178975 + 0.178975i
\(838\) 0 0
\(839\) 44.9141i 1.55061i −0.631589 0.775303i \(-0.717597\pi\)
0.631589 0.775303i \(-0.282403\pi\)
\(840\) 0 0
\(841\) 27.4118i 0.945236i
\(842\) 0 0
\(843\) −21.1187 21.1187i −0.727367 0.727367i
\(844\) 0 0
\(845\) −0.858176 + 0.858176i −0.0295221 + 0.0295221i
\(846\) 0 0
\(847\) −9.20309 −0.316222
\(848\) 0 0
\(849\) 10.8698 0.373050
\(850\) 0 0
\(851\) −6.35914 + 6.35914i −0.217989 + 0.217989i
\(852\) 0 0
\(853\) 23.6486 + 23.6486i 0.809714 + 0.809714i 0.984590 0.174876i \(-0.0559526\pi\)
−0.174876 + 0.984590i \(0.555953\pi\)
\(854\) 0 0
\(855\) 1.13491i 0.0388129i
\(856\) 0 0
\(857\) 33.0162i 1.12781i 0.825839 + 0.563906i \(0.190702\pi\)
−0.825839 + 0.563906i \(0.809298\pi\)
\(858\) 0 0
\(859\) 5.16428 + 5.16428i 0.176203 + 0.176203i 0.789698 0.613495i \(-0.210237\pi\)
−0.613495 + 0.789698i \(0.710237\pi\)
\(860\) 0 0
\(861\) 8.97703 8.97703i 0.305936 0.305936i
\(862\) 0 0
\(863\) −6.25192 −0.212818 −0.106409 0.994322i \(-0.533935\pi\)
−0.106409 + 0.994322i \(0.533935\pi\)
\(864\) 0 0
\(865\) 2.45049 0.0833190
\(866\) 0 0
\(867\) −0.724061 + 0.724061i −0.0245904 + 0.0245904i
\(868\) 0 0
\(869\) −4.46237 4.46237i −0.151376 0.151376i
\(870\) 0 0
\(871\) 8.38261i 0.284034i
\(872\) 0 0
\(873\) 34.9683i 1.18350i
\(874\) 0 0
\(875\) −2.62429 2.62429i −0.0887171 0.0887171i
\(876\) 0 0
\(877\) 5.65049 5.65049i 0.190804 0.190804i −0.605240 0.796043i \(-0.706923\pi\)
0.796043 + 0.605240i \(0.206923\pi\)
\(878\) 0 0
\(879\) 9.99498 0.337122
\(880\) 0 0
\(881\) −4.36508 −0.147063 −0.0735316 0.997293i \(-0.523427\pi\)
−0.0735316 + 0.997293i \(0.523427\pi\)
\(882\) 0 0
\(883\) −29.4447 + 29.4447i −0.990893 + 0.990893i −0.999959 0.00906586i \(-0.997114\pi\)
0.00906586 + 0.999959i \(0.497114\pi\)
\(884\) 0 0
\(885\) −0.940140 0.940140i −0.0316024 0.0316024i
\(886\) 0 0
\(887\) 44.5674i 1.49643i −0.663458 0.748214i \(-0.730912\pi\)
0.663458 0.748214i \(-0.269088\pi\)
\(888\) 0 0
\(889\) 33.5816i 1.12629i
\(890\) 0 0
\(891\) 1.28305 + 1.28305i 0.0429838 + 0.0429838i
\(892\) 0 0
\(893\) −35.3369 + 35.3369i −1.18251 + 1.18251i
\(894\) 0 0
\(895\) −3.31630 −0.110852
\(896\) 0 0
\(897\) 11.5248 0.384802
\(898\) 0 0
\(899\) 1.28700 1.28700i 0.0429239 0.0429239i
\(900\) 0 0
\(901\) −4.79265 4.79265i −0.159666 0.159666i
\(902\) 0 0
\(903\) 28.3238i 0.942557i
\(904\) 0 0
\(905\) 1.47308i 0.0489667i
\(906\) 0 0
\(907\) −34.7519 34.7519i −1.15392 1.15392i −0.985760 0.168157i \(-0.946219\pi\)
−0.168157 0.985760i \(-0.553781\pi\)
\(908\) 0 0
\(909\) −17.1892 + 17.1892i −0.570128 + 0.570128i
\(910\) 0 0
\(911\) 40.9415 1.35645 0.678226 0.734853i \(-0.262749\pi\)
0.678226 + 0.734853i \(0.262749\pi\)
\(912\) 0 0
\(913\) 2.44906 0.0810520
\(914\) 0 0
\(915\) −0.189774 + 0.189774i −0.00627372 + 0.00627372i
\(916\) 0 0
\(917\) 24.4158 + 24.4158i 0.806280 + 0.806280i
\(918\) 0 0
\(919\) 17.6406i 0.581911i 0.956737 + 0.290956i \(0.0939732\pi\)
−0.956737 + 0.290956i \(0.906027\pi\)
\(920\) 0 0
\(921\) 4.41269i 0.145403i
\(922\) 0 0
\(923\) −9.05921 9.05921i −0.298188 0.298188i
\(924\) 0 0
\(925\) −5.91766 + 5.91766i −0.194571 + 0.194571i
\(926\) 0 0
\(927\) 1.46067 0.0479746
\(928\) 0 0
\(929\) −8.34203 −0.273693 −0.136847 0.990592i \(-0.543697\pi\)
−0.136847 + 0.990592i \(0.543697\pi\)
\(930\) 0 0
\(931\) −0.271446 + 0.271446i −0.00889628 + 0.00889628i
\(932\) 0 0
\(933\) 14.4925 + 14.4925i 0.474463 + 0.474463i
\(934\) 0 0
\(935\) 0.387472i 0.0126717i
\(936\) 0 0
\(937\) 14.1664i 0.462796i 0.972859 + 0.231398i \(0.0743300\pi\)
−0.972859 + 0.231398i \(0.925670\pi\)
\(938\) 0 0
\(939\) −19.9509 19.9509i −0.651074 0.651074i
\(940\) 0 0
\(941\) −22.4415 + 22.4415i −0.731572 + 0.731572i −0.970931 0.239359i \(-0.923063\pi\)
0.239359 + 0.970931i \(0.423063\pi\)
\(942\) 0 0
\(943\) −25.2465 −0.822140
\(944\) 0 0
\(945\) −1.88548 −0.0613346
\(946\) 0 0
\(947\) −31.2571 + 31.2571i −1.01572 + 1.01572i −0.0158460 + 0.999874i \(0.505044\pi\)
−0.999874 + 0.0158460i \(0.994956\pi\)
\(948\) 0 0
\(949\) −20.0951 20.0951i −0.652315 0.652315i
\(950\) 0 0
\(951\) 31.0279i 1.00615i
\(952\) 0 0
\(953\) 54.5167i 1.76597i 0.469402 + 0.882985i \(0.344470\pi\)
−0.469402 + 0.882985i \(0.655530\pi\)
\(954\) 0 0
\(955\) 1.57499 + 1.57499i 0.0509656 + 0.0509656i
\(956\) 0 0
\(957\) −2.49862 + 2.49862i −0.0807688 + 0.0807688i
\(958\) 0 0
\(959\) 22.5213 0.727251
\(960\) 0 0
\(961\) −28.9141 −0.932713
\(962\) 0 0
\(963\) 1.51695 1.51695i 0.0488829 0.0488829i
\(964\) 0 0
\(965\) −1.74382 1.74382i −0.0561357 0.0561357i
\(966\) 0 0
\(967\) 6.88781i 0.221497i 0.993848 + 0.110749i \(0.0353248\pi\)
−0.993848 + 0.110749i \(0.964675\pi\)
\(968\) 0 0
\(969\) 4.20846i 0.135195i
\(970\) 0 0
\(971\) −25.1974 25.1974i −0.808623 0.808623i 0.175803 0.984425i \(-0.443748\pi\)
−0.984425 + 0.175803i \(0.943748\pi\)
\(972\) 0 0
\(973\) −19.2656 + 19.2656i −0.617628 + 0.617628i
\(974\) 0 0
\(975\) 10.7247 0.343465
\(976\) 0 0
\(977\) −8.31259 −0.265943 −0.132972 0.991120i \(-0.542452\pi\)
−0.132972 + 0.991120i \(0.542452\pi\)
\(978\) 0 0
\(979\) −21.3717 + 21.3717i −0.683042 + 0.683042i
\(980\) 0 0
\(981\) 0.903078 + 0.903078i 0.0288331 + 0.0288331i
\(982\) 0 0
\(983\) 38.9586i 1.24259i 0.783578 + 0.621293i \(0.213392\pi\)
−0.783578 + 0.621293i \(0.786608\pi\)
\(984\) 0 0
\(985\) 3.83637i 0.122237i
\(986\) 0 0
\(987\) 23.1376 + 23.1376i 0.736478 + 0.736478i
\(988\) 0 0
\(989\) −39.8282 + 39.8282i −1.26646 + 1.26646i
\(990\) 0 0
\(991\) 60.2776 1.91478 0.957391 0.288796i \(-0.0932550\pi\)
0.957391 + 0.288796i \(0.0932550\pi\)
\(992\) 0 0
\(993\) 0.676182 0.0214580
\(994\) 0 0
\(995\) −2.04458 + 2.04458i −0.0648174 + 0.0648174i
\(996\) 0 0
\(997\) −8.55785 8.55785i −0.271030 0.271030i 0.558485 0.829515i \(-0.311383\pi\)
−0.829515 + 0.558485i \(0.811383\pi\)
\(998\) 0 0
\(999\) 8.52044i 0.269575i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1088.2.l.c.817.6 32
4.3 odd 2 272.2.l.c.69.3 32
16.3 odd 4 272.2.l.c.205.3 yes 32
16.13 even 4 inner 1088.2.l.c.273.6 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
272.2.l.c.69.3 32 4.3 odd 2
272.2.l.c.205.3 yes 32 16.3 odd 4
1088.2.l.c.273.6 32 16.13 even 4 inner
1088.2.l.c.817.6 32 1.1 even 1 trivial