Properties

Label 2700.2.j.i.1457.1
Level $2700$
Weight $2$
Character 2700.1457
Analytic conductor $21.560$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2700,2,Mod(593,2700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2700.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,-4,0,0,0,0,0,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,32,0,0,0,0,0,-24,0,0,0,0,0,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(61)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5596085457\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.12745506816.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 23x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 540)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1457.1
Root \(0.323042 + 0.323042i\) of defining polynomial
Character \(\chi\) \(=\) 2700.1457
Dual form 2700.2.j.i.593.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.79129 - 2.79129i) q^{7} -3.09557i q^{11} +(0.791288 - 0.791288i) q^{13} +(2.51691 - 2.51691i) q^{17} +2.58258i q^{19} +(1.87083 + 1.87083i) q^{23} -4.25290 q^{29} +8.58258 q^{31} +(-3.00000 - 3.00000i) q^{37} -7.99455i q^{41} +(-3.79129 + 3.79129i) q^{43} +(-9.28672 + 9.28672i) q^{47} +8.58258i q^{49} +(-9.21930 - 9.21930i) q^{53} -9.15188 q^{59} -12.1652 q^{61} +(7.00000 + 7.00000i) q^{67} +11.8711i q^{71} +(5.79129 - 5.79129i) q^{73} +(-8.64064 + 8.64064i) q^{77} -12.1652i q^{79} +(1.22474 + 1.22474i) q^{83} -16.7700 q^{89} -4.41742 q^{91} +(1.58258 + 1.58258i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{7} - 12 q^{13} + 32 q^{31} - 24 q^{37} - 12 q^{43} - 24 q^{61} + 56 q^{67} + 28 q^{73} - 72 q^{91} - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.79129 2.79129i −1.05501 1.05501i −0.998396 0.0566113i \(-0.981970\pi\)
−0.0566113 0.998396i \(-0.518030\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.09557i 0.933351i −0.884429 0.466675i \(-0.845452\pi\)
0.884429 0.466675i \(-0.154548\pi\)
\(12\) 0 0
\(13\) 0.791288 0.791288i 0.219464 0.219464i −0.588809 0.808272i \(-0.700403\pi\)
0.808272 + 0.588809i \(0.200403\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.51691 2.51691i 0.610441 0.610441i −0.332620 0.943061i \(-0.607933\pi\)
0.943061 + 0.332620i \(0.107933\pi\)
\(18\) 0 0
\(19\) 2.58258i 0.592483i 0.955113 + 0.296242i \(0.0957334\pi\)
−0.955113 + 0.296242i \(0.904267\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.87083 + 1.87083i 0.390095 + 0.390095i 0.874721 0.484626i \(-0.161044\pi\)
−0.484626 + 0.874721i \(0.661044\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.25290 −0.789743 −0.394871 0.918736i \(-0.629211\pi\)
−0.394871 + 0.918736i \(0.629211\pi\)
\(30\) 0 0
\(31\) 8.58258 1.54148 0.770738 0.637152i \(-0.219888\pi\)
0.770738 + 0.637152i \(0.219888\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.00000 3.00000i −0.493197 0.493197i 0.416115 0.909312i \(-0.363391\pi\)
−0.909312 + 0.416115i \(0.863391\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.99455i 1.24854i −0.781209 0.624270i \(-0.785397\pi\)
0.781209 0.624270i \(-0.214603\pi\)
\(42\) 0 0
\(43\) −3.79129 + 3.79129i −0.578166 + 0.578166i −0.934398 0.356232i \(-0.884061\pi\)
0.356232 + 0.934398i \(0.384061\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −9.28672 + 9.28672i −1.35461 + 1.35461i −0.474179 + 0.880428i \(0.657255\pi\)
−0.880428 + 0.474179i \(0.842745\pi\)
\(48\) 0 0
\(49\) 8.58258i 1.22608i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −9.21930 9.21930i −1.26637 1.26637i −0.947951 0.318417i \(-0.896849\pi\)
−0.318417 0.947951i \(-0.603151\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.15188 −1.19147 −0.595736 0.803180i \(-0.703140\pi\)
−0.595736 + 0.803180i \(0.703140\pi\)
\(60\) 0 0
\(61\) −12.1652 −1.55759 −0.778794 0.627280i \(-0.784168\pi\)
−0.778794 + 0.627280i \(0.784168\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.00000 + 7.00000i 0.855186 + 0.855186i 0.990766 0.135580i \(-0.0432899\pi\)
−0.135580 + 0.990766i \(0.543290\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.8711i 1.40884i 0.709786 + 0.704418i \(0.248792\pi\)
−0.709786 + 0.704418i \(0.751208\pi\)
\(72\) 0 0
\(73\) 5.79129 5.79129i 0.677819 0.677819i −0.281687 0.959506i \(-0.590894\pi\)
0.959506 + 0.281687i \(0.0908941\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −8.64064 + 8.64064i −0.984692 + 0.984692i
\(78\) 0 0
\(79\) 12.1652i 1.36869i −0.729160 0.684343i \(-0.760089\pi\)
0.729160 0.684343i \(-0.239911\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.22474 + 1.22474i 0.134433 + 0.134433i 0.771121 0.636688i \(-0.219696\pi\)
−0.636688 + 0.771121i \(0.719696\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −16.7700 −1.77762 −0.888810 0.458276i \(-0.848467\pi\)
−0.888810 + 0.458276i \(0.848467\pi\)
\(90\) 0 0
\(91\) −4.41742 −0.463072
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.58258 + 1.58258i 0.160686 + 0.160686i 0.782871 0.622184i \(-0.213755\pi\)
−0.622184 + 0.782871i \(0.713755\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.9891i 1.59098i −0.605970 0.795488i \(-0.707215\pi\)
0.605970 0.795488i \(-0.292785\pi\)
\(102\) 0 0
\(103\) −5.58258 + 5.58258i −0.550068 + 0.550068i −0.926460 0.376393i \(-0.877164\pi\)
0.376393 + 0.926460i \(0.377164\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.05630 + 6.05630i −0.585485 + 0.585485i −0.936405 0.350920i \(-0.885869\pi\)
0.350920 + 0.936405i \(0.385869\pi\)
\(108\) 0 0
\(109\) 11.7477i 1.12523i −0.826720 0.562614i \(-0.809796\pi\)
0.826720 0.562614i \(-0.190204\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.93280 9.93280i −0.934400 0.934400i 0.0635773 0.997977i \(-0.479749\pi\)
−0.997977 + 0.0635773i \(0.979749\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −14.0509 −1.28804
\(120\) 0 0
\(121\) 1.41742 0.128857
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2.58258 + 2.58258i 0.229167 + 0.229167i 0.812344 0.583178i \(-0.198191\pi\)
−0.583178 + 0.812344i \(0.698191\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.03383i 0.439807i −0.975522 0.219904i \(-0.929426\pi\)
0.975522 0.219904i \(-0.0705743\pi\)
\(132\) 0 0
\(133\) 7.20871 7.20871i 0.625075 0.625075i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.22474 + 1.22474i −0.104637 + 0.104637i −0.757487 0.652850i \(-0.773573\pi\)
0.652850 + 0.757487i \(0.273573\pi\)
\(138\) 0 0
\(139\) 7.16515i 0.607740i −0.952713 0.303870i \(-0.901721\pi\)
0.952713 0.303870i \(-0.0982789\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.44949 2.44949i −0.204837 0.204837i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.511238 −0.0418823 −0.0209411 0.999781i \(-0.506666\pi\)
−0.0209411 + 0.999781i \(0.506666\pi\)
\(150\) 0 0
\(151\) 1.16515 0.0948187 0.0474093 0.998876i \(-0.484903\pi\)
0.0474093 + 0.998876i \(0.484903\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17.3739 + 17.3739i 1.38659 + 1.38659i 0.832380 + 0.554205i \(0.186978\pi\)
0.554205 + 0.832380i \(0.313022\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.4440i 0.823106i
\(162\) 0 0
\(163\) −0.582576 + 0.582576i −0.0456309 + 0.0456309i −0.729554 0.683923i \(-0.760272\pi\)
0.683923 + 0.729554i \(0.260272\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.02815 + 3.02815i −0.234325 + 0.234325i −0.814495 0.580170i \(-0.802986\pi\)
0.580170 + 0.814495i \(0.302986\pi\)
\(168\) 0 0
\(169\) 11.7477i 0.903671i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1.35959 + 1.35959i 0.103368 + 0.103368i 0.756899 0.653532i \(-0.226713\pi\)
−0.653532 + 0.756899i \(0.726713\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.16867 0.386325 0.193162 0.981167i \(-0.438126\pi\)
0.193162 + 0.981167i \(0.438126\pi\)
\(180\) 0 0
\(181\) −14.5826 −1.08391 −0.541957 0.840406i \(-0.682317\pi\)
−0.541957 + 0.840406i \(0.682317\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −7.79129 7.79129i −0.569755 0.569755i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.74166i 0.270737i −0.990795 0.135368i \(-0.956778\pi\)
0.990795 0.135368i \(-0.0432218\pi\)
\(192\) 0 0
\(193\) −11.2087 + 11.2087i −0.806821 + 0.806821i −0.984151 0.177331i \(-0.943254\pi\)
0.177331 + 0.984151i \(0.443254\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.12372 6.12372i 0.436297 0.436297i −0.454467 0.890764i \(-0.650170\pi\)
0.890764 + 0.454467i \(0.150170\pi\)
\(198\) 0 0
\(199\) 4.41742i 0.313143i −0.987667 0.156571i \(-0.949956\pi\)
0.987667 0.156571i \(-0.0500441\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 11.8711 + 11.8711i 0.833185 + 0.833185i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.99455 0.552995
\(210\) 0 0
\(211\) 7.83485 0.539373 0.269687 0.962948i \(-0.413080\pi\)
0.269687 + 0.962948i \(0.413080\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −23.9564 23.9564i −1.62627 1.62627i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.98320i 0.267939i
\(222\) 0 0
\(223\) 6.16515 6.16515i 0.412849 0.412849i −0.469881 0.882730i \(-0.655703\pi\)
0.882730 + 0.469881i \(0.155703\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.6463 10.6463i 0.706620 0.706620i −0.259203 0.965823i \(-0.583460\pi\)
0.965823 + 0.259203i \(0.0834597\pi\)
\(228\) 0 0
\(229\) 15.0000i 0.991228i 0.868543 + 0.495614i \(0.165057\pi\)
−0.868543 + 0.495614i \(0.834943\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.83723 + 6.83723i 0.447922 + 0.447922i 0.894663 0.446741i \(-0.147416\pi\)
−0.446741 + 0.894663i \(0.647416\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −29.7984 −1.92750 −0.963750 0.266808i \(-0.914031\pi\)
−0.963750 + 0.266808i \(0.914031\pi\)
\(240\) 0 0
\(241\) 23.7477 1.52973 0.764863 0.644193i \(-0.222807\pi\)
0.764863 + 0.644193i \(0.222807\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.04356 + 2.04356i 0.130029 + 0.130029i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.5510i 1.10781i −0.832581 0.553904i \(-0.813138\pi\)
0.832581 0.553904i \(-0.186862\pi\)
\(252\) 0 0
\(253\) 5.79129 5.79129i 0.364095 0.364095i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.87083 1.87083i 0.116699 0.116699i −0.646346 0.763045i \(-0.723704\pi\)
0.763045 + 0.646346i \(0.223704\pi\)
\(258\) 0 0
\(259\) 16.7477i 1.04065i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.42157 9.42157i −0.580959 0.580959i 0.354208 0.935167i \(-0.384750\pi\)
−0.935167 + 0.354208i \(0.884750\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.134846 0.00822168 0.00411084 0.999992i \(-0.498691\pi\)
0.00411084 + 0.999992i \(0.498691\pi\)
\(270\) 0 0
\(271\) −13.7477 −0.835115 −0.417557 0.908651i \(-0.637114\pi\)
−0.417557 + 0.908651i \(0.637114\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 3.79129 + 3.79129i 0.227796 + 0.227796i 0.811772 0.583975i \(-0.198503\pi\)
−0.583975 + 0.811772i \(0.698503\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.7362i 0.700124i 0.936727 + 0.350062i \(0.113839\pi\)
−0.936727 + 0.350062i \(0.886161\pi\)
\(282\) 0 0
\(283\) −10.2087 + 10.2087i −0.606845 + 0.606845i −0.942120 0.335275i \(-0.891171\pi\)
0.335275 + 0.942120i \(0.391171\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −22.3151 + 22.3151i −1.31722 + 1.31722i
\(288\) 0 0
\(289\) 4.33030i 0.254724i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.9610 12.9610i −0.757187 0.757187i 0.218622 0.975810i \(-0.429844\pi\)
−0.975810 + 0.218622i \(0.929844\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.96073 0.171223
\(300\) 0 0
\(301\) 21.1652 1.21994
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −15.0000 15.0000i −0.856095 0.856095i 0.134780 0.990876i \(-0.456967\pi\)
−0.990876 + 0.134780i \(0.956967\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 30.0400i 1.70341i 0.524022 + 0.851705i \(0.324431\pi\)
−0.524022 + 0.851705i \(0.675569\pi\)
\(312\) 0 0
\(313\) 9.16515 9.16515i 0.518045 0.518045i −0.398934 0.916979i \(-0.630620\pi\)
0.916979 + 0.398934i \(0.130620\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.22474 + 1.22474i −0.0687885 + 0.0687885i −0.740664 0.671876i \(-0.765489\pi\)
0.671876 + 0.740664i \(0.265489\pi\)
\(318\) 0 0
\(319\) 13.1652i 0.737107i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.50012 + 6.50012i 0.361676 + 0.361676i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 51.8438 2.85824
\(330\) 0 0
\(331\) −0.417424 −0.0229437 −0.0114719 0.999934i \(-0.503652\pi\)
−0.0114719 + 0.999934i \(0.503652\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3.95644 3.95644i −0.215521 0.215521i 0.591087 0.806608i \(-0.298699\pi\)
−0.806608 + 0.591087i \(0.798699\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 26.5680i 1.43874i
\(342\) 0 0
\(343\) 4.41742 4.41742i 0.238518 0.238518i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.9891 15.9891i 0.858340 0.858340i −0.132802 0.991143i \(-0.542398\pi\)
0.991143 + 0.132802i \(0.0423976\pi\)
\(348\) 0 0
\(349\) 27.7477i 1.48530i −0.669679 0.742651i \(-0.733568\pi\)
0.669679 0.742651i \(-0.266432\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.79796 9.79796i −0.521493 0.521493i 0.396529 0.918022i \(-0.370215\pi\)
−0.918022 + 0.396529i \(0.870215\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −14.8318 −0.782792 −0.391396 0.920222i \(-0.628008\pi\)
−0.391396 + 0.920222i \(0.628008\pi\)
\(360\) 0 0
\(361\) 12.3303 0.648963
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −13.2087 13.2087i −0.689489 0.689489i 0.272630 0.962119i \(-0.412107\pi\)
−0.962119 + 0.272630i \(0.912107\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 51.4674i 2.67206i
\(372\) 0 0
\(373\) −20.7477 + 20.7477i −1.07428 + 1.07428i −0.0772661 + 0.997011i \(0.524619\pi\)
−0.997011 + 0.0772661i \(0.975381\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.36526 + 3.36526i −0.173320 + 0.173320i
\(378\) 0 0
\(379\) 1.00000i 0.0513665i 0.999670 + 0.0256833i \(0.00817614\pi\)
−0.999670 + 0.0256833i \(0.991824\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5.10125 5.10125i −0.260662 0.260662i 0.564661 0.825323i \(-0.309007\pi\)
−0.825323 + 0.564661i \(0.809007\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.0397 −0.863948 −0.431974 0.901886i \(-0.642183\pi\)
−0.431974 + 0.901886i \(0.642183\pi\)
\(390\) 0 0
\(391\) 9.41742 0.476260
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 5.95644 + 5.95644i 0.298945 + 0.298945i 0.840601 0.541655i \(-0.182202\pi\)
−0.541655 + 0.840601i \(0.682202\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.44949i 0.122322i −0.998128 0.0611608i \(-0.980520\pi\)
0.998128 0.0611608i \(-0.0194803\pi\)
\(402\) 0 0
\(403\) 6.79129 6.79129i 0.338298 0.338298i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.28672 + 9.28672i −0.460326 + 0.460326i
\(408\) 0 0
\(409\) 6.16515i 0.304847i −0.988315 0.152424i \(-0.951292\pi\)
0.988315 0.152424i \(-0.0487078\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 25.5455 + 25.5455i 1.25701 + 1.25701i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.0622 −0.882396 −0.441198 0.897410i \(-0.645446\pi\)
−0.441198 + 0.897410i \(0.645446\pi\)
\(420\) 0 0
\(421\) −20.5826 −1.00313 −0.501567 0.865119i \(-0.667243\pi\)
−0.501567 + 0.865119i \(0.667243\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 33.9564 + 33.9564i 1.64327 + 1.64327i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.0284i 0.627555i 0.949497 + 0.313777i \(0.101595\pi\)
−0.949497 + 0.313777i \(0.898405\pi\)
\(432\) 0 0
\(433\) −1.20871 + 1.20871i −0.0580870 + 0.0580870i −0.735554 0.677467i \(-0.763078\pi\)
0.677467 + 0.735554i \(0.263078\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.83156 + 4.83156i −0.231125 + 0.231125i
\(438\) 0 0
\(439\) 7.83485i 0.373937i 0.982366 + 0.186968i \(0.0598662\pi\)
−0.982366 + 0.186968i \(0.940134\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0.713507 + 0.713507i 0.0338997 + 0.0338997i 0.723853 0.689954i \(-0.242369\pi\)
−0.689954 + 0.723853i \(0.742369\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 38.8154 1.83181 0.915907 0.401391i \(-0.131473\pi\)
0.915907 + 0.401391i \(0.131473\pi\)
\(450\) 0 0
\(451\) −24.7477 −1.16532
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.74773 4.74773i −0.222089 0.222089i 0.587288 0.809378i \(-0.300195\pi\)
−0.809378 + 0.587288i \(0.800195\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.74166i 0.174266i 0.996197 + 0.0871332i \(0.0277706\pi\)
−0.996197 + 0.0871332i \(0.972229\pi\)
\(462\) 0 0
\(463\) 23.7477 23.7477i 1.10365 1.10365i 0.109684 0.993967i \(-0.465016\pi\)
0.993967 0.109684i \(-0.0349839\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.8261 12.8261i 0.593522 0.593522i −0.345059 0.938581i \(-0.612141\pi\)
0.938581 + 0.345059i \(0.112141\pi\)
\(468\) 0 0
\(469\) 39.0780i 1.80446i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.7362 + 11.7362i 0.539632 + 0.539632i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 35.3435 1.61488 0.807442 0.589946i \(-0.200851\pi\)
0.807442 + 0.589946i \(0.200851\pi\)
\(480\) 0 0
\(481\) −4.74773 −0.216478
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 5.37386 + 5.37386i 0.243513 + 0.243513i 0.818302 0.574789i \(-0.194916\pi\)
−0.574789 + 0.818302i \(0.694916\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.71918i 0.122715i −0.998116 0.0613575i \(-0.980457\pi\)
0.998116 0.0613575i \(-0.0195430\pi\)
\(492\) 0 0
\(493\) −10.7042 + 10.7042i −0.482091 + 0.482091i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 33.1355 33.1355i 1.48633 1.48633i
\(498\) 0 0
\(499\) 9.41742i 0.421582i 0.977531 + 0.210791i \(0.0676039\pi\)
−0.977531 + 0.210791i \(0.932396\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.73598 + 1.73598i 0.0774037 + 0.0774037i 0.744749 0.667345i \(-0.232569\pi\)
−0.667345 + 0.744749i \(0.732569\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 22.1803 0.983122 0.491561 0.870843i \(-0.336426\pi\)
0.491561 + 0.870843i \(0.336426\pi\)
\(510\) 0 0
\(511\) −32.3303 −1.43021
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 28.7477 + 28.7477i 1.26432 + 1.26432i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.2082i 0.666282i 0.942877 + 0.333141i \(0.108109\pi\)
−0.942877 + 0.333141i \(0.891891\pi\)
\(522\) 0 0
\(523\) 27.9564 27.9564i 1.22245 1.22245i 0.255691 0.966758i \(-0.417697\pi\)
0.966758 0.255691i \(-0.0823030\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 21.6016 21.6016i 0.940980 0.940980i
\(528\) 0 0
\(529\) 16.0000i 0.695652i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −6.32599 6.32599i −0.274009 0.274009i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 26.5680 1.14436
\(540\) 0 0
\(541\) −22.8348 −0.981747 −0.490873 0.871231i \(-0.663322\pi\)
−0.490873 + 0.871231i \(0.663322\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 2.53901 + 2.53901i 0.108560 + 0.108560i 0.759301 0.650740i \(-0.225541\pi\)
−0.650740 + 0.759301i \(0.725541\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.9834i 0.467910i
\(552\) 0 0
\(553\) −33.9564 + 33.9564i −1.44397 + 1.44397i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.77548 8.77548i 0.371829 0.371829i −0.496314 0.868143i \(-0.665314\pi\)
0.868143 + 0.496314i \(0.165314\pi\)
\(558\) 0 0
\(559\) 6.00000i 0.253773i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 25.9219 + 25.9219i 1.09248 + 1.09248i 0.995263 + 0.0972149i \(0.0309934\pi\)
0.0972149 + 0.995263i \(0.469007\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 28.7478 1.20517 0.602585 0.798055i \(-0.294137\pi\)
0.602585 + 0.798055i \(0.294137\pi\)
\(570\) 0 0
\(571\) 30.9129 1.29366 0.646832 0.762633i \(-0.276094\pi\)
0.646832 + 0.762633i \(0.276094\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −9.37386 9.37386i −0.390239 0.390239i 0.484534 0.874773i \(-0.338989\pi\)
−0.874773 + 0.484534i \(0.838989\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.83723i 0.283656i
\(582\) 0 0
\(583\) −28.5390 + 28.5390i −1.18197 + 1.18197i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.202268 0.202268i 0.00834851 0.00834851i −0.702920 0.711269i \(-0.748121\pi\)
0.711269 + 0.702920i \(0.248121\pi\)
\(588\) 0 0
\(589\) 22.1652i 0.913299i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −14.2531 14.2531i −0.585306 0.585306i 0.351051 0.936356i \(-0.385824\pi\)
−0.936356 + 0.351051i \(0.885824\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 29.0175 1.18562 0.592811 0.805342i \(-0.298018\pi\)
0.592811 + 0.805342i \(0.298018\pi\)
\(600\) 0 0
\(601\) −11.7477 −0.479200 −0.239600 0.970872i \(-0.577016\pi\)
−0.239600 + 0.970872i \(0.577016\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 16.1216 + 16.1216i 0.654355 + 0.654355i 0.954039 0.299684i \(-0.0968811\pi\)
−0.299684 + 0.954039i \(0.596881\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14.6969i 0.594574i
\(612\) 0 0
\(613\) −12.3303 + 12.3303i −0.498016 + 0.498016i −0.910820 0.412804i \(-0.864550\pi\)
0.412804 + 0.910820i \(0.364550\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.2702 23.2702i 0.936821 0.936821i −0.0612984 0.998119i \(-0.519524\pi\)
0.998119 + 0.0612984i \(0.0195241\pi\)
\(618\) 0 0
\(619\) 16.7477i 0.673148i −0.941657 0.336574i \(-0.890732\pi\)
0.941657 0.336574i \(-0.109268\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 46.8100 + 46.8100i 1.87540 + 1.87540i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.1015 −0.602135
\(630\) 0 0
\(631\) 16.1652 0.643525 0.321762 0.946820i \(-0.395725\pi\)
0.321762 + 0.946820i \(0.395725\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.79129 + 6.79129i 0.269081 + 0.269081i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 29.6636i 1.17164i −0.810441 0.585820i \(-0.800772\pi\)
0.810441 0.585820i \(-0.199228\pi\)
\(642\) 0 0
\(643\) 23.5390 23.5390i 0.928288 0.928288i −0.0693072 0.997595i \(-0.522079\pi\)
0.997595 + 0.0693072i \(0.0220789\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 19.9330 19.9330i 0.783648 0.783648i −0.196796 0.980444i \(-0.563054\pi\)
0.980444 + 0.196796i \(0.0630537\pi\)
\(648\) 0 0
\(649\) 28.3303i 1.11206i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −29.0849 29.0849i −1.13818 1.13818i −0.988776 0.149404i \(-0.952264\pi\)
−0.149404 0.988776i \(-0.547736\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9.42157 −0.367012 −0.183506 0.983019i \(-0.558745\pi\)
−0.183506 + 0.983019i \(0.558745\pi\)
\(660\) 0 0
\(661\) 23.4955 0.913867 0.456934 0.889501i \(-0.348948\pi\)
0.456934 + 0.889501i \(0.348948\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −7.95644 7.95644i −0.308075 0.308075i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 37.6581i 1.45378i
\(672\) 0 0
\(673\) 29.9564 29.9564i 1.15474 1.15474i 0.169145 0.985591i \(-0.445900\pi\)
0.985591 0.169145i \(-0.0541005\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.5396 13.5396i 0.520370 0.520370i −0.397313 0.917683i \(-0.630057\pi\)
0.917683 + 0.397313i \(0.130057\pi\)
\(678\) 0 0
\(679\) 8.83485i 0.339050i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10.0002 + 10.0002i 0.382648 + 0.382648i 0.872055 0.489407i \(-0.162787\pi\)
−0.489407 + 0.872055i \(0.662787\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.5902 −0.555844
\(690\) 0 0
\(691\) −33.6606 −1.28051 −0.640255 0.768163i \(-0.721171\pi\)
−0.640255 + 0.768163i \(0.721171\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −20.1216 20.1216i −0.762160 0.762160i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.71918i 0.102702i 0.998681 + 0.0513510i \(0.0163527\pi\)
−0.998681 + 0.0513510i \(0.983647\pi\)
\(702\) 0 0
\(703\) 7.74773 7.74773i 0.292211 0.292211i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −44.6302 + 44.6302i −1.67849 + 1.67849i
\(708\) 0 0
\(709\) 26.0000i 0.976450i −0.872718 0.488225i \(-0.837644\pi\)
0.872718 0.488225i \(-0.162356\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 16.0565 + 16.0565i 0.601322 + 0.601322i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.07878 0.263994 0.131997 0.991250i \(-0.457861\pi\)
0.131997 + 0.991250i \(0.457861\pi\)
\(720\) 0 0
\(721\) 31.1652 1.16065
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −24.3303 24.3303i −0.902361 0.902361i 0.0932790 0.995640i \(-0.470265\pi\)
−0.995640 + 0.0932790i \(0.970265\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 19.0847i 0.705872i
\(732\) 0 0
\(733\) 21.9129 21.9129i 0.809371 0.809371i −0.175168 0.984539i \(-0.556047\pi\)
0.984539 + 0.175168i \(0.0560468\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 21.6690 21.6690i 0.798188 0.798188i
\(738\) 0 0
\(739\) 20.5826i 0.757142i −0.925572 0.378571i \(-0.876416\pi\)
0.925572 0.378571i \(-0.123584\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10.0677 + 10.0677i 0.369346 + 0.369346i 0.867239 0.497892i \(-0.165893\pi\)
−0.497892 + 0.867239i \(0.665893\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 33.8098 1.23538
\(750\) 0 0
\(751\) 15.0000 0.547358 0.273679 0.961821i \(-0.411759\pi\)
0.273679 + 0.961821i \(0.411759\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −15.0000 15.0000i −0.545184 0.545184i 0.379860 0.925044i \(-0.375972\pi\)
−0.925044 + 0.379860i \(0.875972\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 12.0059i 0.435214i 0.976037 + 0.217607i \(0.0698250\pi\)
−0.976037 + 0.217607i \(0.930175\pi\)
\(762\) 0 0
\(763\) −32.7913 + 32.7913i −1.18712 + 1.18712i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7.24177 + 7.24177i −0.261485 + 0.261485i
\(768\) 0 0
\(769\) 23.0000i 0.829401i 0.909958 + 0.414701i \(0.136114\pi\)
−0.909958 + 0.414701i \(0.863886\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −30.5119 30.5119i −1.09744 1.09744i −0.994709 0.102728i \(-0.967243\pi\)
−0.102728 0.994709i \(-0.532757\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 20.6465 0.739739
\(780\) 0 0
\(781\) 36.7477 1.31494
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −21.7042 21.7042i −0.773670 0.773670i 0.205076 0.978746i \(-0.434256\pi\)
−0.978746 + 0.205076i \(0.934256\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 55.4506i 1.97160i
\(792\) 0 0
\(793\) −9.62614 + 9.62614i −0.341834 + 0.341834i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.59001 + 4.59001i −0.162586 + 0.162586i −0.783711 0.621125i \(-0.786676\pi\)
0.621125 + 0.783711i \(0.286676\pi\)
\(798\) 0 0
\(799\) 46.7477i 1.65382i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −17.9274 17.9274i −0.632643 0.632643i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 36.0963 1.26908 0.634539 0.772891i \(-0.281190\pi\)
0.634539 + 0.772891i \(0.281190\pi\)
\(810\) 0 0
\(811\) 20.3303 0.713893 0.356947 0.934125i \(-0.383818\pi\)
0.356947 + 0.934125i \(0.383818\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −9.79129 9.79129i −0.342554 0.342554i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.5062i 0.994875i −0.867500 0.497437i \(-0.834274\pi\)
0.867500 0.497437i \(-0.165726\pi\)
\(822\) 0 0
\(823\) −30.1216 + 30.1216i −1.04997 + 1.04997i −0.0512888 + 0.998684i \(0.516333\pi\)
−0.998684 + 0.0512888i \(0.983667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −8.06198 + 8.06198i −0.280342 + 0.280342i −0.833246 0.552903i \(-0.813520\pi\)
0.552903 + 0.833246i \(0.313520\pi\)
\(828\) 0 0
\(829\) 31.0780i 1.07938i 0.841862 + 0.539692i \(0.181459\pi\)
−0.841862 + 0.539692i \(0.818541\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 21.6016 + 21.6016i 0.748451 + 0.748451i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −14.4272 −0.498084 −0.249042 0.968493i \(-0.580116\pi\)
−0.249042 + 0.968493i \(0.580116\pi\)
\(840\) 0 0
\(841\) −10.9129 −0.376306
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −3.95644 3.95644i −0.135945 0.135945i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.2250i 0.384787i
\(852\) 0 0
\(853\) 20.3303 20.3303i 0.696096 0.696096i −0.267470 0.963566i \(-0.586188\pi\)
0.963566 + 0.267470i \(0.0861876\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −29.0849 + 29.0849i −0.993521 + 0.993521i −0.999979 0.00645765i \(-0.997944\pi\)
0.00645765 + 0.999979i \(0.497944\pi\)
\(858\) 0 0
\(859\) 0.912878i 0.0311470i 0.999879 + 0.0155735i \(0.00495740\pi\)
−0.999879 + 0.0155735i \(0.995043\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −19.6633 19.6633i −0.669348 0.669348i 0.288217 0.957565i \(-0.406937\pi\)
−0.957565 + 0.288217i \(0.906937\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −37.6581 −1.27746
\(870\) 0 0
\(871\) 11.0780 0.375365
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −21.7913 21.7913i −0.735840 0.735840i 0.235930 0.971770i \(-0.424186\pi\)
−0.971770 + 0.235930i \(0.924186\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 45.2763i 1.52540i 0.646754 + 0.762698i \(0.276126\pi\)
−0.646754 + 0.762698i \(0.723874\pi\)
\(882\) 0 0
\(883\) 13.2087 13.2087i 0.444509 0.444509i −0.449015 0.893524i \(-0.648225\pi\)
0.893524 + 0.449015i \(0.148225\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −9.59569 + 9.59569i −0.322192 + 0.322192i −0.849607 0.527416i \(-0.823161\pi\)
0.527416 + 0.849607i \(0.323161\pi\)
\(888\) 0 0
\(889\) 14.4174i 0.483545i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −23.9837 23.9837i −0.802583 0.802583i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −36.5008 −1.21737
\(900\) 0 0
\(901\) −46.4083 −1.54609
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −8.74773 8.74773i −0.290464 0.290464i 0.546800 0.837263i \(-0.315846\pi\)
−0.837263 + 0.546800i \(0.815846\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 27.7253i 0.918581i −0.888286 0.459290i \(-0.848104\pi\)
0.888286 0.459290i \(-0.151896\pi\)
\(912\) 0 0
\(913\) 3.79129 3.79129i 0.125473 0.125473i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −14.0509 + 14.0509i −0.464000 + 0.464000i
\(918\) 0 0
\(919\) 16.0000i 0.527791i −0.964551 0.263896i \(-0.914993\pi\)
0.964551 0.263896i \(-0.0850075\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 9.39342 + 9.39342i 0.309188 + 0.309188i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −19.3544 −0.634996 −0.317498 0.948259i \(-0.602843\pi\)
−0.317498 + 0.948259i \(0.602843\pi\)
\(930\) 0 0
\(931\) −22.1652 −0.726433
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 37.0780 + 37.0780i 1.21129 + 1.21129i 0.970604 + 0.240683i \(0.0773713\pi\)
0.240683 + 0.970604i \(0.422629\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 38.5739i 1.25747i −0.777618 0.628737i \(-0.783572\pi\)
0.777618 0.628737i \(-0.216428\pi\)
\(942\) 0 0
\(943\) 14.9564 14.9564i 0.487049 0.487049i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.28105 7.28105i 0.236602 0.236602i −0.578839 0.815442i \(-0.696494\pi\)
0.815442 + 0.578839i \(0.196494\pi\)
\(948\) 0 0
\(949\) 9.16515i 0.297513i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −10.3092 10.3092i −0.333948 0.333948i 0.520136 0.854084i \(-0.325881\pi\)
−0.854084 + 0.520136i \(0.825881\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.83723 0.220786
\(960\) 0 0
\(961\) 42.6606 1.37615
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 27.7477 + 27.7477i 0.892307 + 0.892307i 0.994740 0.102433i \(-0.0326628\pi\)
−0.102433 + 0.994740i \(0.532663\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 13.8093i 0.443162i 0.975142 + 0.221581i \(0.0711217\pi\)
−0.975142 + 0.221581i \(0.928878\pi\)
\(972\) 0 0
\(973\) −20.0000 + 20.0000i −0.641171 + 0.641171i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 23.4724 23.4724i 0.750949 0.750949i −0.223707 0.974656i \(-0.571816\pi\)
0.974656 + 0.223707i \(0.0718159\pi\)
\(978\) 0 0
\(979\) 51.9129i 1.65914i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 38.2368 + 38.2368i 1.21956 + 1.21956i 0.967785 + 0.251779i \(0.0810157\pi\)
0.251779 + 0.967785i \(0.418984\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −14.1857 −0.451079
\(990\) 0 0
\(991\) 13.0000 0.412959 0.206479 0.978451i \(-0.433799\pi\)
0.206479 + 0.978451i \(0.433799\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 32.9564 + 32.9564i 1.04374 + 1.04374i 0.998999 + 0.0447423i \(0.0142467\pi\)
0.0447423 + 0.998999i \(0.485753\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.2.j.i.1457.1 8
3.2 odd 2 inner 2700.2.j.i.1457.2 8
5.2 odd 4 540.2.j.b.53.2 8
5.3 odd 4 inner 2700.2.j.i.593.1 8
5.4 even 2 540.2.j.b.377.4 yes 8
15.2 even 4 540.2.j.b.53.3 yes 8
15.8 even 4 inner 2700.2.j.i.593.2 8
15.14 odd 2 540.2.j.b.377.1 yes 8
20.7 even 4 2160.2.w.c.593.2 8
20.19 odd 2 2160.2.w.c.1457.4 8
45.2 even 12 1620.2.x.c.53.3 16
45.4 even 6 1620.2.x.c.917.3 16
45.7 odd 12 1620.2.x.c.53.2 16
45.14 odd 6 1620.2.x.c.917.2 16
45.22 odd 12 1620.2.x.c.593.4 16
45.29 odd 6 1620.2.x.c.377.4 16
45.32 even 12 1620.2.x.c.593.1 16
45.34 even 6 1620.2.x.c.377.1 16
60.47 odd 4 2160.2.w.c.593.3 8
60.59 even 2 2160.2.w.c.1457.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
540.2.j.b.53.2 8 5.2 odd 4
540.2.j.b.53.3 yes 8 15.2 even 4
540.2.j.b.377.1 yes 8 15.14 odd 2
540.2.j.b.377.4 yes 8 5.4 even 2
1620.2.x.c.53.2 16 45.7 odd 12
1620.2.x.c.53.3 16 45.2 even 12
1620.2.x.c.377.1 16 45.34 even 6
1620.2.x.c.377.4 16 45.29 odd 6
1620.2.x.c.593.1 16 45.32 even 12
1620.2.x.c.593.4 16 45.22 odd 12
1620.2.x.c.917.2 16 45.14 odd 6
1620.2.x.c.917.3 16 45.4 even 6
2160.2.w.c.593.2 8 20.7 even 4
2160.2.w.c.593.3 8 60.47 odd 4
2160.2.w.c.1457.1 8 60.59 even 2
2160.2.w.c.1457.4 8 20.19 odd 2
2700.2.j.i.593.1 8 5.3 odd 4 inner
2700.2.j.i.593.2 8 15.8 even 4 inner
2700.2.j.i.1457.1 8 1.1 even 1 trivial
2700.2.j.i.1457.2 8 3.2 odd 2 inner