Properties

Label 540.2.j.b.377.4
Level $540$
Weight $2$
Character 540.377
Analytic conductor $4.312$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [540,2,Mod(53,540)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(540, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("540.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 540 = 2^{2} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 540.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.31192170915\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.12745506816.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 23x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 377.4
Root \(0.323042 - 0.323042i\) of defining polynomial
Character \(\chi\) \(=\) 540.377
Dual form 540.2.j.b.53.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.87083 + 1.22474i) q^{5} +(2.79129 + 2.79129i) q^{7} -3.09557i q^{11} +(-0.791288 + 0.791288i) q^{13} +(-2.51691 + 2.51691i) q^{17} +2.58258i q^{19} +(-1.87083 - 1.87083i) q^{23} +(2.00000 + 4.58258i) q^{25} -4.25290 q^{29} +8.58258 q^{31} +(1.80341 + 8.64064i) q^{35} +(3.00000 + 3.00000i) q^{37} -7.99455i q^{41} +(3.79129 - 3.79129i) q^{43} +(9.28672 - 9.28672i) q^{47} +8.58258i q^{49} +(9.21930 + 9.21930i) q^{53} +(3.79129 - 5.79129i) q^{55} -9.15188 q^{59} -12.1652 q^{61} +(-2.44949 + 0.511238i) q^{65} +(-7.00000 - 7.00000i) q^{67} +11.8711i q^{71} +(-5.79129 + 5.79129i) q^{73} +(8.64064 - 8.64064i) q^{77} -12.1652i q^{79} +(-1.22474 - 1.22474i) q^{83} +(-7.79129 + 1.62614i) q^{85} -16.7700 q^{89} -4.41742 q^{91} +(-3.16300 + 4.83156i) q^{95} +(-1.58258 - 1.58258i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{7} + 12 q^{13} + 16 q^{25} + 32 q^{31} + 24 q^{37} + 12 q^{43} + 12 q^{55} - 24 q^{61} - 56 q^{67} - 28 q^{73} - 44 q^{85} - 72 q^{91} + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/540\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(461\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.87083 + 1.22474i 0.836660 + 0.547723i
\(6\) 0 0
\(7\) 2.79129 + 2.79129i 1.05501 + 1.05501i 0.998396 + 0.0566113i \(0.0180296\pi\)
0.0566113 + 0.998396i \(0.481970\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.09557i 0.933351i −0.884429 0.466675i \(-0.845452\pi\)
0.884429 0.466675i \(-0.154548\pi\)
\(12\) 0 0
\(13\) −0.791288 + 0.791288i −0.219464 + 0.219464i −0.808272 0.588809i \(-0.799597\pi\)
0.588809 + 0.808272i \(0.299597\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.51691 + 2.51691i −0.610441 + 0.610441i −0.943061 0.332620i \(-0.892067\pi\)
0.332620 + 0.943061i \(0.392067\pi\)
\(18\) 0 0
\(19\) 2.58258i 0.592483i 0.955113 + 0.296242i \(0.0957334\pi\)
−0.955113 + 0.296242i \(0.904267\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.87083 1.87083i −0.390095 0.390095i 0.484626 0.874721i \(-0.338956\pi\)
−0.874721 + 0.484626i \(0.838956\pi\)
\(24\) 0 0
\(25\) 2.00000 + 4.58258i 0.400000 + 0.916515i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.25290 −0.789743 −0.394871 0.918736i \(-0.629211\pi\)
−0.394871 + 0.918736i \(0.629211\pi\)
\(30\) 0 0
\(31\) 8.58258 1.54148 0.770738 0.637152i \(-0.219888\pi\)
0.770738 + 0.637152i \(0.219888\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.80341 + 8.64064i 0.304831 + 1.46053i
\(36\) 0 0
\(37\) 3.00000 + 3.00000i 0.493197 + 0.493197i 0.909312 0.416115i \(-0.136609\pi\)
−0.416115 + 0.909312i \(0.636609\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.99455i 1.24854i −0.781209 0.624270i \(-0.785397\pi\)
0.781209 0.624270i \(-0.214603\pi\)
\(42\) 0 0
\(43\) 3.79129 3.79129i 0.578166 0.578166i −0.356232 0.934398i \(-0.615939\pi\)
0.934398 + 0.356232i \(0.115939\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.28672 9.28672i 1.35461 1.35461i 0.474179 0.880428i \(-0.342745\pi\)
0.880428 0.474179i \(-0.157255\pi\)
\(48\) 0 0
\(49\) 8.58258i 1.22608i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.21930 + 9.21930i 1.26637 + 1.26637i 0.947951 + 0.318417i \(0.103151\pi\)
0.318417 + 0.947951i \(0.396849\pi\)
\(54\) 0 0
\(55\) 3.79129 5.79129i 0.511217 0.780897i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.15188 −1.19147 −0.595736 0.803180i \(-0.703140\pi\)
−0.595736 + 0.803180i \(0.703140\pi\)
\(60\) 0 0
\(61\) −12.1652 −1.55759 −0.778794 0.627280i \(-0.784168\pi\)
−0.778794 + 0.627280i \(0.784168\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.44949 + 0.511238i −0.303822 + 0.0634113i
\(66\) 0 0
\(67\) −7.00000 7.00000i −0.855186 0.855186i 0.135580 0.990766i \(-0.456710\pi\)
−0.990766 + 0.135580i \(0.956710\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.8711i 1.40884i 0.709786 + 0.704418i \(0.248792\pi\)
−0.709786 + 0.704418i \(0.751208\pi\)
\(72\) 0 0
\(73\) −5.79129 + 5.79129i −0.677819 + 0.677819i −0.959506 0.281687i \(-0.909106\pi\)
0.281687 + 0.959506i \(0.409106\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.64064 8.64064i 0.984692 0.984692i
\(78\) 0 0
\(79\) 12.1652i 1.36869i −0.729160 0.684343i \(-0.760089\pi\)
0.729160 0.684343i \(-0.239911\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.22474 1.22474i −0.134433 0.134433i 0.636688 0.771121i \(-0.280304\pi\)
−0.771121 + 0.636688i \(0.780304\pi\)
\(84\) 0 0
\(85\) −7.79129 + 1.62614i −0.845084 + 0.176379i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −16.7700 −1.77762 −0.888810 0.458276i \(-0.848467\pi\)
−0.888810 + 0.458276i \(0.848467\pi\)
\(90\) 0 0
\(91\) −4.41742 −0.463072
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.16300 + 4.83156i −0.324517 + 0.495707i
\(96\) 0 0
\(97\) −1.58258 1.58258i −0.160686 0.160686i 0.622184 0.782871i \(-0.286245\pi\)
−0.782871 + 0.622184i \(0.786245\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.9891i 1.59098i −0.605970 0.795488i \(-0.707215\pi\)
0.605970 0.795488i \(-0.292785\pi\)
\(102\) 0 0
\(103\) 5.58258 5.58258i 0.550068 0.550068i −0.376393 0.926460i \(-0.622836\pi\)
0.926460 + 0.376393i \(0.122836\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.05630 6.05630i 0.585485 0.585485i −0.350920 0.936405i \(-0.614131\pi\)
0.936405 + 0.350920i \(0.114131\pi\)
\(108\) 0 0
\(109\) 11.7477i 1.12523i −0.826720 0.562614i \(-0.809796\pi\)
0.826720 0.562614i \(-0.190204\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.93280 + 9.93280i 0.934400 + 0.934400i 0.997977 0.0635773i \(-0.0202509\pi\)
−0.0635773 + 0.997977i \(0.520251\pi\)
\(114\) 0 0
\(115\) −1.20871 5.79129i −0.112713 0.540040i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −14.0509 −1.28804
\(120\) 0 0
\(121\) 1.41742 0.128857
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.87083 + 11.0227i −0.167332 + 0.985901i
\(126\) 0 0
\(127\) −2.58258 2.58258i −0.229167 0.229167i 0.583178 0.812344i \(-0.301809\pi\)
−0.812344 + 0.583178i \(0.801809\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.03383i 0.439807i −0.975522 0.219904i \(-0.929426\pi\)
0.975522 0.219904i \(-0.0705743\pi\)
\(132\) 0 0
\(133\) −7.20871 + 7.20871i −0.625075 + 0.625075i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.22474 1.22474i 0.104637 0.104637i −0.652850 0.757487i \(-0.726427\pi\)
0.757487 + 0.652850i \(0.226427\pi\)
\(138\) 0 0
\(139\) 7.16515i 0.607740i −0.952713 0.303870i \(-0.901721\pi\)
0.952713 0.303870i \(-0.0982789\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.44949 + 2.44949i 0.204837 + 0.204837i
\(144\) 0 0
\(145\) −7.95644 5.20871i −0.660746 0.432560i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −0.511238 −0.0418823 −0.0209411 0.999781i \(-0.506666\pi\)
−0.0209411 + 0.999781i \(0.506666\pi\)
\(150\) 0 0
\(151\) 1.16515 0.0948187 0.0474093 0.998876i \(-0.484903\pi\)
0.0474093 + 0.998876i \(0.484903\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 16.0565 + 10.5115i 1.28969 + 0.844301i
\(156\) 0 0
\(157\) −17.3739 17.3739i −1.38659 1.38659i −0.832380 0.554205i \(-0.813022\pi\)
−0.554205 0.832380i \(-0.686978\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.4440i 0.823106i
\(162\) 0 0
\(163\) 0.582576 0.582576i 0.0456309 0.0456309i −0.683923 0.729554i \(-0.739728\pi\)
0.729554 + 0.683923i \(0.239728\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.02815 3.02815i 0.234325 0.234325i −0.580170 0.814495i \(-0.697014\pi\)
0.814495 + 0.580170i \(0.197014\pi\)
\(168\) 0 0
\(169\) 11.7477i 0.903671i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.35959 1.35959i −0.103368 0.103368i 0.653532 0.756899i \(-0.273287\pi\)
−0.756899 + 0.653532i \(0.773287\pi\)
\(174\) 0 0
\(175\) −7.20871 + 18.3739i −0.544927 + 1.38893i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 5.16867 0.386325 0.193162 0.981167i \(-0.438126\pi\)
0.193162 + 0.981167i \(0.438126\pi\)
\(180\) 0 0
\(181\) −14.5826 −1.08391 −0.541957 0.840406i \(-0.682317\pi\)
−0.541957 + 0.840406i \(0.682317\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.93825 + 9.28672i 0.142503 + 0.682773i
\(186\) 0 0
\(187\) 7.79129 + 7.79129i 0.569755 + 0.569755i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 3.74166i 0.270737i −0.990795 0.135368i \(-0.956778\pi\)
0.990795 0.135368i \(-0.0432218\pi\)
\(192\) 0 0
\(193\) 11.2087 11.2087i 0.806821 0.806821i −0.177331 0.984151i \(-0.556746\pi\)
0.984151 + 0.177331i \(0.0567462\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.12372 + 6.12372i −0.436297 + 0.436297i −0.890764 0.454467i \(-0.849830\pi\)
0.454467 + 0.890764i \(0.349830\pi\)
\(198\) 0 0
\(199\) 4.41742i 0.313143i −0.987667 0.156571i \(-0.949956\pi\)
0.987667 0.156571i \(-0.0500441\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −11.8711 11.8711i −0.833185 0.833185i
\(204\) 0 0
\(205\) 9.79129 14.9564i 0.683853 1.04460i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.99455 0.552995
\(210\) 0 0
\(211\) 7.83485 0.539373 0.269687 0.962948i \(-0.413080\pi\)
0.269687 + 0.962948i \(0.413080\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.7362 2.44949i 0.800403 0.167054i
\(216\) 0 0
\(217\) 23.9564 + 23.9564i 1.62627 + 1.62627i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.98320i 0.267939i
\(222\) 0 0
\(223\) −6.16515 + 6.16515i −0.412849 + 0.412849i −0.882730 0.469881i \(-0.844297\pi\)
0.469881 + 0.882730i \(0.344297\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.6463 + 10.6463i −0.706620 + 0.706620i −0.965823 0.259203i \(-0.916540\pi\)
0.259203 + 0.965823i \(0.416540\pi\)
\(228\) 0 0
\(229\) 15.0000i 0.991228i 0.868543 + 0.495614i \(0.165057\pi\)
−0.868543 + 0.495614i \(0.834943\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.83723 6.83723i −0.447922 0.447922i 0.446741 0.894663i \(-0.352584\pi\)
−0.894663 + 0.446741i \(0.852584\pi\)
\(234\) 0 0
\(235\) 28.7477 6.00000i 1.87529 0.391397i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −29.7984 −1.92750 −0.963750 0.266808i \(-0.914031\pi\)
−0.963750 + 0.266808i \(0.914031\pi\)
\(240\) 0 0
\(241\) 23.7477 1.52973 0.764863 0.644193i \(-0.222807\pi\)
0.764863 + 0.644193i \(0.222807\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −10.5115 + 16.0565i −0.671553 + 1.02581i
\(246\) 0 0
\(247\) −2.04356 2.04356i −0.130029 0.130029i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 17.5510i 1.10781i −0.832581 0.553904i \(-0.813138\pi\)
0.832581 0.553904i \(-0.186862\pi\)
\(252\) 0 0
\(253\) −5.79129 + 5.79129i −0.364095 + 0.364095i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.87083 + 1.87083i −0.116699 + 0.116699i −0.763045 0.646346i \(-0.776296\pi\)
0.646346 + 0.763045i \(0.276296\pi\)
\(258\) 0 0
\(259\) 16.7477i 1.04065i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.42157 + 9.42157i 0.580959 + 0.580959i 0.935167 0.354208i \(-0.115250\pi\)
−0.354208 + 0.935167i \(0.615250\pi\)
\(264\) 0 0
\(265\) 5.95644 + 28.5390i 0.365901 + 1.75314i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0.134846 0.00822168 0.00411084 0.999992i \(-0.498691\pi\)
0.00411084 + 0.999992i \(0.498691\pi\)
\(270\) 0 0
\(271\) −13.7477 −0.835115 −0.417557 0.908651i \(-0.637114\pi\)
−0.417557 + 0.908651i \(0.637114\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 14.1857 6.19115i 0.855430 0.373340i
\(276\) 0 0
\(277\) −3.79129 3.79129i −0.227796 0.227796i 0.583975 0.811772i \(-0.301497\pi\)
−0.811772 + 0.583975i \(0.801497\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.7362i 0.700124i 0.936727 + 0.350062i \(0.113839\pi\)
−0.936727 + 0.350062i \(0.886161\pi\)
\(282\) 0 0
\(283\) 10.2087 10.2087i 0.606845 0.606845i −0.335275 0.942120i \(-0.608829\pi\)
0.942120 + 0.335275i \(0.108829\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 22.3151 22.3151i 1.31722 1.31722i
\(288\) 0 0
\(289\) 4.33030i 0.254724i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 12.9610 + 12.9610i 0.757187 + 0.757187i 0.975810 0.218622i \(-0.0701563\pi\)
−0.218622 + 0.975810i \(0.570156\pi\)
\(294\) 0 0
\(295\) −17.1216 11.2087i −0.996858 0.652596i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.96073 0.171223
\(300\) 0 0
\(301\) 21.1652 1.21994
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −22.7589 14.8992i −1.30317 0.853126i
\(306\) 0 0
\(307\) 15.0000 + 15.0000i 0.856095 + 0.856095i 0.990876 0.134780i \(-0.0430329\pi\)
−0.134780 + 0.990876i \(0.543033\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 30.0400i 1.70341i 0.524022 + 0.851705i \(0.324431\pi\)
−0.524022 + 0.851705i \(0.675569\pi\)
\(312\) 0 0
\(313\) −9.16515 + 9.16515i −0.518045 + 0.518045i −0.916979 0.398934i \(-0.869380\pi\)
0.398934 + 0.916979i \(0.369380\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.22474 1.22474i 0.0687885 0.0687885i −0.671876 0.740664i \(-0.734511\pi\)
0.740664 + 0.671876i \(0.234511\pi\)
\(318\) 0 0
\(319\) 13.1652i 0.737107i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6.50012 6.50012i −0.361676 0.361676i
\(324\) 0 0
\(325\) −5.20871 2.04356i −0.288927 0.113356i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 51.8438 2.85824
\(330\) 0 0
\(331\) −0.417424 −0.0229437 −0.0114719 0.999934i \(-0.503652\pi\)
−0.0114719 + 0.999934i \(0.503652\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.52259 21.6690i −0.247095 1.18390i
\(336\) 0 0
\(337\) 3.95644 + 3.95644i 0.215521 + 0.215521i 0.806608 0.591087i \(-0.201301\pi\)
−0.591087 + 0.806608i \(0.701301\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 26.5680i 1.43874i
\(342\) 0 0
\(343\) −4.41742 + 4.41742i −0.238518 + 0.238518i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −15.9891 + 15.9891i −0.858340 + 0.858340i −0.991143 0.132802i \(-0.957602\pi\)
0.132802 + 0.991143i \(0.457602\pi\)
\(348\) 0 0
\(349\) 27.7477i 1.48530i −0.669679 0.742651i \(-0.733568\pi\)
0.669679 0.742651i \(-0.266432\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 9.79796 + 9.79796i 0.521493 + 0.521493i 0.918022 0.396529i \(-0.129785\pi\)
−0.396529 + 0.918022i \(0.629785\pi\)
\(354\) 0 0
\(355\) −14.5390 + 22.2087i −0.771651 + 1.17872i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −14.8318 −0.782792 −0.391396 0.920222i \(-0.628008\pi\)
−0.391396 + 0.920222i \(0.628008\pi\)
\(360\) 0 0
\(361\) 12.3303 0.648963
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −17.9274 + 3.74166i −0.938361 + 0.195847i
\(366\) 0 0
\(367\) 13.2087 + 13.2087i 0.689489 + 0.689489i 0.962119 0.272630i \(-0.0878934\pi\)
−0.272630 + 0.962119i \(0.587893\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 51.4674i 2.67206i
\(372\) 0 0
\(373\) 20.7477 20.7477i 1.07428 1.07428i 0.0772661 0.997011i \(-0.475381\pi\)
0.997011 0.0772661i \(-0.0246191\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.36526 3.36526i 0.173320 0.173320i
\(378\) 0 0
\(379\) 1.00000i 0.0513665i 0.999670 + 0.0256833i \(0.00817614\pi\)
−0.999670 + 0.0256833i \(0.991824\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.10125 + 5.10125i 0.260662 + 0.260662i 0.825323 0.564661i \(-0.190993\pi\)
−0.564661 + 0.825323i \(0.690993\pi\)
\(384\) 0 0
\(385\) 26.7477 5.58258i 1.36319 0.284514i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.0397 −0.863948 −0.431974 0.901886i \(-0.642183\pi\)
−0.431974 + 0.901886i \(0.642183\pi\)
\(390\) 0 0
\(391\) 9.41742 0.476260
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 14.8992 22.7589i 0.749660 1.14513i
\(396\) 0 0
\(397\) −5.95644 5.95644i −0.298945 0.298945i 0.541655 0.840601i \(-0.317798\pi\)
−0.840601 + 0.541655i \(0.817798\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.44949i 0.122322i −0.998128 0.0611608i \(-0.980520\pi\)
0.998128 0.0611608i \(-0.0194803\pi\)
\(402\) 0 0
\(403\) −6.79129 + 6.79129i −0.338298 + 0.338298i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.28672 9.28672i 0.460326 0.460326i
\(408\) 0 0
\(409\) 6.16515i 0.304847i −0.988315 0.152424i \(-0.951292\pi\)
0.988315 0.152424i \(-0.0487078\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −25.5455 25.5455i −1.25701 1.25701i
\(414\) 0 0
\(415\) −0.791288 3.79129i −0.0388428 0.186107i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.0622 −0.882396 −0.441198 0.897410i \(-0.645446\pi\)
−0.441198 + 0.897410i \(0.645446\pi\)
\(420\) 0 0
\(421\) −20.5826 −1.00313 −0.501567 0.865119i \(-0.667243\pi\)
−0.501567 + 0.865119i \(0.667243\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −16.5678 6.50012i −0.803655 0.315302i
\(426\) 0 0
\(427\) −33.9564 33.9564i −1.64327 1.64327i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.0284i 0.627555i 0.949497 + 0.313777i \(0.101595\pi\)
−0.949497 + 0.313777i \(0.898405\pi\)
\(432\) 0 0
\(433\) 1.20871 1.20871i 0.0580870 0.0580870i −0.677467 0.735554i \(-0.736922\pi\)
0.735554 + 0.677467i \(0.236922\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.83156 4.83156i 0.231125 0.231125i
\(438\) 0 0
\(439\) 7.83485i 0.373937i 0.982366 + 0.186968i \(0.0598662\pi\)
−0.982366 + 0.186968i \(0.940134\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −0.713507 0.713507i −0.0338997 0.0338997i 0.689954 0.723853i \(-0.257631\pi\)
−0.723853 + 0.689954i \(0.757631\pi\)
\(444\) 0 0
\(445\) −31.3739 20.5390i −1.48726 0.973643i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 38.8154 1.83181 0.915907 0.401391i \(-0.131473\pi\)
0.915907 + 0.401391i \(0.131473\pi\)
\(450\) 0 0
\(451\) −24.7477 −1.16532
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.26424 5.41022i −0.387434 0.253635i
\(456\) 0 0
\(457\) 4.74773 + 4.74773i 0.222089 + 0.222089i 0.809378 0.587288i \(-0.199805\pi\)
−0.587288 + 0.809378i \(0.699805\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.74166i 0.174266i 0.996197 + 0.0871332i \(0.0277706\pi\)
−0.996197 + 0.0871332i \(0.972229\pi\)
\(462\) 0 0
\(463\) −23.7477 + 23.7477i −1.10365 + 1.10365i −0.109684 + 0.993967i \(0.534984\pi\)
−0.993967 + 0.109684i \(0.965016\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.8261 + 12.8261i −0.593522 + 0.593522i −0.938581 0.345059i \(-0.887859\pi\)
0.345059 + 0.938581i \(0.387859\pi\)
\(468\) 0 0
\(469\) 39.0780i 1.80446i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −11.7362 11.7362i −0.539632 0.539632i
\(474\) 0 0
\(475\) −11.8348 + 5.16515i −0.543020 + 0.236993i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 35.3435 1.61488 0.807442 0.589946i \(-0.200851\pi\)
0.807442 + 0.589946i \(0.200851\pi\)
\(480\) 0 0
\(481\) −4.74773 −0.216478
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.02248 4.89898i −0.0464283 0.222451i
\(486\) 0 0
\(487\) −5.37386 5.37386i −0.243513 0.243513i 0.574789 0.818302i \(-0.305084\pi\)
−0.818302 + 0.574789i \(0.805084\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.71918i 0.122715i −0.998116 0.0613575i \(-0.980457\pi\)
0.998116 0.0613575i \(-0.0195430\pi\)
\(492\) 0 0
\(493\) 10.7042 10.7042i 0.482091 0.482091i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −33.1355 + 33.1355i −1.48633 + 1.48633i
\(498\) 0 0
\(499\) 9.41742i 0.421582i 0.977531 + 0.210791i \(0.0676039\pi\)
−0.977531 + 0.210791i \(0.932396\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.73598 1.73598i −0.0774037 0.0774037i 0.667345 0.744749i \(-0.267431\pi\)
−0.744749 + 0.667345i \(0.767431\pi\)
\(504\) 0 0
\(505\) 19.5826 29.9129i 0.871413 1.33111i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 22.1803 0.983122 0.491561 0.870843i \(-0.336426\pi\)
0.491561 + 0.870843i \(0.336426\pi\)
\(510\) 0 0
\(511\) −32.3303 −1.43021
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 17.2813 3.60681i 0.761504 0.158935i
\(516\) 0 0
\(517\) −28.7477 28.7477i −1.26432 1.26432i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.2082i 0.666282i 0.942877 + 0.333141i \(0.108109\pi\)
−0.942877 + 0.333141i \(0.891891\pi\)
\(522\) 0 0
\(523\) −27.9564 + 27.9564i −1.22245 + 1.22245i −0.255691 + 0.966758i \(0.582303\pi\)
−0.966758 + 0.255691i \(0.917697\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −21.6016 + 21.6016i −0.940980 + 0.940980i
\(528\) 0 0
\(529\) 16.0000i 0.695652i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.32599 + 6.32599i 0.274009 + 0.274009i
\(534\) 0 0
\(535\) 18.7477 3.91288i 0.810535 0.169168i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 26.5680 1.14436
\(540\) 0 0
\(541\) −22.8348 −0.981747 −0.490873 0.871231i \(-0.663322\pi\)
−0.490873 + 0.871231i \(0.663322\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.3880 21.9780i 0.616313 0.941433i
\(546\) 0 0
\(547\) −2.53901 2.53901i −0.108560 0.108560i 0.650740 0.759301i \(-0.274459\pi\)
−0.759301 + 0.650740i \(0.774459\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 10.9834i 0.467910i
\(552\) 0 0
\(553\) 33.9564 33.9564i 1.44397 1.44397i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −8.77548 + 8.77548i −0.371829 + 0.371829i −0.868143 0.496314i \(-0.834686\pi\)
0.496314 + 0.868143i \(0.334686\pi\)
\(558\) 0 0
\(559\) 6.00000i 0.253773i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −25.9219 25.9219i −1.09248 1.09248i −0.995263 0.0972149i \(-0.969007\pi\)
−0.0972149 0.995263i \(-0.530993\pi\)
\(564\) 0 0
\(565\) 6.41742 + 30.7477i 0.269983 + 1.29357i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 28.7478 1.20517 0.602585 0.798055i \(-0.294137\pi\)
0.602585 + 0.798055i \(0.294137\pi\)
\(570\) 0 0
\(571\) 30.9129 1.29366 0.646832 0.762633i \(-0.276094\pi\)
0.646832 + 0.762633i \(0.276094\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.83156 12.3149i 0.201490 0.513566i
\(576\) 0 0
\(577\) 9.37386 + 9.37386i 0.390239 + 0.390239i 0.874773 0.484534i \(-0.161011\pi\)
−0.484534 + 0.874773i \(0.661011\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.83723i 0.283656i
\(582\) 0 0
\(583\) 28.5390 28.5390i 1.18197 1.18197i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −0.202268 + 0.202268i −0.00834851 + 0.00834851i −0.711269 0.702920i \(-0.751879\pi\)
0.702920 + 0.711269i \(0.251879\pi\)
\(588\) 0 0
\(589\) 22.1652i 0.913299i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.2531 + 14.2531i 0.585306 + 0.585306i 0.936356 0.351051i \(-0.114176\pi\)
−0.351051 + 0.936356i \(0.614176\pi\)
\(594\) 0 0
\(595\) −26.2867 17.2087i −1.07765 0.705488i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 29.0175 1.18562 0.592811 0.805342i \(-0.298018\pi\)
0.592811 + 0.805342i \(0.298018\pi\)
\(600\) 0 0
\(601\) −11.7477 −0.479200 −0.239600 0.970872i \(-0.577016\pi\)
−0.239600 + 0.970872i \(0.577016\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.65176 + 1.73598i 0.107809 + 0.0705778i
\(606\) 0 0
\(607\) −16.1216 16.1216i −0.654355 0.654355i 0.299684 0.954039i \(-0.403119\pi\)
−0.954039 + 0.299684i \(0.903119\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 14.6969i 0.594574i
\(612\) 0 0
\(613\) 12.3303 12.3303i 0.498016 0.498016i −0.412804 0.910820i \(-0.635450\pi\)
0.910820 + 0.412804i \(0.135450\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −23.2702 + 23.2702i −0.936821 + 0.936821i −0.998119 0.0612984i \(-0.980476\pi\)
0.0612984 + 0.998119i \(0.480476\pi\)
\(618\) 0 0
\(619\) 16.7477i 0.673148i −0.941657 0.336574i \(-0.890732\pi\)
0.941657 0.336574i \(-0.109268\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −46.8100 46.8100i −1.87540 1.87540i
\(624\) 0 0
\(625\) −17.0000 + 18.3303i −0.680000 + 0.733212i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −15.1015 −0.602135
\(630\) 0 0
\(631\) 16.1652 0.643525 0.321762 0.946820i \(-0.395725\pi\)
0.321762 + 0.946820i \(0.395725\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.66856 7.99455i −0.0662148 0.317254i
\(636\) 0 0
\(637\) −6.79129 6.79129i −0.269081 0.269081i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 29.6636i 1.17164i −0.810441 0.585820i \(-0.800772\pi\)
0.810441 0.585820i \(-0.199228\pi\)
\(642\) 0 0
\(643\) −23.5390 + 23.5390i −0.928288 + 0.928288i −0.997595 0.0693072i \(-0.977921\pi\)
0.0693072 + 0.997595i \(0.477921\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −19.9330 + 19.9330i −0.783648 + 0.783648i −0.980444 0.196796i \(-0.936946\pi\)
0.196796 + 0.980444i \(0.436946\pi\)
\(648\) 0 0
\(649\) 28.3303i 1.11206i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 29.0849 + 29.0849i 1.13818 + 1.13818i 0.988776 + 0.149404i \(0.0477355\pi\)
0.149404 + 0.988776i \(0.452264\pi\)
\(654\) 0 0
\(655\) 6.16515 9.41742i 0.240892 0.367969i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9.42157 −0.367012 −0.183506 0.983019i \(-0.558745\pi\)
−0.183506 + 0.983019i \(0.558745\pi\)
\(660\) 0 0
\(661\) 23.4955 0.913867 0.456934 0.889501i \(-0.348948\pi\)
0.456934 + 0.889501i \(0.348948\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −22.3151 + 4.65743i −0.865342 + 0.180607i
\(666\) 0 0
\(667\) 7.95644 + 7.95644i 0.308075 + 0.308075i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 37.6581i 1.45378i
\(672\) 0 0
\(673\) −29.9564 + 29.9564i −1.15474 + 1.15474i −0.169145 + 0.985591i \(0.554100\pi\)
−0.985591 + 0.169145i \(0.945900\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13.5396 + 13.5396i −0.520370 + 0.520370i −0.917683 0.397313i \(-0.869943\pi\)
0.397313 + 0.917683i \(0.369943\pi\)
\(678\) 0 0
\(679\) 8.83485i 0.339050i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −10.0002 10.0002i −0.382648 0.382648i 0.489407 0.872055i \(-0.337213\pi\)
−0.872055 + 0.489407i \(0.837213\pi\)
\(684\) 0 0
\(685\) 3.79129 0.791288i 0.144858 0.0302336i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.5902 −0.555844
\(690\) 0 0
\(691\) −33.6606 −1.28051 −0.640255 0.768163i \(-0.721171\pi\)
−0.640255 + 0.768163i \(0.721171\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.77548 13.4048i 0.332873 0.508472i
\(696\) 0 0
\(697\) 20.1216 + 20.1216i 0.762160 + 0.762160i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.71918i 0.102702i 0.998681 + 0.0513510i \(0.0163527\pi\)
−0.998681 + 0.0513510i \(0.983647\pi\)
\(702\) 0 0
\(703\) −7.74773 + 7.74773i −0.292211 + 0.292211i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 44.6302 44.6302i 1.67849 1.67849i
\(708\) 0 0
\(709\) 26.0000i 0.976450i −0.872718 0.488225i \(-0.837644\pi\)
0.872718 0.488225i \(-0.162356\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −16.0565 16.0565i −0.601322 0.601322i
\(714\) 0 0
\(715\) 1.58258 + 7.58258i 0.0591850 + 0.283572i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 7.07878 0.263994 0.131997 0.991250i \(-0.457861\pi\)
0.131997 + 0.991250i \(0.457861\pi\)
\(720\) 0 0
\(721\) 31.1652 1.16065
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −8.50579 19.4892i −0.315897 0.723811i
\(726\) 0 0
\(727\) 24.3303 + 24.3303i 0.902361 + 0.902361i 0.995640 0.0932790i \(-0.0297349\pi\)
−0.0932790 + 0.995640i \(0.529735\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 19.0847i 0.705872i
\(732\) 0 0
\(733\) −21.9129 + 21.9129i −0.809371 + 0.809371i −0.984539 0.175168i \(-0.943953\pi\)
0.175168 + 0.984539i \(0.443953\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −21.6690 + 21.6690i −0.798188 + 0.798188i
\(738\) 0 0
\(739\) 20.5826i 0.757142i −0.925572 0.378571i \(-0.876416\pi\)
0.925572 0.378571i \(-0.123584\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −10.0677 10.0677i −0.369346 0.369346i 0.497892 0.867239i \(-0.334107\pi\)
−0.867239 + 0.497892i \(0.834107\pi\)
\(744\) 0 0
\(745\) −0.956439 0.626136i −0.0350412 0.0229399i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 33.8098 1.23538
\(750\) 0 0
\(751\) 15.0000 0.547358 0.273679 0.961821i \(-0.411759\pi\)
0.273679 + 0.961821i \(0.411759\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.17980 + 1.42701i 0.0793310 + 0.0519343i
\(756\) 0 0
\(757\) 15.0000 + 15.0000i 0.545184 + 0.545184i 0.925044 0.379860i \(-0.124028\pi\)
−0.379860 + 0.925044i \(0.624028\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 12.0059i 0.435214i 0.976037 + 0.217607i \(0.0698250\pi\)
−0.976037 + 0.217607i \(0.930175\pi\)
\(762\) 0 0
\(763\) 32.7913 32.7913i 1.18712 1.18712i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 7.24177 7.24177i 0.261485 0.261485i
\(768\) 0 0
\(769\) 23.0000i 0.829401i 0.909958 + 0.414701i \(0.136114\pi\)
−0.909958 + 0.414701i \(0.863886\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 30.5119 + 30.5119i 1.09744 + 1.09744i 0.994709 + 0.102728i \(0.0327571\pi\)
0.102728 + 0.994709i \(0.467243\pi\)
\(774\) 0 0
\(775\) 17.1652 + 39.3303i 0.616590 + 1.41279i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 20.6465 0.739739
\(780\) 0 0
\(781\) 36.7477 1.31494
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11.2250 53.7821i −0.400636 1.91956i
\(786\) 0 0
\(787\) 21.7042 + 21.7042i 0.773670 + 0.773670i 0.978746 0.205076i \(-0.0657442\pi\)
−0.205076 + 0.978746i \(0.565744\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 55.4506i 1.97160i
\(792\) 0 0
\(793\) 9.62614 9.62614i 0.341834 0.341834i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.59001 4.59001i 0.162586 0.162586i −0.621125 0.783711i \(-0.713324\pi\)
0.783711 + 0.621125i \(0.213324\pi\)
\(798\) 0 0
\(799\) 46.7477i 1.65382i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 17.9274 + 17.9274i 0.632643 + 0.632643i
\(804\) 0 0
\(805\) 12.7913 19.5390i 0.450834 0.688660i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 36.0963 1.26908 0.634539 0.772891i \(-0.281190\pi\)
0.634539 + 0.772891i \(0.281190\pi\)
\(810\) 0 0
\(811\) 20.3303 0.713893 0.356947 0.934125i \(-0.383818\pi\)
0.356947 + 0.934125i \(0.383818\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.80341 0.376393i 0.0631706 0.0131845i
\(816\) 0 0
\(817\) 9.79129 + 9.79129i 0.342554 + 0.342554i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.5062i 0.994875i −0.867500 0.497437i \(-0.834274\pi\)
0.867500 0.497437i \(-0.165726\pi\)
\(822\) 0 0
\(823\) 30.1216 30.1216i 1.04997 1.04997i 0.0512888 0.998684i \(-0.483667\pi\)
0.998684 0.0512888i \(-0.0163329\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.06198 8.06198i 0.280342 0.280342i −0.552903 0.833246i \(-0.686480\pi\)
0.833246 + 0.552903i \(0.186480\pi\)
\(828\) 0 0
\(829\) 31.0780i 1.07938i 0.841862 + 0.539692i \(0.181459\pi\)
−0.841862 + 0.539692i \(0.818541\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −21.6016 21.6016i −0.748451 0.748451i
\(834\) 0 0
\(835\) 9.37386 1.95644i 0.324396 0.0677054i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −14.4272 −0.498084 −0.249042 0.968493i \(-0.580116\pi\)
−0.249042 + 0.968493i \(0.580116\pi\)
\(840\) 0 0
\(841\) −10.9129 −0.376306
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −14.3880 + 21.9780i −0.494961 + 0.756066i
\(846\) 0 0
\(847\) 3.95644 + 3.95644i 0.135945 + 0.135945i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 11.2250i 0.384787i
\(852\) 0 0
\(853\) −20.3303 + 20.3303i −0.696096 + 0.696096i −0.963566 0.267470i \(-0.913812\pi\)
0.267470 + 0.963566i \(0.413812\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 29.0849 29.0849i 0.993521 0.993521i −0.00645765 0.999979i \(-0.502056\pi\)
0.999979 + 0.00645765i \(0.00205555\pi\)
\(858\) 0 0
\(859\) 0.912878i 0.0311470i 0.999879 + 0.0155735i \(0.00495740\pi\)
−0.999879 + 0.0155735i \(0.995043\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19.6633 + 19.6633i 0.669348 + 0.669348i 0.957565 0.288217i \(-0.0930625\pi\)
−0.288217 + 0.957565i \(0.593063\pi\)
\(864\) 0 0
\(865\) −0.878409 4.20871i −0.0298668 0.143101i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −37.6581 −1.27746
\(870\) 0 0
\(871\) 11.0780 0.375365
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −35.9896 + 25.5455i −1.21667 + 0.863596i
\(876\) 0 0
\(877\) 21.7913 + 21.7913i 0.735840 + 0.735840i 0.971770 0.235930i \(-0.0758138\pi\)
−0.235930 + 0.971770i \(0.575814\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 45.2763i 1.52540i 0.646754 + 0.762698i \(0.276126\pi\)
−0.646754 + 0.762698i \(0.723874\pi\)
\(882\) 0 0
\(883\) −13.2087 + 13.2087i −0.444509 + 0.444509i −0.893524 0.449015i \(-0.851775\pi\)
0.449015 + 0.893524i \(0.351775\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9.59569 9.59569i 0.322192 0.322192i −0.527416 0.849607i \(-0.676839\pi\)
0.849607 + 0.527416i \(0.176839\pi\)
\(888\) 0 0
\(889\) 14.4174i 0.483545i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 23.9837 + 23.9837i 0.802583 + 0.802583i
\(894\) 0 0
\(895\) 9.66970 + 6.33030i 0.323222 + 0.211599i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −36.5008 −1.21737
\(900\) 0 0
\(901\) −46.4083 −1.54609
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −27.2815 17.8599i −0.906868 0.593684i
\(906\) 0 0
\(907\) 8.74773 + 8.74773i 0.290464 + 0.290464i 0.837263 0.546800i \(-0.184154\pi\)
−0.546800 + 0.837263i \(0.684154\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 27.7253i 0.918581i −0.888286 0.459290i \(-0.848104\pi\)
0.888286 0.459290i \(-0.151896\pi\)
\(912\) 0 0
\(913\) −3.79129 + 3.79129i −0.125473 + 0.125473i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 14.0509 14.0509i 0.464000 0.464000i
\(918\) 0 0
\(919\) 16.0000i 0.527791i −0.964551 0.263896i \(-0.914993\pi\)
0.964551 0.263896i \(-0.0850075\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.39342 9.39342i −0.309188 0.309188i
\(924\) 0 0
\(925\) −7.74773 + 19.7477i −0.254744 + 0.649301i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −19.3544 −0.634996 −0.317498 0.948259i \(-0.602843\pi\)
−0.317498 + 0.948259i \(0.602843\pi\)
\(930\) 0 0
\(931\) −22.1652 −0.726433
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.03383 + 24.1185i 0.164624 + 0.788759i
\(936\) 0 0
\(937\) −37.0780 37.0780i −1.21129 1.21129i −0.970604 0.240683i \(-0.922629\pi\)
−0.240683 0.970604i \(-0.577371\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 38.5739i 1.25747i −0.777618 0.628737i \(-0.783572\pi\)
0.777618 0.628737i \(-0.216428\pi\)
\(942\) 0 0
\(943\) −14.9564 + 14.9564i −0.487049 + 0.487049i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −7.28105 + 7.28105i −0.236602 + 0.236602i −0.815442 0.578839i \(-0.803506\pi\)
0.578839 + 0.815442i \(0.303506\pi\)
\(948\) 0 0
\(949\) 9.16515i 0.297513i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 10.3092 + 10.3092i 0.333948 + 0.333948i 0.854084 0.520136i \(-0.174119\pi\)
−0.520136 + 0.854084i \(0.674119\pi\)
\(954\) 0 0
\(955\) 4.58258 7.00000i 0.148289 0.226515i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 6.83723 0.220786
\(960\) 0 0
\(961\) 42.6606 1.37615
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 34.6974 7.24177i 1.11695 0.233121i
\(966\) 0 0
\(967\) −27.7477 27.7477i −0.892307 0.892307i 0.102433 0.994740i \(-0.467337\pi\)
−0.994740 + 0.102433i \(0.967337\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 13.8093i 0.443162i 0.975142 + 0.221581i \(0.0711217\pi\)
−0.975142 + 0.221581i \(0.928878\pi\)
\(972\) 0 0
\(973\) 20.0000 20.0000i 0.641171 0.641171i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −23.4724 + 23.4724i −0.750949 + 0.750949i −0.974656 0.223707i \(-0.928184\pi\)
0.223707 + 0.974656i \(0.428184\pi\)
\(978\) 0 0
\(979\) 51.9129i 1.65914i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −38.2368 38.2368i −1.21956 1.21956i −0.967785 0.251779i \(-0.918984\pi\)
−0.251779 0.967785i \(-0.581016\pi\)
\(984\) 0 0
\(985\) −18.9564 + 3.95644i −0.604002 + 0.126063i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −14.1857 −0.451079
\(990\) 0 0
\(991\) 13.0000 0.412959 0.206479 0.978451i \(-0.433799\pi\)
0.206479 + 0.978451i \(0.433799\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.41022 8.26424i 0.171515 0.261994i
\(996\) 0 0
\(997\) −32.9564 32.9564i −1.04374 1.04374i −0.998999 0.0447423i \(-0.985753\pi\)
−0.0447423 0.998999i \(-0.514247\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 540.2.j.b.377.4 yes 8
3.2 odd 2 inner 540.2.j.b.377.1 yes 8
4.3 odd 2 2160.2.w.c.1457.4 8
5.2 odd 4 2700.2.j.i.593.1 8
5.3 odd 4 inner 540.2.j.b.53.2 8
5.4 even 2 2700.2.j.i.1457.1 8
9.2 odd 6 1620.2.x.c.377.4 16
9.4 even 3 1620.2.x.c.917.3 16
9.5 odd 6 1620.2.x.c.917.2 16
9.7 even 3 1620.2.x.c.377.1 16
12.11 even 2 2160.2.w.c.1457.1 8
15.2 even 4 2700.2.j.i.593.2 8
15.8 even 4 inner 540.2.j.b.53.3 yes 8
15.14 odd 2 2700.2.j.i.1457.2 8
20.3 even 4 2160.2.w.c.593.2 8
45.13 odd 12 1620.2.x.c.593.4 16
45.23 even 12 1620.2.x.c.593.1 16
45.38 even 12 1620.2.x.c.53.3 16
45.43 odd 12 1620.2.x.c.53.2 16
60.23 odd 4 2160.2.w.c.593.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
540.2.j.b.53.2 8 5.3 odd 4 inner
540.2.j.b.53.3 yes 8 15.8 even 4 inner
540.2.j.b.377.1 yes 8 3.2 odd 2 inner
540.2.j.b.377.4 yes 8 1.1 even 1 trivial
1620.2.x.c.53.2 16 45.43 odd 12
1620.2.x.c.53.3 16 45.38 even 12
1620.2.x.c.377.1 16 9.7 even 3
1620.2.x.c.377.4 16 9.2 odd 6
1620.2.x.c.593.1 16 45.23 even 12
1620.2.x.c.593.4 16 45.13 odd 12
1620.2.x.c.917.2 16 9.5 odd 6
1620.2.x.c.917.3 16 9.4 even 3
2160.2.w.c.593.2 8 20.3 even 4
2160.2.w.c.593.3 8 60.23 odd 4
2160.2.w.c.1457.1 8 12.11 even 2
2160.2.w.c.1457.4 8 4.3 odd 2
2700.2.j.i.593.1 8 5.2 odd 4
2700.2.j.i.593.2 8 15.2 even 4
2700.2.j.i.1457.1 8 5.4 even 2
2700.2.j.i.1457.2 8 15.14 odd 2