Properties

Label 270.4.c.e.109.7
Level $270$
Weight $4$
Character 270.109
Analytic conductor $15.931$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [270,4,Mod(109,270)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("270.109"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(270, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 270.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.9305157015\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 24x^{6} + 164x^{4} - 111x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{4}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 109.7
Root \(-0.755706 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 270.109
Dual form 270.4.c.e.109.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000i q^{2} -4.00000 q^{4} +(6.93656 - 8.76836i) q^{5} +22.9416i q^{7} -8.00000i q^{8} +(17.5367 + 13.8731i) q^{10} +22.9416 q^{11} -92.3072i q^{13} -45.8832 q^{14} +16.0000 q^{16} +112.684i q^{17} +74.6836 q^{19} +(-27.7462 + 35.0735i) q^{20} +45.8832i q^{22} +54.6836i q^{23} +(-28.7684 - 121.644i) q^{25} +184.614 q^{26} -91.7663i q^{28} +276.921 q^{29} +270.367 q^{31} +32.0000i q^{32} -225.367 q^{34} +(201.160 + 159.136i) q^{35} +44.8016i q^{37} +149.367i q^{38} +(-70.1469 - 55.4925i) q^{40} -228.875 q^{41} +322.805i q^{43} -91.7663 q^{44} -109.367 q^{46} +363.367i q^{47} -183.316 q^{49} +(243.289 - 57.5367i) q^{50} +369.229i q^{52} +247.735i q^{53} +(159.136 - 201.160i) q^{55} +183.533 q^{56} +553.843i q^{58} +412.408 q^{59} -35.4181 q^{61} +540.735i q^{62} -64.0000 q^{64} +(-809.383 - 640.294i) q^{65} -689.329i q^{67} -450.735i q^{68} +(-318.271 + 402.320i) q^{70} +461.536 q^{71} -623.749i q^{73} -89.6031 q^{74} -298.735 q^{76} +526.316i q^{77} -1070.05 q^{79} +(110.985 - 140.294i) q^{80} -457.750i q^{82} -195.102i q^{83} +(988.051 + 781.636i) q^{85} -645.609 q^{86} -183.533i q^{88} -137.109 q^{89} +2117.67 q^{91} -218.735i q^{92} -726.735 q^{94} +(518.047 - 654.853i) q^{95} +25.6456i q^{97} -366.633i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{4} + 4 q^{10} + 128 q^{16} - 84 q^{19} - 162 q^{25} + 800 q^{31} - 440 q^{34} - 16 q^{40} + 488 q^{46} - 2148 q^{49} - 158 q^{55} + 3124 q^{61} - 512 q^{64} + 316 q^{70} + 336 q^{76} - 6516 q^{79}+ \cdots - 3088 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 0 0
\(4\) −4.00000 −0.500000
\(5\) 6.93656 8.76836i 0.620424 0.784266i
\(6\) 0 0
\(7\) 22.9416i 1.23873i 0.785103 + 0.619365i \(0.212610\pi\)
−0.785103 + 0.619365i \(0.787390\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 0 0
\(10\) 17.5367 + 13.8731i 0.554560 + 0.438706i
\(11\) 22.9416 0.628832 0.314416 0.949285i \(-0.398191\pi\)
0.314416 + 0.949285i \(0.398191\pi\)
\(12\) 0 0
\(13\) 92.3072i 1.96934i −0.174432 0.984669i \(-0.555809\pi\)
0.174432 0.984669i \(-0.444191\pi\)
\(14\) −45.8832 −0.875914
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 112.684i 1.60763i 0.594876 + 0.803817i \(0.297201\pi\)
−0.594876 + 0.803817i \(0.702799\pi\)
\(18\) 0 0
\(19\) 74.6836 0.901768 0.450884 0.892582i \(-0.351109\pi\)
0.450884 + 0.892582i \(0.351109\pi\)
\(20\) −27.7462 + 35.0735i −0.310212 + 0.392133i
\(21\) 0 0
\(22\) 45.8832i 0.444651i
\(23\) 54.6836i 0.495753i 0.968792 + 0.247877i \(0.0797328\pi\)
−0.968792 + 0.247877i \(0.920267\pi\)
\(24\) 0 0
\(25\) −28.7684 121.644i −0.230147 0.973156i
\(26\) 184.614 1.39253
\(27\) 0 0
\(28\) 91.7663i 0.619365i
\(29\) 276.921 1.77321 0.886604 0.462530i \(-0.153058\pi\)
0.886604 + 0.462530i \(0.153058\pi\)
\(30\) 0 0
\(31\) 270.367 1.56643 0.783216 0.621750i \(-0.213578\pi\)
0.783216 + 0.621750i \(0.213578\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 0 0
\(34\) −225.367 −1.13677
\(35\) 201.160 + 159.136i 0.971493 + 0.768538i
\(36\) 0 0
\(37\) 44.8016i 0.199063i 0.995034 + 0.0995315i \(0.0317344\pi\)
−0.995034 + 0.0995315i \(0.968266\pi\)
\(38\) 149.367i 0.637647i
\(39\) 0 0
\(40\) −70.1469 55.4925i −0.277280 0.219353i
\(41\) −228.875 −0.871812 −0.435906 0.899992i \(-0.643572\pi\)
−0.435906 + 0.899992i \(0.643572\pi\)
\(42\) 0 0
\(43\) 322.805i 1.14482i 0.819968 + 0.572410i \(0.193991\pi\)
−0.819968 + 0.572410i \(0.806009\pi\)
\(44\) −91.7663 −0.314416
\(45\) 0 0
\(46\) −109.367 −0.350550
\(47\) 363.367i 1.12771i 0.825872 + 0.563857i \(0.190683\pi\)
−0.825872 + 0.563857i \(0.809317\pi\)
\(48\) 0 0
\(49\) −183.316 −0.534450
\(50\) 243.289 57.5367i 0.688125 0.162738i
\(51\) 0 0
\(52\) 369.229i 0.984669i
\(53\) 247.735i 0.642056i 0.947070 + 0.321028i \(0.104028\pi\)
−0.947070 + 0.321028i \(0.895972\pi\)
\(54\) 0 0
\(55\) 159.136 201.160i 0.390143 0.493171i
\(56\) 183.533 0.437957
\(57\) 0 0
\(58\) 553.843i 1.25385i
\(59\) 412.408 0.910016 0.455008 0.890487i \(-0.349636\pi\)
0.455008 + 0.890487i \(0.349636\pi\)
\(60\) 0 0
\(61\) −35.4181 −0.0743414 −0.0371707 0.999309i \(-0.511835\pi\)
−0.0371707 + 0.999309i \(0.511835\pi\)
\(62\) 540.735i 1.10763i
\(63\) 0 0
\(64\) −64.0000 −0.125000
\(65\) −809.383 640.294i −1.54449 1.22183i
\(66\) 0 0
\(67\) 689.329i 1.25694i −0.777834 0.628470i \(-0.783682\pi\)
0.777834 0.628470i \(-0.216318\pi\)
\(68\) 450.735i 0.803817i
\(69\) 0 0
\(70\) −318.271 + 402.320i −0.543438 + 0.686950i
\(71\) 461.536 0.771468 0.385734 0.922610i \(-0.373948\pi\)
0.385734 + 0.922610i \(0.373948\pi\)
\(72\) 0 0
\(73\) 623.749i 1.00006i −0.866008 0.500030i \(-0.833322\pi\)
0.866008 0.500030i \(-0.166678\pi\)
\(74\) −89.6031 −0.140759
\(75\) 0 0
\(76\) −298.735 −0.450884
\(77\) 526.316i 0.778952i
\(78\) 0 0
\(79\) −1070.05 −1.52393 −0.761963 0.647621i \(-0.775764\pi\)
−0.761963 + 0.647621i \(0.775764\pi\)
\(80\) 110.985 140.294i 0.155106 0.196067i
\(81\) 0 0
\(82\) 457.750i 0.616464i
\(83\) 195.102i 0.258014i −0.991644 0.129007i \(-0.958821\pi\)
0.991644 0.129007i \(-0.0411790\pi\)
\(84\) 0 0
\(85\) 988.051 + 781.636i 1.26081 + 0.997416i
\(86\) −645.609 −0.809510
\(87\) 0 0
\(88\) 183.533i 0.222326i
\(89\) −137.109 −0.163298 −0.0816488 0.996661i \(-0.526019\pi\)
−0.0816488 + 0.996661i \(0.526019\pi\)
\(90\) 0 0
\(91\) 2117.67 2.43948
\(92\) 218.735i 0.247877i
\(93\) 0 0
\(94\) −726.735 −0.797414
\(95\) 518.047 654.853i 0.559479 0.707226i
\(96\) 0 0
\(97\) 25.6456i 0.0268445i 0.999910 + 0.0134223i \(0.00427257\pi\)
−0.999910 + 0.0134223i \(0.995727\pi\)
\(98\) 366.633i 0.377913i
\(99\) 0 0
\(100\) 115.073 + 486.578i 0.115073 + 0.486578i
\(101\) 569.754 0.561313 0.280657 0.959808i \(-0.409448\pi\)
0.280657 + 0.959808i \(0.409448\pi\)
\(102\) 0 0
\(103\) 1156.81i 1.10664i −0.832968 0.553322i \(-0.813360\pi\)
0.832968 0.553322i \(-0.186640\pi\)
\(104\) −738.457 −0.696266
\(105\) 0 0
\(106\) −495.469 −0.454002
\(107\) 327.153i 0.295580i −0.989019 0.147790i \(-0.952784\pi\)
0.989019 0.147790i \(-0.0472159\pi\)
\(108\) 0 0
\(109\) 372.254 0.327115 0.163557 0.986534i \(-0.447703\pi\)
0.163557 + 0.986534i \(0.447703\pi\)
\(110\) 402.320 + 318.271i 0.348725 + 0.275872i
\(111\) 0 0
\(112\) 367.065i 0.309682i
\(113\) 628.735i 0.523419i −0.965147 0.261710i \(-0.915714\pi\)
0.965147 0.261710i \(-0.0842863\pi\)
\(114\) 0 0
\(115\) 479.486 + 379.316i 0.388802 + 0.307577i
\(116\) −1107.69 −0.886604
\(117\) 0 0
\(118\) 824.815i 0.643478i
\(119\) −2585.14 −1.99142
\(120\) 0 0
\(121\) −804.684 −0.604571
\(122\) 70.8363i 0.0525673i
\(123\) 0 0
\(124\) −1081.47 −0.783216
\(125\) −1266.18 591.542i −0.906002 0.423273i
\(126\) 0 0
\(127\) 1368.16i 0.955938i −0.878377 0.477969i \(-0.841373\pi\)
0.878377 0.477969i \(-0.158627\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 0 0
\(130\) 1280.59 1618.77i 0.863961 1.09212i
\(131\) −1675.28 −1.11733 −0.558663 0.829395i \(-0.688685\pi\)
−0.558663 + 0.829395i \(0.688685\pi\)
\(132\) 0 0
\(133\) 1713.36i 1.11705i
\(134\) 1378.66 0.888791
\(135\) 0 0
\(136\) 901.469 0.568385
\(137\) 1012.25i 0.631261i −0.948882 0.315630i \(-0.897784\pi\)
0.948882 0.315630i \(-0.102216\pi\)
\(138\) 0 0
\(139\) 158.938 0.0969852 0.0484926 0.998824i \(-0.484558\pi\)
0.0484926 + 0.998824i \(0.484558\pi\)
\(140\) −804.641 636.542i −0.485747 0.384269i
\(141\) 0 0
\(142\) 923.072i 0.545510i
\(143\) 2117.67i 1.23838i
\(144\) 0 0
\(145\) 1920.88 2428.15i 1.10014 1.39067i
\(146\) 1247.50 0.707149
\(147\) 0 0
\(148\) 179.206i 0.0995315i
\(149\) 996.223 0.547743 0.273872 0.961766i \(-0.411696\pi\)
0.273872 + 0.961766i \(0.411696\pi\)
\(150\) 0 0
\(151\) 242.113 0.130483 0.0652413 0.997870i \(-0.479218\pi\)
0.0652413 + 0.997870i \(0.479218\pi\)
\(152\) 597.469i 0.318823i
\(153\) 0 0
\(154\) −1052.63 −0.550802
\(155\) 1875.42 2370.68i 0.971853 1.22850i
\(156\) 0 0
\(157\) 1470.97i 0.747744i 0.927480 + 0.373872i \(0.121970\pi\)
−0.927480 + 0.373872i \(0.878030\pi\)
\(158\) 2140.10i 1.07758i
\(159\) 0 0
\(160\) 280.588 + 221.970i 0.138640 + 0.109677i
\(161\) −1254.53 −0.614104
\(162\) 0 0
\(163\) 1381.90i 0.664043i −0.943272 0.332022i \(-0.892269\pi\)
0.943272 0.332022i \(-0.107731\pi\)
\(164\) 915.500 0.435906
\(165\) 0 0
\(166\) 390.204 0.182444
\(167\) 3313.72i 1.53547i 0.640767 + 0.767735i \(0.278616\pi\)
−0.640767 + 0.767735i \(0.721384\pi\)
\(168\) 0 0
\(169\) −6323.61 −2.87829
\(170\) −1563.27 + 1976.10i −0.705280 + 0.891530i
\(171\) 0 0
\(172\) 1291.22i 0.572410i
\(173\) 1739.63i 0.764519i 0.924055 + 0.382260i \(0.124854\pi\)
−0.924055 + 0.382260i \(0.875146\pi\)
\(174\) 0 0
\(175\) 2790.72 659.992i 1.20548 0.285090i
\(176\) 367.065 0.157208
\(177\) 0 0
\(178\) 274.217i 0.115469i
\(179\) −942.227 −0.393438 −0.196719 0.980460i \(-0.563029\pi\)
−0.196719 + 0.980460i \(0.563029\pi\)
\(180\) 0 0
\(181\) −1253.09 −0.514594 −0.257297 0.966332i \(-0.582832\pi\)
−0.257297 + 0.966332i \(0.582832\pi\)
\(182\) 4235.35i 1.72497i
\(183\) 0 0
\(184\) 437.469 0.175275
\(185\) 392.836 + 310.769i 0.156118 + 0.123504i
\(186\) 0 0
\(187\) 2585.14i 1.01093i
\(188\) 1453.47i 0.563857i
\(189\) 0 0
\(190\) 1309.71 + 1036.09i 0.500085 + 0.395612i
\(191\) −2021.02 −0.765634 −0.382817 0.923824i \(-0.625046\pi\)
−0.382817 + 0.923824i \(0.625046\pi\)
\(192\) 0 0
\(193\) 2377.04i 0.886546i 0.896387 + 0.443273i \(0.146183\pi\)
−0.896387 + 0.443273i \(0.853817\pi\)
\(194\) −51.2913 −0.0189819
\(195\) 0 0
\(196\) 733.265 0.267225
\(197\) 2616.90i 0.946428i −0.880948 0.473214i \(-0.843094\pi\)
0.880948 0.473214i \(-0.156906\pi\)
\(198\) 0 0
\(199\) −3354.32 −1.19488 −0.597440 0.801913i \(-0.703815\pi\)
−0.597440 + 0.801913i \(0.703815\pi\)
\(200\) −973.156 + 230.147i −0.344063 + 0.0813692i
\(201\) 0 0
\(202\) 1139.51i 0.396908i
\(203\) 6353.02i 2.19652i
\(204\) 0 0
\(205\) −1587.60 + 2006.86i −0.540893 + 0.683732i
\(206\) 2313.63 0.782515
\(207\) 0 0
\(208\) 1476.91i 0.492335i
\(209\) 1713.36 0.567061
\(210\) 0 0
\(211\) −457.113 −0.149142 −0.0745710 0.997216i \(-0.523759\pi\)
−0.0745710 + 0.997216i \(0.523759\pi\)
\(212\) 990.938i 0.321028i
\(213\) 0 0
\(214\) 654.305 0.209006
\(215\) 2830.47 + 2239.15i 0.897843 + 0.710274i
\(216\) 0 0
\(217\) 6202.65i 1.94039i
\(218\) 744.509i 0.231305i
\(219\) 0 0
\(220\) −636.542 + 804.641i −0.195071 + 0.246586i
\(221\) 10401.5 3.16598
\(222\) 0 0
\(223\) 1256.15i 0.377211i −0.982053 0.188606i \(-0.939603\pi\)
0.982053 0.188606i \(-0.0603968\pi\)
\(224\) −734.131 −0.218978
\(225\) 0 0
\(226\) 1257.47 0.370113
\(227\) 4313.09i 1.26110i −0.776148 0.630550i \(-0.782829\pi\)
0.776148 0.630550i \(-0.217171\pi\)
\(228\) 0 0
\(229\) −6814.33 −1.96639 −0.983196 0.182552i \(-0.941564\pi\)
−0.983196 + 0.182552i \(0.941564\pi\)
\(230\) −758.632 + 958.972i −0.217490 + 0.274925i
\(231\) 0 0
\(232\) 2215.37i 0.626924i
\(233\) 5086.20i 1.43008i 0.699084 + 0.715039i \(0.253591\pi\)
−0.699084 + 0.715039i \(0.746409\pi\)
\(234\) 0 0
\(235\) 3186.14 + 2520.52i 0.884428 + 0.699661i
\(236\) −1649.63 −0.455008
\(237\) 0 0
\(238\) 5170.28i 1.40815i
\(239\) 1905.01 0.515584 0.257792 0.966200i \(-0.417005\pi\)
0.257792 + 0.966200i \(0.417005\pi\)
\(240\) 0 0
\(241\) 5688.05 1.52033 0.760165 0.649730i \(-0.225118\pi\)
0.760165 + 0.649730i \(0.225118\pi\)
\(242\) 1609.37i 0.427496i
\(243\) 0 0
\(244\) 141.673 0.0371707
\(245\) −1271.58 + 1607.38i −0.331586 + 0.419151i
\(246\) 0 0
\(247\) 6893.83i 1.77589i
\(248\) 2162.94i 0.553817i
\(249\) 0 0
\(250\) 1183.08 2532.35i 0.299299 0.640640i
\(251\) −1595.09 −0.401121 −0.200561 0.979681i \(-0.564276\pi\)
−0.200561 + 0.979681i \(0.564276\pi\)
\(252\) 0 0
\(253\) 1254.53i 0.311745i
\(254\) 2736.31 0.675950
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 4413.60i 1.07126i 0.844454 + 0.535628i \(0.179925\pi\)
−0.844454 + 0.535628i \(0.820075\pi\)
\(258\) 0 0
\(259\) −1027.82 −0.246585
\(260\) 3237.53 + 2561.18i 0.772243 + 0.610913i
\(261\) 0 0
\(262\) 3350.55i 0.790068i
\(263\) 2312.43i 0.542169i 0.962556 + 0.271085i \(0.0873823\pi\)
−0.962556 + 0.271085i \(0.912618\pi\)
\(264\) 0 0
\(265\) 2172.23 + 1718.42i 0.503543 + 0.398347i
\(266\) −3426.72 −0.789871
\(267\) 0 0
\(268\) 2757.32i 0.628470i
\(269\) −1671.26 −0.378806 −0.189403 0.981899i \(-0.560655\pi\)
−0.189403 + 0.981899i \(0.560655\pi\)
\(270\) 0 0
\(271\) 1727.43 0.387210 0.193605 0.981080i \(-0.437982\pi\)
0.193605 + 0.981080i \(0.437982\pi\)
\(272\) 1802.94i 0.401909i
\(273\) 0 0
\(274\) 2024.51 0.446369
\(275\) −659.992 2790.72i −0.144724 0.611951i
\(276\) 0 0
\(277\) 7181.03i 1.55764i −0.627248 0.778820i \(-0.715819\pi\)
0.627248 0.778820i \(-0.284181\pi\)
\(278\) 317.876i 0.0685789i
\(279\) 0 0
\(280\) 1273.08 1609.28i 0.271719 0.343475i
\(281\) −4134.35 −0.877704 −0.438852 0.898559i \(-0.644615\pi\)
−0.438852 + 0.898559i \(0.644615\pi\)
\(282\) 0 0
\(283\) 5027.77i 1.05608i 0.849221 + 0.528038i \(0.177072\pi\)
−0.849221 + 0.528038i \(0.822928\pi\)
\(284\) −1846.14 −0.385734
\(285\) 0 0
\(286\) 4235.35 0.875669
\(287\) 5250.76i 1.07994i
\(288\) 0 0
\(289\) −7784.60 −1.58449
\(290\) 4856.30 + 3841.76i 0.983350 + 0.777918i
\(291\) 0 0
\(292\) 2495.00i 0.500030i
\(293\) 135.644i 0.0270457i 0.999909 + 0.0135229i \(0.00430459\pi\)
−0.999909 + 0.0135229i \(0.995695\pi\)
\(294\) 0 0
\(295\) 2860.69 3616.14i 0.564596 0.713694i
\(296\) 358.412 0.0703794
\(297\) 0 0
\(298\) 1992.45i 0.387313i
\(299\) 5047.69 0.976306
\(300\) 0 0
\(301\) −7405.65 −1.41812
\(302\) 484.226i 0.0922651i
\(303\) 0 0
\(304\) 1194.94 0.225442
\(305\) −245.680 + 310.559i −0.0461232 + 0.0583035i
\(306\) 0 0
\(307\) 2594.33i 0.482301i −0.970488 0.241151i \(-0.922475\pi\)
0.970488 0.241151i \(-0.0775248\pi\)
\(308\) 2105.27i 0.389476i
\(309\) 0 0
\(310\) 4741.36 + 3750.84i 0.868680 + 0.687204i
\(311\) 518.235 0.0944901 0.0472450 0.998883i \(-0.484956\pi\)
0.0472450 + 0.998883i \(0.484956\pi\)
\(312\) 0 0
\(313\) 682.071i 0.123172i −0.998102 0.0615862i \(-0.980384\pi\)
0.998102 0.0615862i \(-0.0196159\pi\)
\(314\) −2941.93 −0.528735
\(315\) 0 0
\(316\) 4280.20 0.761963
\(317\) 1901.43i 0.336892i −0.985711 0.168446i \(-0.946125\pi\)
0.985711 0.168446i \(-0.0538750\pi\)
\(318\) 0 0
\(319\) 6353.02 1.11505
\(320\) −443.940 + 561.175i −0.0775531 + 0.0980333i
\(321\) 0 0
\(322\) 2509.06i 0.434237i
\(323\) 8415.62i 1.44971i
\(324\) 0 0
\(325\) −11228.7 + 2655.53i −1.91647 + 0.453237i
\(326\) 2763.81 0.469549
\(327\) 0 0
\(328\) 1831.00i 0.308232i
\(329\) −8336.22 −1.39693
\(330\) 0 0
\(331\) 11227.1 1.86435 0.932173 0.362014i \(-0.117911\pi\)
0.932173 + 0.362014i \(0.117911\pi\)
\(332\) 780.407i 0.129007i
\(333\) 0 0
\(334\) −6627.45 −1.08574
\(335\) −6044.29 4781.57i −0.985775 0.779836i
\(336\) 0 0
\(337\) 6467.45i 1.04541i 0.852512 + 0.522707i \(0.175078\pi\)
−0.852512 + 0.522707i \(0.824922\pi\)
\(338\) 12647.2i 2.03526i
\(339\) 0 0
\(340\) −3952.20 3126.55i −0.630407 0.498708i
\(341\) 6202.65 0.985022
\(342\) 0 0
\(343\) 3663.40i 0.576690i
\(344\) 2582.44 0.404755
\(345\) 0 0
\(346\) −3479.27 −0.540597
\(347\) 2046.90i 0.316667i −0.987386 0.158334i \(-0.949388\pi\)
0.987386 0.158334i \(-0.0506122\pi\)
\(348\) 0 0
\(349\) −966.073 −0.148174 −0.0740870 0.997252i \(-0.523604\pi\)
−0.0740870 + 0.997252i \(0.523604\pi\)
\(350\) 1319.98 + 5581.43i 0.201589 + 0.852401i
\(351\) 0 0
\(352\) 734.131i 0.111163i
\(353\) 1787.88i 0.269572i −0.990875 0.134786i \(-0.956965\pi\)
0.990875 0.134786i \(-0.0430348\pi\)
\(354\) 0 0
\(355\) 3201.47 4046.91i 0.478638 0.605036i
\(356\) 548.435 0.0816488
\(357\) 0 0
\(358\) 1884.45i 0.278203i
\(359\) 9893.00 1.45441 0.727204 0.686421i \(-0.240819\pi\)
0.727204 + 0.686421i \(0.240819\pi\)
\(360\) 0 0
\(361\) −1281.36 −0.186814
\(362\) 2506.18i 0.363873i
\(363\) 0 0
\(364\) −8470.69 −1.21974
\(365\) −5469.26 4326.67i −0.784313 0.620461i
\(366\) 0 0
\(367\) 9933.71i 1.41290i 0.707762 + 0.706451i \(0.249705\pi\)
−0.707762 + 0.706451i \(0.750295\pi\)
\(368\) 874.938i 0.123938i
\(369\) 0 0
\(370\) −621.537 + 785.673i −0.0873302 + 0.110392i
\(371\) −5683.42 −0.795333
\(372\) 0 0
\(373\) 3663.08i 0.508491i −0.967140 0.254246i \(-0.918173\pi\)
0.967140 0.254246i \(-0.0818272\pi\)
\(374\) −5170.28 −0.714837
\(375\) 0 0
\(376\) 2906.94 0.398707
\(377\) 25561.8i 3.49205i
\(378\) 0 0
\(379\) 1754.60 0.237805 0.118902 0.992906i \(-0.462062\pi\)
0.118902 + 0.992906i \(0.462062\pi\)
\(380\) −2072.19 + 2619.41i −0.279740 + 0.353613i
\(381\) 0 0
\(382\) 4042.05i 0.541385i
\(383\) 1779.83i 0.237454i −0.992927 0.118727i \(-0.962119\pi\)
0.992927 0.118727i \(-0.0378813\pi\)
\(384\) 0 0
\(385\) 4614.93 + 3650.82i 0.610906 + 0.483281i
\(386\) −4754.09 −0.626883
\(387\) 0 0
\(388\) 102.583i 0.0134223i
\(389\) −9870.69 −1.28654 −0.643270 0.765640i \(-0.722423\pi\)
−0.643270 + 0.765640i \(0.722423\pi\)
\(390\) 0 0
\(391\) −6161.95 −0.796990
\(392\) 1466.53i 0.188957i
\(393\) 0 0
\(394\) 5233.80 0.669226
\(395\) −7422.47 + 9382.59i −0.945481 + 1.19516i
\(396\) 0 0
\(397\) 8433.48i 1.06616i 0.846066 + 0.533078i \(0.178965\pi\)
−0.846066 + 0.533078i \(0.821035\pi\)
\(398\) 6708.63i 0.844908i
\(399\) 0 0
\(400\) −460.294 1946.31i −0.0575367 0.243289i
\(401\) −14407.5 −1.79420 −0.897102 0.441824i \(-0.854332\pi\)
−0.897102 + 0.441824i \(0.854332\pi\)
\(402\) 0 0
\(403\) 24956.8i 3.08483i
\(404\) −2279.02 −0.280657
\(405\) 0 0
\(406\) −12706.0 −1.55318
\(407\) 1027.82i 0.125177i
\(408\) 0 0
\(409\) 2569.33 0.310624 0.155312 0.987865i \(-0.450362\pi\)
0.155312 + 0.987865i \(0.450362\pi\)
\(410\) −4013.72 3175.21i −0.483472 0.382469i
\(411\) 0 0
\(412\) 4627.26i 0.553322i
\(413\) 9461.29i 1.12726i
\(414\) 0 0
\(415\) −1710.72 1353.33i −0.202352 0.160078i
\(416\) 2953.83 0.348133
\(417\) 0 0
\(418\) 3426.72i 0.400972i
\(419\) 12267.6 1.43033 0.715167 0.698953i \(-0.246351\pi\)
0.715167 + 0.698953i \(0.246351\pi\)
\(420\) 0 0
\(421\) −1203.72 −0.139349 −0.0696745 0.997570i \(-0.522196\pi\)
−0.0696745 + 0.997570i \(0.522196\pi\)
\(422\) 914.226i 0.105459i
\(423\) 0 0
\(424\) 1981.88 0.227001
\(425\) 13707.3 3241.72i 1.56448 0.369992i
\(426\) 0 0
\(427\) 812.548i 0.0920889i
\(428\) 1308.61i 0.147790i
\(429\) 0 0
\(430\) −4478.31 + 5660.94i −0.502240 + 0.634871i
\(431\) −6975.41 −0.779568 −0.389784 0.920906i \(-0.627450\pi\)
−0.389784 + 0.920906i \(0.627450\pi\)
\(432\) 0 0
\(433\) 4595.66i 0.510054i 0.966934 + 0.255027i \(0.0820844\pi\)
−0.966934 + 0.255027i \(0.917916\pi\)
\(434\) −12405.3 −1.37206
\(435\) 0 0
\(436\) −1489.02 −0.163557
\(437\) 4083.97i 0.447055i
\(438\) 0 0
\(439\) 4709.81 0.512044 0.256022 0.966671i \(-0.417588\pi\)
0.256022 + 0.966671i \(0.417588\pi\)
\(440\) −1609.28 1273.08i −0.174362 0.137936i
\(441\) 0 0
\(442\) 20803.0i 2.23868i
\(443\) 10640.9i 1.14123i −0.821216 0.570617i \(-0.806704\pi\)
0.821216 0.570617i \(-0.193296\pi\)
\(444\) 0 0
\(445\) −951.062 + 1202.22i −0.101314 + 0.128069i
\(446\) 2512.30 0.266729
\(447\) 0 0
\(448\) 1468.26i 0.154841i
\(449\) −4074.41 −0.428248 −0.214124 0.976807i \(-0.568690\pi\)
−0.214124 + 0.976807i \(0.568690\pi\)
\(450\) 0 0
\(451\) −5250.76 −0.548223
\(452\) 2514.94i 0.261710i
\(453\) 0 0
\(454\) 8626.18 0.891733
\(455\) 14689.4 18568.5i 1.51351 1.91320i
\(456\) 0 0
\(457\) 14066.1i 1.43979i −0.694084 0.719894i \(-0.744191\pi\)
0.694084 0.719894i \(-0.255809\pi\)
\(458\) 13628.7i 1.39045i
\(459\) 0 0
\(460\) −1917.94 1517.26i −0.194401 0.153789i
\(461\) 13134.3 1.32696 0.663479 0.748195i \(-0.269079\pi\)
0.663479 + 0.748195i \(0.269079\pi\)
\(462\) 0 0
\(463\) 139.955i 0.0140481i 0.999975 + 0.00702403i \(0.00223584\pi\)
−0.999975 + 0.00702403i \(0.997764\pi\)
\(464\) 4430.74 0.443302
\(465\) 0 0
\(466\) −10172.4 −1.01122
\(467\) 587.270i 0.0581919i −0.999577 0.0290960i \(-0.990737\pi\)
0.999577 0.0290960i \(-0.00926284\pi\)
\(468\) 0 0
\(469\) 15814.3 1.55701
\(470\) −5041.04 + 6372.27i −0.494735 + 0.625385i
\(471\) 0 0
\(472\) 3299.26i 0.321739i
\(473\) 7405.65i 0.719899i
\(474\) 0 0
\(475\) −2148.53 9084.85i −0.207539 0.877561i
\(476\) 10340.6 0.995712
\(477\) 0 0
\(478\) 3810.01i 0.364573i
\(479\) −15456.7 −1.47439 −0.737196 0.675679i \(-0.763851\pi\)
−0.737196 + 0.675679i \(0.763851\pi\)
\(480\) 0 0
\(481\) 4135.50 0.392022
\(482\) 11376.1i 1.07504i
\(483\) 0 0
\(484\) 3218.73 0.302285
\(485\) 224.870 + 177.892i 0.0210533 + 0.0166550i
\(486\) 0 0
\(487\) 18448.4i 1.71658i −0.513164 0.858291i \(-0.671527\pi\)
0.513164 0.858291i \(-0.328473\pi\)
\(488\) 283.345i 0.0262837i
\(489\) 0 0
\(490\) −3214.77 2543.17i −0.296385 0.234467i
\(491\) −518.918 −0.0476954 −0.0238477 0.999716i \(-0.507592\pi\)
−0.0238477 + 0.999716i \(0.507592\pi\)
\(492\) 0 0
\(493\) 31204.5i 2.85067i
\(494\) 13787.7 1.25574
\(495\) 0 0
\(496\) 4325.88 0.391608
\(497\) 10588.4i 0.955640i
\(498\) 0 0
\(499\) 5853.01 0.525084 0.262542 0.964921i \(-0.415439\pi\)
0.262542 + 0.964921i \(0.415439\pi\)
\(500\) 5064.71 + 2366.17i 0.453001 + 0.211637i
\(501\) 0 0
\(502\) 3190.19i 0.283636i
\(503\) 15178.2i 1.34546i 0.739890 + 0.672728i \(0.234877\pi\)
−0.739890 + 0.672728i \(0.765123\pi\)
\(504\) 0 0
\(505\) 3952.13 4995.81i 0.348253 0.440219i
\(506\) −2509.06 −0.220437
\(507\) 0 0
\(508\) 5472.62i 0.477969i
\(509\) 5421.02 0.472068 0.236034 0.971745i \(-0.424152\pi\)
0.236034 + 0.971745i \(0.424152\pi\)
\(510\) 0 0
\(511\) 14309.8 1.23880
\(512\) 512.000i 0.0441942i
\(513\) 0 0
\(514\) −8827.20 −0.757492
\(515\) −10143.4 8024.30i −0.867903 0.686589i
\(516\) 0 0
\(517\) 8336.22i 0.709142i
\(518\) 2055.64i 0.174362i
\(519\) 0 0
\(520\) −5122.35 + 6475.06i −0.431981 + 0.546058i
\(521\) −8494.96 −0.714340 −0.357170 0.934039i \(-0.616258\pi\)
−0.357170 + 0.934039i \(0.616258\pi\)
\(522\) 0 0
\(523\) 4363.31i 0.364808i −0.983224 0.182404i \(-0.941612\pi\)
0.983224 0.182404i \(-0.0583878\pi\)
\(524\) 6701.11 0.558663
\(525\) 0 0
\(526\) −4624.86 −0.383372
\(527\) 30466.0i 2.51825i
\(528\) 0 0
\(529\) 9176.70 0.754229
\(530\) −3436.85 + 4344.45i −0.281674 + 0.356058i
\(531\) 0 0
\(532\) 6853.44i 0.558523i
\(533\) 21126.8i 1.71689i
\(534\) 0 0
\(535\) −2868.59 2269.31i −0.231813 0.183385i
\(536\) −5514.63 −0.444395
\(537\) 0 0
\(538\) 3342.53i 0.267856i
\(539\) −4205.57 −0.336079
\(540\) 0 0
\(541\) −16112.3 −1.28044 −0.640222 0.768190i \(-0.721158\pi\)
−0.640222 + 0.768190i \(0.721158\pi\)
\(542\) 3454.86i 0.273799i
\(543\) 0 0
\(544\) −3605.88 −0.284192
\(545\) 2582.16 3264.06i 0.202950 0.256545i
\(546\) 0 0
\(547\) 9522.61i 0.744346i −0.928163 0.372173i \(-0.878613\pi\)
0.928163 0.372173i \(-0.121387\pi\)
\(548\) 4049.02i 0.315630i
\(549\) 0 0
\(550\) 5581.43 1319.98i 0.432715 0.102335i
\(551\) 20681.5 1.59902
\(552\) 0 0
\(553\) 24548.7i 1.88773i
\(554\) 14362.1 1.10142
\(555\) 0 0
\(556\) −635.752 −0.0484926
\(557\) 21740.5i 1.65381i −0.562339 0.826907i \(-0.690098\pi\)
0.562339 0.826907i \(-0.309902\pi\)
\(558\) 0 0
\(559\) 29797.2 2.25454
\(560\) 3218.56 + 2546.17i 0.242873 + 0.192134i
\(561\) 0 0
\(562\) 8268.71i 0.620630i
\(563\) 6514.93i 0.487693i −0.969814 0.243847i \(-0.921591\pi\)
0.969814 0.243847i \(-0.0784094\pi\)
\(564\) 0 0
\(565\) −5512.97 4361.25i −0.410500 0.324742i
\(566\) −10055.5 −0.746759
\(567\) 0 0
\(568\) 3692.29i 0.272755i
\(569\) 25108.1 1.84989 0.924944 0.380105i \(-0.124112\pi\)
0.924944 + 0.380105i \(0.124112\pi\)
\(570\) 0 0
\(571\) 1863.83 0.136600 0.0683000 0.997665i \(-0.478242\pi\)
0.0683000 + 0.997665i \(0.478242\pi\)
\(572\) 8470.69i 0.619191i
\(573\) 0 0
\(574\) 10501.5 0.763632
\(575\) 6651.96 1573.16i 0.482445 0.114096i
\(576\) 0 0
\(577\) 20829.5i 1.50285i −0.659819 0.751424i \(-0.729367\pi\)
0.659819 0.751424i \(-0.270633\pi\)
\(578\) 15569.2i 1.12040i
\(579\) 0 0
\(580\) −7683.53 + 9712.59i −0.550071 + 0.695333i
\(581\) 4475.94 0.319610
\(582\) 0 0
\(583\) 5683.42i 0.403745i
\(584\) −4989.99 −0.353574
\(585\) 0 0
\(586\) −271.288 −0.0191242
\(587\) 15537.3i 1.09249i 0.837624 + 0.546247i \(0.183944\pi\)
−0.837624 + 0.546247i \(0.816056\pi\)
\(588\) 0 0
\(589\) 20192.0 1.41256
\(590\) 7232.28 + 5721.38i 0.504658 + 0.399230i
\(591\) 0 0
\(592\) 716.825i 0.0497657i
\(593\) 4495.44i 0.311308i 0.987812 + 0.155654i \(0.0497485\pi\)
−0.987812 + 0.155654i \(0.950252\pi\)
\(594\) 0 0
\(595\) −17932.0 + 22667.5i −1.23553 + 1.56181i
\(596\) −3984.89 −0.273872
\(597\) 0 0
\(598\) 10095.4i 0.690352i
\(599\) −27270.9 −1.86020 −0.930100 0.367307i \(-0.880280\pi\)
−0.930100 + 0.367307i \(0.880280\pi\)
\(600\) 0 0
\(601\) −22616.8 −1.53504 −0.767520 0.641025i \(-0.778509\pi\)
−0.767520 + 0.641025i \(0.778509\pi\)
\(602\) 14811.3i 1.00276i
\(603\) 0 0
\(604\) −968.451 −0.0652413
\(605\) −5581.73 + 7055.76i −0.375090 + 0.474144i
\(606\) 0 0
\(607\) 19720.3i 1.31865i 0.751857 + 0.659326i \(0.229158\pi\)
−0.751857 + 0.659326i \(0.770842\pi\)
\(608\) 2389.88i 0.159412i
\(609\) 0 0
\(610\) −621.118 491.360i −0.0412268 0.0326141i
\(611\) 33541.4 2.22085
\(612\) 0 0
\(613\) 5447.29i 0.358913i −0.983766 0.179457i \(-0.942566\pi\)
0.983766 0.179457i \(-0.0574340\pi\)
\(614\) 5188.67 0.341039
\(615\) 0 0
\(616\) 4210.53 0.275401
\(617\) 12015.4i 0.783993i 0.919967 + 0.391996i \(0.128215\pi\)
−0.919967 + 0.391996i \(0.871785\pi\)
\(618\) 0 0
\(619\) −2316.36 −0.150408 −0.0752039 0.997168i \(-0.523961\pi\)
−0.0752039 + 0.997168i \(0.523961\pi\)
\(620\) −7501.67 + 9482.71i −0.485926 + 0.614250i
\(621\) 0 0
\(622\) 1036.47i 0.0668146i
\(623\) 3145.49i 0.202282i
\(624\) 0 0
\(625\) −13969.8 + 6999.03i −0.894065 + 0.447938i
\(626\) 1364.14 0.0870960
\(627\) 0 0
\(628\) 5883.86i 0.373872i
\(629\) −5048.40 −0.320021
\(630\) 0 0
\(631\) 7324.32 0.462087 0.231043 0.972943i \(-0.425786\pi\)
0.231043 + 0.972943i \(0.425786\pi\)
\(632\) 8560.41i 0.538789i
\(633\) 0 0
\(634\) 3802.86 0.238219
\(635\) −11996.5 9490.29i −0.749710 0.593088i
\(636\) 0 0
\(637\) 16921.4i 1.05251i
\(638\) 12706.0i 0.788459i
\(639\) 0 0
\(640\) −1122.35 887.879i −0.0693200 0.0548383i
\(641\) 90.2295 0.00555983 0.00277991 0.999996i \(-0.499115\pi\)
0.00277991 + 0.999996i \(0.499115\pi\)
\(642\) 0 0
\(643\) 11101.0i 0.680842i 0.940273 + 0.340421i \(0.110570\pi\)
−0.940273 + 0.340421i \(0.889430\pi\)
\(644\) 5018.12 0.307052
\(645\) 0 0
\(646\) −16831.2 −1.02510
\(647\) 5204.38i 0.316237i −0.987420 0.158118i \(-0.949457\pi\)
0.987420 0.158118i \(-0.0505428\pi\)
\(648\) 0 0
\(649\) 9461.29 0.572247
\(650\) −5311.05 22457.3i −0.320487 1.35515i
\(651\) 0 0
\(652\) 5527.61i 0.332022i
\(653\) 18852.8i 1.12981i −0.825155 0.564907i \(-0.808912\pi\)
0.825155 0.564907i \(-0.191088\pi\)
\(654\) 0 0
\(655\) −11620.7 + 14689.4i −0.693216 + 0.876280i
\(656\) −3662.00 −0.217953
\(657\) 0 0
\(658\) 16672.4i 0.987780i
\(659\) 13402.4 0.792238 0.396119 0.918199i \(-0.370357\pi\)
0.396119 + 0.918199i \(0.370357\pi\)
\(660\) 0 0
\(661\) −15928.1 −0.937267 −0.468633 0.883393i \(-0.655253\pi\)
−0.468633 + 0.883393i \(0.655253\pi\)
\(662\) 22454.2i 1.31829i
\(663\) 0 0
\(664\) −1560.81 −0.0912219
\(665\) 15023.4 + 11884.8i 0.876062 + 0.693043i
\(666\) 0 0
\(667\) 15143.1i 0.879073i
\(668\) 13254.9i 0.767735i
\(669\) 0 0
\(670\) 9563.14 12088.6i 0.551427 0.697048i
\(671\) −812.548 −0.0467482
\(672\) 0 0
\(673\) 355.395i 0.0203558i 0.999948 + 0.0101779i \(0.00323979\pi\)
−0.999948 + 0.0101779i \(0.996760\pi\)
\(674\) −12934.9 −0.739219
\(675\) 0 0
\(676\) 25294.4 1.43915
\(677\) 18243.7i 1.03569i 0.855474 + 0.517846i \(0.173266\pi\)
−0.855474 + 0.517846i \(0.826734\pi\)
\(678\) 0 0
\(679\) −588.351 −0.0332531
\(680\) 6253.09 7904.41i 0.352640 0.445765i
\(681\) 0 0
\(682\) 12405.3i 0.696516i
\(683\) 5682.31i 0.318342i 0.987251 + 0.159171i \(0.0508821\pi\)
−0.987251 + 0.159171i \(0.949118\pi\)
\(684\) 0 0
\(685\) −8875.81 7021.56i −0.495076 0.391650i
\(686\) −7326.79 −0.407782
\(687\) 0 0
\(688\) 5164.87i 0.286205i
\(689\) 22867.7 1.26442
\(690\) 0 0
\(691\) −24469.4 −1.34712 −0.673559 0.739133i \(-0.735235\pi\)
−0.673559 + 0.739133i \(0.735235\pi\)
\(692\) 6958.53i 0.382260i
\(693\) 0 0
\(694\) 4093.81 0.223918
\(695\) 1102.48 1393.63i 0.0601720 0.0760622i
\(696\) 0 0
\(697\) 25790.5i 1.40155i
\(698\) 1932.15i 0.104775i
\(699\) 0 0
\(700\) −11162.9 + 2639.97i −0.602738 + 0.142545i
\(701\) −25286.9 −1.36244 −0.681222 0.732077i \(-0.738551\pi\)
−0.681222 + 0.732077i \(0.738551\pi\)
\(702\) 0 0
\(703\) 3345.94i 0.179509i
\(704\) −1468.26 −0.0786040
\(705\) 0 0
\(706\) 3575.75 0.190616
\(707\) 13071.1i 0.695315i
\(708\) 0 0
\(709\) −32374.8 −1.71490 −0.857448 0.514570i \(-0.827952\pi\)
−0.857448 + 0.514570i \(0.827952\pi\)
\(710\) 8093.83 + 6402.94i 0.427825 + 0.338448i
\(711\) 0 0
\(712\) 1096.87i 0.0577345i
\(713\) 14784.7i 0.776564i
\(714\) 0 0
\(715\) −18568.5 14689.4i −0.971221 0.768323i
\(716\) 3768.91 0.196719
\(717\) 0 0
\(718\) 19786.0i 1.02842i
\(719\) −22565.9 −1.17047 −0.585233 0.810865i \(-0.698997\pi\)
−0.585233 + 0.810865i \(0.698997\pi\)
\(720\) 0 0
\(721\) 26539.1 1.37083
\(722\) 2562.71i 0.132097i
\(723\) 0 0
\(724\) 5012.36 0.257297
\(725\) −7966.58 33686.0i −0.408098 1.72561i
\(726\) 0 0
\(727\) 24371.4i 1.24331i 0.783292 + 0.621654i \(0.213539\pi\)
−0.783292 + 0.621654i \(0.786461\pi\)
\(728\) 16941.4i 0.862485i
\(729\) 0 0
\(730\) 8653.34 10938.5i 0.438732 0.554593i
\(731\) −36374.8 −1.84045
\(732\) 0 0
\(733\) 13467.4i 0.678621i −0.940674 0.339311i \(-0.889806\pi\)
0.940674 0.339311i \(-0.110194\pi\)
\(734\) −19867.4 −0.999073
\(735\) 0 0
\(736\) −1749.88 −0.0876376
\(737\) 15814.3i 0.790404i
\(738\) 0 0
\(739\) 16009.5 0.796911 0.398456 0.917188i \(-0.369546\pi\)
0.398456 + 0.917188i \(0.369546\pi\)
\(740\) −1571.35 1243.07i −0.0780592 0.0617518i
\(741\) 0 0
\(742\) 11366.8i 0.562385i
\(743\) 10714.7i 0.529052i −0.964379 0.264526i \(-0.914785\pi\)
0.964379 0.264526i \(-0.0852155\pi\)
\(744\) 0 0
\(745\) 6910.36 8735.24i 0.339833 0.429577i
\(746\) 7326.16 0.359558
\(747\) 0 0
\(748\) 10340.6i 0.505466i
\(749\) 7505.40 0.366143
\(750\) 0 0
\(751\) 4772.75 0.231904 0.115952 0.993255i \(-0.463008\pi\)
0.115952 + 0.993255i \(0.463008\pi\)
\(752\) 5813.88i 0.281929i
\(753\) 0 0
\(754\) 51123.7 2.46925
\(755\) 1679.43 2122.93i 0.0809546 0.102333i
\(756\) 0 0
\(757\) 24326.3i 1.16797i 0.811764 + 0.583985i \(0.198507\pi\)
−0.811764 + 0.583985i \(0.801493\pi\)
\(758\) 3509.21i 0.168153i
\(759\) 0 0
\(760\) −5238.82 4144.38i −0.250042 0.197806i
\(761\) −13038.2 −0.621070 −0.310535 0.950562i \(-0.600508\pi\)
−0.310535 + 0.950562i \(0.600508\pi\)
\(762\) 0 0
\(763\) 8540.11i 0.405207i
\(764\) 8084.09 0.382817
\(765\) 0 0
\(766\) 3559.65 0.167905
\(767\) 38068.2i 1.79213i
\(768\) 0 0
\(769\) 21815.7 1.02301 0.511505 0.859280i \(-0.329088\pi\)
0.511505 + 0.859280i \(0.329088\pi\)
\(770\) −7301.65 + 9229.87i −0.341731 + 0.431976i
\(771\) 0 0
\(772\) 9508.18i 0.443273i
\(773\) 23946.0i 1.11420i −0.830446 0.557100i \(-0.811914\pi\)
0.830446 0.557100i \(-0.188086\pi\)
\(774\) 0 0
\(775\) −7778.02 32888.7i −0.360509 1.52438i
\(776\) 205.165 0.00949097
\(777\) 0 0
\(778\) 19741.4i 0.909721i
\(779\) −17093.2 −0.786172
\(780\) 0 0
\(781\) 10588.4 0.485123
\(782\) 12323.9i 0.563557i
\(783\) 0 0
\(784\) −2933.06 −0.133613
\(785\) 12898.0 + 10203.4i 0.586430 + 0.463919i
\(786\) 0 0
\(787\) 13567.9i 0.614540i −0.951622 0.307270i \(-0.900584\pi\)
0.951622 0.307270i \(-0.0994156\pi\)
\(788\) 10467.6i 0.473214i
\(789\) 0 0
\(790\) −18765.2 14844.9i −0.845108 0.668556i
\(791\) 14424.2 0.648375
\(792\) 0 0
\(793\) 3269.35i 0.146403i
\(794\) −16867.0 −0.753887
\(795\) 0 0
\(796\) 13417.3 0.597440
\(797\) 39913.7i 1.77392i −0.461843 0.886962i \(-0.652812\pi\)
0.461843 0.886962i \(-0.347188\pi\)
\(798\) 0 0
\(799\) −40945.5 −1.81295
\(800\) 3892.62 920.588i 0.172031 0.0406846i
\(801\) 0 0
\(802\) 28815.0i 1.26869i
\(803\) 14309.8i 0.628869i
\(804\) 0 0
\(805\) −8702.11 + 11000.2i −0.381005 + 0.481621i
\(806\) 49913.7 2.18131
\(807\) 0 0
\(808\) 4558.03i 0.198454i
\(809\) 13891.2 0.603696 0.301848 0.953356i \(-0.402396\pi\)
0.301848 + 0.953356i \(0.402396\pi\)
\(810\) 0 0
\(811\) −24237.7 −1.04945 −0.524723 0.851273i \(-0.675831\pi\)
−0.524723 + 0.851273i \(0.675831\pi\)
\(812\) 25412.1i 1.09826i
\(813\) 0 0
\(814\) −2055.64 −0.0885136
\(815\) −12117.0 9585.65i −0.520787 0.411989i
\(816\) 0 0
\(817\) 24108.2i 1.03236i
\(818\) 5138.65i 0.219644i
\(819\) 0 0
\(820\) 6350.42 8027.44i 0.270447 0.341866i
\(821\) −19978.0 −0.849254 −0.424627 0.905368i \(-0.639595\pi\)
−0.424627 + 0.905368i \(0.639595\pi\)
\(822\) 0 0
\(823\) 42871.5i 1.81580i 0.419182 + 0.907902i \(0.362317\pi\)
−0.419182 + 0.907902i \(0.637683\pi\)
\(824\) −9254.51 −0.391257
\(825\) 0 0
\(826\) −18922.6 −0.797095
\(827\) 360.143i 0.0151432i 0.999971 + 0.00757159i \(0.00241013\pi\)
−0.999971 + 0.00757159i \(0.997590\pi\)
\(828\) 0 0
\(829\) 15020.5 0.629294 0.314647 0.949209i \(-0.398114\pi\)
0.314647 + 0.949209i \(0.398114\pi\)
\(830\) 2706.67 3421.45i 0.113193 0.143084i
\(831\) 0 0
\(832\) 5907.66i 0.246167i
\(833\) 20656.8i 0.859201i
\(834\) 0 0
\(835\) 29055.9 + 22985.8i 1.20422 + 0.952644i
\(836\) −6853.44 −0.283530
\(837\) 0 0
\(838\) 24535.1i 1.01140i
\(839\) −29440.2 −1.21143 −0.605714 0.795682i \(-0.707113\pi\)
−0.605714 + 0.795682i \(0.707113\pi\)
\(840\) 0 0
\(841\) 52296.5 2.14427
\(842\) 2407.45i 0.0985346i
\(843\) 0 0
\(844\) 1828.45 0.0745710
\(845\) −43864.1 + 55447.7i −1.78576 + 2.25735i
\(846\) 0 0
\(847\) 18460.7i 0.748899i
\(848\) 3963.75i 0.160514i
\(849\) 0 0
\(850\) 6483.45 + 27414.7i 0.261624 + 1.10625i
\(851\) −2449.91 −0.0986861
\(852\) 0 0
\(853\) 14688.6i 0.589601i −0.955559 0.294801i \(-0.904747\pi\)
0.955559 0.294801i \(-0.0952532\pi\)
\(854\) 1625.10 0.0651167
\(855\) 0 0
\(856\) −2617.22 −0.104503
\(857\) 7812.22i 0.311389i −0.987805 0.155694i \(-0.950238\pi\)
0.987805 0.155694i \(-0.0497615\pi\)
\(858\) 0 0
\(859\) −4035.68 −0.160298 −0.0801488 0.996783i \(-0.525540\pi\)
−0.0801488 + 0.996783i \(0.525540\pi\)
\(860\) −11321.9 8956.61i −0.448922 0.355137i
\(861\) 0 0
\(862\) 13950.8i 0.551238i
\(863\) 32201.0i 1.27015i 0.772452 + 0.635073i \(0.219030\pi\)
−0.772452 + 0.635073i \(0.780970\pi\)
\(864\) 0 0
\(865\) 15253.7 + 12067.1i 0.599587 + 0.474326i
\(866\) −9191.32 −0.360663
\(867\) 0 0
\(868\) 24810.6i 0.970193i
\(869\) −24548.7 −0.958293
\(870\) 0 0
\(871\) −63630.0 −2.47534
\(872\) 2978.04i 0.115653i
\(873\) 0 0
\(874\) −8167.94 −0.316115
\(875\) 13570.9 29048.1i 0.524321 1.12229i
\(876\) 0 0
\(877\) 18350.3i 0.706551i 0.935519 + 0.353275i \(0.114932\pi\)
−0.935519 + 0.353275i \(0.885068\pi\)
\(878\) 9419.63i 0.362070i
\(879\) 0 0
\(880\) 2546.17 3218.56i 0.0975356 0.123293i
\(881\) −32914.7 −1.25871 −0.629356 0.777117i \(-0.716681\pi\)
−0.629356 + 0.777117i \(0.716681\pi\)
\(882\) 0 0
\(883\) 27122.2i 1.03367i −0.856084 0.516837i \(-0.827109\pi\)
0.856084 0.516837i \(-0.172891\pi\)
\(884\) −41606.0 −1.58299
\(885\) 0 0
\(886\) 21281.9 0.806974
\(887\) 35660.0i 1.34988i 0.737872 + 0.674941i \(0.235831\pi\)
−0.737872 + 0.674941i \(0.764169\pi\)
\(888\) 0 0
\(889\) 31387.7 1.18415
\(890\) −2404.44 1902.12i −0.0905584 0.0716397i
\(891\) 0 0
\(892\) 5024.61i 0.188606i
\(893\) 27137.6i 1.01694i
\(894\) 0 0
\(895\) −6535.81 + 8261.79i −0.244099 + 0.308560i
\(896\) 2936.52 0.109489
\(897\) 0 0
\(898\) 8148.82i 0.302817i
\(899\) 74870.5 2.77761
\(900\) 0 0
\(901\) −27915.6 −1.03219
\(902\) 10501.5i 0.387652i
\(903\) 0 0
\(904\) −5029.88 −0.185057
\(905\) −8692.13 + 10987.6i −0.319267 + 0.403579i
\(906\) 0 0
\(907\) 13630.5i 0.499002i −0.968375 0.249501i \(-0.919733\pi\)
0.968375 0.249501i \(-0.0802666\pi\)
\(908\) 17252.4i 0.630550i
\(909\) 0 0
\(910\) 37137.0 + 29378.7i 1.35284 + 1.07021i
\(911\) 36521.1 1.32821 0.664104 0.747640i \(-0.268813\pi\)
0.664104 + 0.747640i \(0.268813\pi\)
\(912\) 0 0
\(913\) 4475.94i 0.162248i
\(914\) 28132.1 1.01808
\(915\) 0 0
\(916\) 27257.3 0.983196
\(917\) 38433.5i 1.38406i
\(918\) 0 0
\(919\) −13527.6 −0.485565 −0.242782 0.970081i \(-0.578060\pi\)
−0.242782 + 0.970081i \(0.578060\pi\)
\(920\) 3034.53 3835.89i 0.108745 0.137462i
\(921\) 0 0
\(922\) 26268.7i 0.938301i
\(923\) 42603.1i 1.51928i
\(924\) 0 0
\(925\) 5449.86 1288.87i 0.193719 0.0458137i
\(926\) −279.910 −0.00993348
\(927\) 0 0
\(928\) 8861.49i 0.313462i
\(929\) 38200.4 1.34910 0.674550 0.738229i \(-0.264338\pi\)
0.674550 + 0.738229i \(0.264338\pi\)
\(930\) 0 0
\(931\) −13690.7 −0.481950
\(932\) 20344.8i 0.715039i
\(933\) 0 0
\(934\) 1174.54 0.0411479
\(935\) 22667.5 + 17932.0i 0.792840 + 0.627207i
\(936\) 0 0
\(937\) 45991.8i 1.60351i −0.597654 0.801754i \(-0.703900\pi\)
0.597654 0.801754i \(-0.296100\pi\)
\(938\) 31628.6i 1.10097i
\(939\) 0 0
\(940\) −12744.5 10082.1i −0.442214 0.349831i
\(941\) −3180.14 −0.110170 −0.0550848 0.998482i \(-0.517543\pi\)
−0.0550848 + 0.998482i \(0.517543\pi\)
\(942\) 0 0
\(943\) 12515.7i 0.432203i
\(944\) 6598.52 0.227504
\(945\) 0 0
\(946\) −14811.3 −0.509045
\(947\) 56742.3i 1.94707i 0.228536 + 0.973535i \(0.426606\pi\)
−0.228536 + 0.973535i \(0.573394\pi\)
\(948\) 0 0
\(949\) −57576.5 −1.96946
\(950\) 18169.7 4297.05i 0.620529 0.146752i
\(951\) 0 0
\(952\) 20681.1i 0.704075i
\(953\) 17765.0i 0.603846i −0.953332 0.301923i \(-0.902371\pi\)
0.953332 0.301923i \(-0.0976285\pi\)
\(954\) 0 0
\(955\) −14018.9 + 17721.1i −0.475018 + 0.600461i
\(956\) −7620.02 −0.257792
\(957\) 0 0
\(958\) 30913.4i 1.04255i
\(959\) 23222.7 0.781961
\(960\) 0 0
\(961\) 43307.5 1.45371
\(962\) 8271.01i 0.277202i
\(963\) 0 0
\(964\) −22752.2 −0.760165
\(965\) 20842.8 + 16488.5i 0.695288 + 0.550035i
\(966\) 0 0
\(967\) 35530.1i 1.18156i −0.806832 0.590781i \(-0.798820\pi\)
0.806832 0.590781i \(-0.201180\pi\)
\(968\) 6437.47i 0.213748i
\(969\) 0 0
\(970\) −355.785 + 449.740i −0.0117769 + 0.0148869i
\(971\) 26227.6 0.866822 0.433411 0.901196i \(-0.357310\pi\)
0.433411 + 0.901196i \(0.357310\pi\)
\(972\) 0 0
\(973\) 3646.29i 0.120138i
\(974\) 36896.7 1.21381
\(975\) 0 0
\(976\) −566.690 −0.0185854
\(977\) 13869.8i 0.454182i −0.973874 0.227091i \(-0.927079\pi\)
0.973874 0.227091i \(-0.0729214\pi\)
\(978\) 0 0
\(979\) −3145.49 −0.102687
\(980\) 5086.34 6429.54i 0.165793 0.209576i
\(981\) 0 0
\(982\) 1037.84i 0.0337257i
\(983\) 19637.7i 0.637177i −0.947893 0.318588i \(-0.896791\pi\)
0.947893 0.318588i \(-0.103209\pi\)
\(984\) 0 0
\(985\) −22945.9 18152.3i −0.742251 0.587187i
\(986\) −62409.0 −2.01573
\(987\) 0 0
\(988\) 27575.3i 0.887943i
\(989\) −17652.1 −0.567548
\(990\) 0 0
\(991\) −5935.20 −0.190250 −0.0951251 0.995465i \(-0.530325\pi\)
−0.0951251 + 0.995465i \(0.530325\pi\)
\(992\) 8651.75i 0.276909i
\(993\) 0 0
\(994\) −21176.7 −0.675739
\(995\) −23267.4 + 29411.9i −0.741333 + 0.937104i
\(996\) 0 0
\(997\) 42278.0i 1.34299i −0.741011 0.671493i \(-0.765653\pi\)
0.741011 0.671493i \(-0.234347\pi\)
\(998\) 11706.0i 0.371290i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.4.c.e.109.7 yes 8
3.2 odd 2 inner 270.4.c.e.109.2 8
5.2 odd 4 1350.4.a.bu.1.2 4
5.3 odd 4 1350.4.a.bv.1.3 4
5.4 even 2 inner 270.4.c.e.109.3 yes 8
15.2 even 4 1350.4.a.bv.1.2 4
15.8 even 4 1350.4.a.bu.1.3 4
15.14 odd 2 inner 270.4.c.e.109.6 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.4.c.e.109.2 8 3.2 odd 2 inner
270.4.c.e.109.3 yes 8 5.4 even 2 inner
270.4.c.e.109.6 yes 8 15.14 odd 2 inner
270.4.c.e.109.7 yes 8 1.1 even 1 trivial
1350.4.a.bu.1.2 4 5.2 odd 4
1350.4.a.bu.1.3 4 15.8 even 4
1350.4.a.bv.1.2 4 15.2 even 4
1350.4.a.bv.1.3 4 5.3 odd 4