Properties

Label 1350.4.a.bv.1.2
Level $1350$
Weight $4$
Character 1350.1
Self dual yes
Analytic conductor $79.653$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,4,Mod(1,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,8,0,16,0,0,0,32,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.6525785077\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.29021904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 50x^{2} + 109 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 270)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.51141\) of defining polynomial
Character \(\chi\) \(=\) 1350.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +4.00000 q^{4} -22.9416 q^{7} +8.00000 q^{8} -22.9416 q^{11} -92.3072 q^{13} -45.8832 q^{14} +16.0000 q^{16} +112.684 q^{17} -74.6836 q^{19} -45.8832 q^{22} -54.6836 q^{23} -184.614 q^{26} -91.7663 q^{28} +276.921 q^{29} +270.367 q^{31} +32.0000 q^{32} +225.367 q^{34} -44.8016 q^{37} -149.367 q^{38} +228.875 q^{41} +322.805 q^{43} -91.7663 q^{44} -109.367 q^{46} +363.367 q^{47} +183.316 q^{49} -369.229 q^{52} -247.735 q^{53} -183.533 q^{56} +553.843 q^{58} +412.408 q^{59} -35.4181 q^{61} +540.735 q^{62} +64.0000 q^{64} +689.329 q^{67} +450.735 q^{68} -461.536 q^{71} -623.749 q^{73} -89.6031 q^{74} -298.735 q^{76} +526.316 q^{77} +1070.05 q^{79} +457.750 q^{82} +195.102 q^{83} +645.609 q^{86} -183.533 q^{88} -137.109 q^{89} +2117.67 q^{91} -218.735 q^{92} +726.735 q^{94} -25.6456 q^{97} +366.633 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{2} + 16 q^{4} + 32 q^{8} + 64 q^{16} + 110 q^{17} + 42 q^{19} + 122 q^{23} + 400 q^{31} + 128 q^{32} + 220 q^{34} + 84 q^{38} + 244 q^{46} + 772 q^{47} + 1074 q^{49} + 372 q^{53} + 1562 q^{61}+ \cdots + 2148 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 0 0
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) −22.9416 −1.23873 −0.619365 0.785103i \(-0.712610\pi\)
−0.619365 + 0.785103i \(0.712610\pi\)
\(8\) 8.00000 0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) −22.9416 −0.628832 −0.314416 0.949285i \(-0.601809\pi\)
−0.314416 + 0.949285i \(0.601809\pi\)
\(12\) 0 0
\(13\) −92.3072 −1.96934 −0.984669 0.174432i \(-0.944191\pi\)
−0.984669 + 0.174432i \(0.944191\pi\)
\(14\) −45.8832 −0.875914
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 112.684 1.60763 0.803817 0.594876i \(-0.202799\pi\)
0.803817 + 0.594876i \(0.202799\pi\)
\(18\) 0 0
\(19\) −74.6836 −0.901768 −0.450884 0.892582i \(-0.648891\pi\)
−0.450884 + 0.892582i \(0.648891\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −45.8832 −0.444651
\(23\) −54.6836 −0.495753 −0.247877 0.968792i \(-0.579733\pi\)
−0.247877 + 0.968792i \(0.579733\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −184.614 −1.39253
\(27\) 0 0
\(28\) −91.7663 −0.619365
\(29\) 276.921 1.77321 0.886604 0.462530i \(-0.153058\pi\)
0.886604 + 0.462530i \(0.153058\pi\)
\(30\) 0 0
\(31\) 270.367 1.56643 0.783216 0.621750i \(-0.213578\pi\)
0.783216 + 0.621750i \(0.213578\pi\)
\(32\) 32.0000 0.176777
\(33\) 0 0
\(34\) 225.367 1.13677
\(35\) 0 0
\(36\) 0 0
\(37\) −44.8016 −0.199063 −0.0995315 0.995034i \(-0.531734\pi\)
−0.0995315 + 0.995034i \(0.531734\pi\)
\(38\) −149.367 −0.637647
\(39\) 0 0
\(40\) 0 0
\(41\) 228.875 0.871812 0.435906 0.899992i \(-0.356428\pi\)
0.435906 + 0.899992i \(0.356428\pi\)
\(42\) 0 0
\(43\) 322.805 1.14482 0.572410 0.819968i \(-0.306009\pi\)
0.572410 + 0.819968i \(0.306009\pi\)
\(44\) −91.7663 −0.314416
\(45\) 0 0
\(46\) −109.367 −0.350550
\(47\) 363.367 1.12771 0.563857 0.825872i \(-0.309317\pi\)
0.563857 + 0.825872i \(0.309317\pi\)
\(48\) 0 0
\(49\) 183.316 0.534450
\(50\) 0 0
\(51\) 0 0
\(52\) −369.229 −0.984669
\(53\) −247.735 −0.642056 −0.321028 0.947070i \(-0.604028\pi\)
−0.321028 + 0.947070i \(0.604028\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −183.533 −0.437957
\(57\) 0 0
\(58\) 553.843 1.25385
\(59\) 412.408 0.910016 0.455008 0.890487i \(-0.349636\pi\)
0.455008 + 0.890487i \(0.349636\pi\)
\(60\) 0 0
\(61\) −35.4181 −0.0743414 −0.0371707 0.999309i \(-0.511835\pi\)
−0.0371707 + 0.999309i \(0.511835\pi\)
\(62\) 540.735 1.10763
\(63\) 0 0
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 689.329 1.25694 0.628470 0.777834i \(-0.283682\pi\)
0.628470 + 0.777834i \(0.283682\pi\)
\(68\) 450.735 0.803817
\(69\) 0 0
\(70\) 0 0
\(71\) −461.536 −0.771468 −0.385734 0.922610i \(-0.626052\pi\)
−0.385734 + 0.922610i \(0.626052\pi\)
\(72\) 0 0
\(73\) −623.749 −1.00006 −0.500030 0.866008i \(-0.666678\pi\)
−0.500030 + 0.866008i \(0.666678\pi\)
\(74\) −89.6031 −0.140759
\(75\) 0 0
\(76\) −298.735 −0.450884
\(77\) 526.316 0.778952
\(78\) 0 0
\(79\) 1070.05 1.52393 0.761963 0.647621i \(-0.224236\pi\)
0.761963 + 0.647621i \(0.224236\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 457.750 0.616464
\(83\) 195.102 0.258014 0.129007 0.991644i \(-0.458821\pi\)
0.129007 + 0.991644i \(0.458821\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 645.609 0.809510
\(87\) 0 0
\(88\) −183.533 −0.222326
\(89\) −137.109 −0.163298 −0.0816488 0.996661i \(-0.526019\pi\)
−0.0816488 + 0.996661i \(0.526019\pi\)
\(90\) 0 0
\(91\) 2117.67 2.43948
\(92\) −218.735 −0.247877
\(93\) 0 0
\(94\) 726.735 0.797414
\(95\) 0 0
\(96\) 0 0
\(97\) −25.6456 −0.0268445 −0.0134223 0.999910i \(-0.504273\pi\)
−0.0134223 + 0.999910i \(0.504273\pi\)
\(98\) 366.633 0.377913
\(99\) 0 0
\(100\) 0 0
\(101\) −569.754 −0.561313 −0.280657 0.959808i \(-0.590552\pi\)
−0.280657 + 0.959808i \(0.590552\pi\)
\(102\) 0 0
\(103\) −1156.81 −1.10664 −0.553322 0.832968i \(-0.686640\pi\)
−0.553322 + 0.832968i \(0.686640\pi\)
\(104\) −738.457 −0.696266
\(105\) 0 0
\(106\) −495.469 −0.454002
\(107\) −327.153 −0.295580 −0.147790 0.989019i \(-0.547216\pi\)
−0.147790 + 0.989019i \(0.547216\pi\)
\(108\) 0 0
\(109\) −372.254 −0.327115 −0.163557 0.986534i \(-0.552297\pi\)
−0.163557 + 0.986534i \(0.552297\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −367.065 −0.309682
\(113\) 628.735 0.523419 0.261710 0.965147i \(-0.415714\pi\)
0.261710 + 0.965147i \(0.415714\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1107.69 0.886604
\(117\) 0 0
\(118\) 824.815 0.643478
\(119\) −2585.14 −1.99142
\(120\) 0 0
\(121\) −804.684 −0.604571
\(122\) −70.8363 −0.0525673
\(123\) 0 0
\(124\) 1081.47 0.783216
\(125\) 0 0
\(126\) 0 0
\(127\) 1368.16 0.955938 0.477969 0.878377i \(-0.341373\pi\)
0.477969 + 0.878377i \(0.341373\pi\)
\(128\) 128.000 0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 1675.28 1.11733 0.558663 0.829395i \(-0.311315\pi\)
0.558663 + 0.829395i \(0.311315\pi\)
\(132\) 0 0
\(133\) 1713.36 1.11705
\(134\) 1378.66 0.888791
\(135\) 0 0
\(136\) 901.469 0.568385
\(137\) −1012.25 −0.631261 −0.315630 0.948882i \(-0.602216\pi\)
−0.315630 + 0.948882i \(0.602216\pi\)
\(138\) 0 0
\(139\) −158.938 −0.0969852 −0.0484926 0.998824i \(-0.515442\pi\)
−0.0484926 + 0.998824i \(0.515442\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −923.072 −0.545510
\(143\) 2117.67 1.23838
\(144\) 0 0
\(145\) 0 0
\(146\) −1247.50 −0.707149
\(147\) 0 0
\(148\) −179.206 −0.0995315
\(149\) 996.223 0.547743 0.273872 0.961766i \(-0.411696\pi\)
0.273872 + 0.961766i \(0.411696\pi\)
\(150\) 0 0
\(151\) 242.113 0.130483 0.0652413 0.997870i \(-0.479218\pi\)
0.0652413 + 0.997870i \(0.479218\pi\)
\(152\) −597.469 −0.318823
\(153\) 0 0
\(154\) 1052.63 0.550802
\(155\) 0 0
\(156\) 0 0
\(157\) −1470.97 −0.747744 −0.373872 0.927480i \(-0.621970\pi\)
−0.373872 + 0.927480i \(0.621970\pi\)
\(158\) 2140.10 1.07758
\(159\) 0 0
\(160\) 0 0
\(161\) 1254.53 0.614104
\(162\) 0 0
\(163\) −1381.90 −0.664043 −0.332022 0.943272i \(-0.607731\pi\)
−0.332022 + 0.943272i \(0.607731\pi\)
\(164\) 915.500 0.435906
\(165\) 0 0
\(166\) 390.204 0.182444
\(167\) 3313.72 1.53547 0.767735 0.640767i \(-0.221384\pi\)
0.767735 + 0.640767i \(0.221384\pi\)
\(168\) 0 0
\(169\) 6323.61 2.87829
\(170\) 0 0
\(171\) 0 0
\(172\) 1291.22 0.572410
\(173\) −1739.63 −0.764519 −0.382260 0.924055i \(-0.624854\pi\)
−0.382260 + 0.924055i \(0.624854\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −367.065 −0.157208
\(177\) 0 0
\(178\) −274.217 −0.115469
\(179\) −942.227 −0.393438 −0.196719 0.980460i \(-0.563029\pi\)
−0.196719 + 0.980460i \(0.563029\pi\)
\(180\) 0 0
\(181\) −1253.09 −0.514594 −0.257297 0.966332i \(-0.582832\pi\)
−0.257297 + 0.966332i \(0.582832\pi\)
\(182\) 4235.35 1.72497
\(183\) 0 0
\(184\) −437.469 −0.175275
\(185\) 0 0
\(186\) 0 0
\(187\) −2585.14 −1.01093
\(188\) 1453.47 0.563857
\(189\) 0 0
\(190\) 0 0
\(191\) 2021.02 0.765634 0.382817 0.923824i \(-0.374954\pi\)
0.382817 + 0.923824i \(0.374954\pi\)
\(192\) 0 0
\(193\) 2377.04 0.886546 0.443273 0.896387i \(-0.353817\pi\)
0.443273 + 0.896387i \(0.353817\pi\)
\(194\) −51.2913 −0.0189819
\(195\) 0 0
\(196\) 733.265 0.267225
\(197\) −2616.90 −0.946428 −0.473214 0.880948i \(-0.656906\pi\)
−0.473214 + 0.880948i \(0.656906\pi\)
\(198\) 0 0
\(199\) 3354.32 1.19488 0.597440 0.801913i \(-0.296185\pi\)
0.597440 + 0.801913i \(0.296185\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1139.51 −0.396908
\(203\) −6353.02 −2.19652
\(204\) 0 0
\(205\) 0 0
\(206\) −2313.63 −0.782515
\(207\) 0 0
\(208\) −1476.91 −0.492335
\(209\) 1713.36 0.567061
\(210\) 0 0
\(211\) −457.113 −0.149142 −0.0745710 0.997216i \(-0.523759\pi\)
−0.0745710 + 0.997216i \(0.523759\pi\)
\(212\) −990.938 −0.321028
\(213\) 0 0
\(214\) −654.305 −0.209006
\(215\) 0 0
\(216\) 0 0
\(217\) −6202.65 −1.94039
\(218\) −744.509 −0.231305
\(219\) 0 0
\(220\) 0 0
\(221\) −10401.5 −3.16598
\(222\) 0 0
\(223\) −1256.15 −0.377211 −0.188606 0.982053i \(-0.560397\pi\)
−0.188606 + 0.982053i \(0.560397\pi\)
\(224\) −734.131 −0.218978
\(225\) 0 0
\(226\) 1257.47 0.370113
\(227\) −4313.09 −1.26110 −0.630550 0.776148i \(-0.717171\pi\)
−0.630550 + 0.776148i \(0.717171\pi\)
\(228\) 0 0
\(229\) 6814.33 1.96639 0.983196 0.182552i \(-0.0584358\pi\)
0.983196 + 0.182552i \(0.0584358\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2215.37 0.626924
\(233\) −5086.20 −1.43008 −0.715039 0.699084i \(-0.753591\pi\)
−0.715039 + 0.699084i \(0.753591\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 1649.63 0.455008
\(237\) 0 0
\(238\) −5170.28 −1.40815
\(239\) 1905.01 0.515584 0.257792 0.966200i \(-0.417005\pi\)
0.257792 + 0.966200i \(0.417005\pi\)
\(240\) 0 0
\(241\) 5688.05 1.52033 0.760165 0.649730i \(-0.225118\pi\)
0.760165 + 0.649730i \(0.225118\pi\)
\(242\) −1609.37 −0.427496
\(243\) 0 0
\(244\) −141.673 −0.0371707
\(245\) 0 0
\(246\) 0 0
\(247\) 6893.83 1.77589
\(248\) 2162.94 0.553817
\(249\) 0 0
\(250\) 0 0
\(251\) 1595.09 0.401121 0.200561 0.979681i \(-0.435724\pi\)
0.200561 + 0.979681i \(0.435724\pi\)
\(252\) 0 0
\(253\) 1254.53 0.311745
\(254\) 2736.31 0.675950
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 4413.60 1.07126 0.535628 0.844454i \(-0.320075\pi\)
0.535628 + 0.844454i \(0.320075\pi\)
\(258\) 0 0
\(259\) 1027.82 0.246585
\(260\) 0 0
\(261\) 0 0
\(262\) 3350.55 0.790068
\(263\) −2312.43 −0.542169 −0.271085 0.962556i \(-0.587382\pi\)
−0.271085 + 0.962556i \(0.587382\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 3426.72 0.789871
\(267\) 0 0
\(268\) 2757.32 0.628470
\(269\) −1671.26 −0.378806 −0.189403 0.981899i \(-0.560655\pi\)
−0.189403 + 0.981899i \(0.560655\pi\)
\(270\) 0 0
\(271\) 1727.43 0.387210 0.193605 0.981080i \(-0.437982\pi\)
0.193605 + 0.981080i \(0.437982\pi\)
\(272\) 1802.94 0.401909
\(273\) 0 0
\(274\) −2024.51 −0.446369
\(275\) 0 0
\(276\) 0 0
\(277\) 7181.03 1.55764 0.778820 0.627248i \(-0.215819\pi\)
0.778820 + 0.627248i \(0.215819\pi\)
\(278\) −317.876 −0.0685789
\(279\) 0 0
\(280\) 0 0
\(281\) 4134.35 0.877704 0.438852 0.898559i \(-0.355385\pi\)
0.438852 + 0.898559i \(0.355385\pi\)
\(282\) 0 0
\(283\) 5027.77 1.05608 0.528038 0.849221i \(-0.322928\pi\)
0.528038 + 0.849221i \(0.322928\pi\)
\(284\) −1846.14 −0.385734
\(285\) 0 0
\(286\) 4235.35 0.875669
\(287\) −5250.76 −1.07994
\(288\) 0 0
\(289\) 7784.60 1.58449
\(290\) 0 0
\(291\) 0 0
\(292\) −2495.00 −0.500030
\(293\) −135.644 −0.0270457 −0.0135229 0.999909i \(-0.504305\pi\)
−0.0135229 + 0.999909i \(0.504305\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −358.412 −0.0703794
\(297\) 0 0
\(298\) 1992.45 0.387313
\(299\) 5047.69 0.976306
\(300\) 0 0
\(301\) −7405.65 −1.41812
\(302\) 484.226 0.0922651
\(303\) 0 0
\(304\) −1194.94 −0.225442
\(305\) 0 0
\(306\) 0 0
\(307\) 2594.33 0.482301 0.241151 0.970488i \(-0.422475\pi\)
0.241151 + 0.970488i \(0.422475\pi\)
\(308\) 2105.27 0.389476
\(309\) 0 0
\(310\) 0 0
\(311\) −518.235 −0.0944901 −0.0472450 0.998883i \(-0.515044\pi\)
−0.0472450 + 0.998883i \(0.515044\pi\)
\(312\) 0 0
\(313\) −682.071 −0.123172 −0.0615862 0.998102i \(-0.519616\pi\)
−0.0615862 + 0.998102i \(0.519616\pi\)
\(314\) −2941.93 −0.528735
\(315\) 0 0
\(316\) 4280.20 0.761963
\(317\) −1901.43 −0.336892 −0.168446 0.985711i \(-0.553875\pi\)
−0.168446 + 0.985711i \(0.553875\pi\)
\(318\) 0 0
\(319\) −6353.02 −1.11505
\(320\) 0 0
\(321\) 0 0
\(322\) 2509.06 0.434237
\(323\) −8415.62 −1.44971
\(324\) 0 0
\(325\) 0 0
\(326\) −2763.81 −0.469549
\(327\) 0 0
\(328\) 1831.00 0.308232
\(329\) −8336.22 −1.39693
\(330\) 0 0
\(331\) 11227.1 1.86435 0.932173 0.362014i \(-0.117911\pi\)
0.932173 + 0.362014i \(0.117911\pi\)
\(332\) 780.407 0.129007
\(333\) 0 0
\(334\) 6627.45 1.08574
\(335\) 0 0
\(336\) 0 0
\(337\) −6467.45 −1.04541 −0.522707 0.852512i \(-0.675078\pi\)
−0.522707 + 0.852512i \(0.675078\pi\)
\(338\) 12647.2 2.03526
\(339\) 0 0
\(340\) 0 0
\(341\) −6202.65 −0.985022
\(342\) 0 0
\(343\) 3663.40 0.576690
\(344\) 2582.44 0.404755
\(345\) 0 0
\(346\) −3479.27 −0.540597
\(347\) −2046.90 −0.316667 −0.158334 0.987386i \(-0.550612\pi\)
−0.158334 + 0.987386i \(0.550612\pi\)
\(348\) 0 0
\(349\) 966.073 0.148174 0.0740870 0.997252i \(-0.476396\pi\)
0.0740870 + 0.997252i \(0.476396\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −734.131 −0.111163
\(353\) 1787.88 0.269572 0.134786 0.990875i \(-0.456965\pi\)
0.134786 + 0.990875i \(0.456965\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −548.435 −0.0816488
\(357\) 0 0
\(358\) −1884.45 −0.278203
\(359\) 9893.00 1.45441 0.727204 0.686421i \(-0.240819\pi\)
0.727204 + 0.686421i \(0.240819\pi\)
\(360\) 0 0
\(361\) −1281.36 −0.186814
\(362\) −2506.18 −0.363873
\(363\) 0 0
\(364\) 8470.69 1.21974
\(365\) 0 0
\(366\) 0 0
\(367\) −9933.71 −1.41290 −0.706451 0.707762i \(-0.749705\pi\)
−0.706451 + 0.707762i \(0.749705\pi\)
\(368\) −874.938 −0.123938
\(369\) 0 0
\(370\) 0 0
\(371\) 5683.42 0.795333
\(372\) 0 0
\(373\) −3663.08 −0.508491 −0.254246 0.967140i \(-0.581827\pi\)
−0.254246 + 0.967140i \(0.581827\pi\)
\(374\) −5170.28 −0.714837
\(375\) 0 0
\(376\) 2906.94 0.398707
\(377\) −25561.8 −3.49205
\(378\) 0 0
\(379\) −1754.60 −0.237805 −0.118902 0.992906i \(-0.537938\pi\)
−0.118902 + 0.992906i \(0.537938\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 4042.05 0.541385
\(383\) 1779.83 0.237454 0.118727 0.992927i \(-0.462119\pi\)
0.118727 + 0.992927i \(0.462119\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4754.09 0.626883
\(387\) 0 0
\(388\) −102.583 −0.0134223
\(389\) −9870.69 −1.28654 −0.643270 0.765640i \(-0.722423\pi\)
−0.643270 + 0.765640i \(0.722423\pi\)
\(390\) 0 0
\(391\) −6161.95 −0.796990
\(392\) 1466.53 0.188957
\(393\) 0 0
\(394\) −5233.80 −0.669226
\(395\) 0 0
\(396\) 0 0
\(397\) −8433.48 −1.06616 −0.533078 0.846066i \(-0.678965\pi\)
−0.533078 + 0.846066i \(0.678965\pi\)
\(398\) 6708.63 0.844908
\(399\) 0 0
\(400\) 0 0
\(401\) 14407.5 1.79420 0.897102 0.441824i \(-0.145668\pi\)
0.897102 + 0.441824i \(0.145668\pi\)
\(402\) 0 0
\(403\) −24956.8 −3.08483
\(404\) −2279.02 −0.280657
\(405\) 0 0
\(406\) −12706.0 −1.55318
\(407\) 1027.82 0.125177
\(408\) 0 0
\(409\) −2569.33 −0.310624 −0.155312 0.987865i \(-0.549638\pi\)
−0.155312 + 0.987865i \(0.549638\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −4627.26 −0.553322
\(413\) −9461.29 −1.12726
\(414\) 0 0
\(415\) 0 0
\(416\) −2953.83 −0.348133
\(417\) 0 0
\(418\) 3426.72 0.400972
\(419\) 12267.6 1.43033 0.715167 0.698953i \(-0.246351\pi\)
0.715167 + 0.698953i \(0.246351\pi\)
\(420\) 0 0
\(421\) −1203.72 −0.139349 −0.0696745 0.997570i \(-0.522196\pi\)
−0.0696745 + 0.997570i \(0.522196\pi\)
\(422\) −914.226 −0.105459
\(423\) 0 0
\(424\) −1981.88 −0.227001
\(425\) 0 0
\(426\) 0 0
\(427\) 812.548 0.0920889
\(428\) −1308.61 −0.147790
\(429\) 0 0
\(430\) 0 0
\(431\) 6975.41 0.779568 0.389784 0.920906i \(-0.372550\pi\)
0.389784 + 0.920906i \(0.372550\pi\)
\(432\) 0 0
\(433\) 4595.66 0.510054 0.255027 0.966934i \(-0.417916\pi\)
0.255027 + 0.966934i \(0.417916\pi\)
\(434\) −12405.3 −1.37206
\(435\) 0 0
\(436\) −1489.02 −0.163557
\(437\) 4083.97 0.447055
\(438\) 0 0
\(439\) −4709.81 −0.512044 −0.256022 0.966671i \(-0.582412\pi\)
−0.256022 + 0.966671i \(0.582412\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −20803.0 −2.23868
\(443\) 10640.9 1.14123 0.570617 0.821216i \(-0.306704\pi\)
0.570617 + 0.821216i \(0.306704\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −2512.30 −0.266729
\(447\) 0 0
\(448\) −1468.26 −0.154841
\(449\) −4074.41 −0.428248 −0.214124 0.976807i \(-0.568690\pi\)
−0.214124 + 0.976807i \(0.568690\pi\)
\(450\) 0 0
\(451\) −5250.76 −0.548223
\(452\) 2514.94 0.261710
\(453\) 0 0
\(454\) −8626.18 −0.891733
\(455\) 0 0
\(456\) 0 0
\(457\) 14066.1 1.43979 0.719894 0.694084i \(-0.244191\pi\)
0.719894 + 0.694084i \(0.244191\pi\)
\(458\) 13628.7 1.39045
\(459\) 0 0
\(460\) 0 0
\(461\) −13134.3 −1.32696 −0.663479 0.748195i \(-0.730921\pi\)
−0.663479 + 0.748195i \(0.730921\pi\)
\(462\) 0 0
\(463\) 139.955 0.0140481 0.00702403 0.999975i \(-0.497764\pi\)
0.00702403 + 0.999975i \(0.497764\pi\)
\(464\) 4430.74 0.443302
\(465\) 0 0
\(466\) −10172.4 −1.01122
\(467\) −587.270 −0.0581919 −0.0290960 0.999577i \(-0.509263\pi\)
−0.0290960 + 0.999577i \(0.509263\pi\)
\(468\) 0 0
\(469\) −15814.3 −1.55701
\(470\) 0 0
\(471\) 0 0
\(472\) 3299.26 0.321739
\(473\) −7405.65 −0.719899
\(474\) 0 0
\(475\) 0 0
\(476\) −10340.6 −0.995712
\(477\) 0 0
\(478\) 3810.01 0.364573
\(479\) −15456.7 −1.47439 −0.737196 0.675679i \(-0.763851\pi\)
−0.737196 + 0.675679i \(0.763851\pi\)
\(480\) 0 0
\(481\) 4135.50 0.392022
\(482\) 11376.1 1.07504
\(483\) 0 0
\(484\) −3218.73 −0.302285
\(485\) 0 0
\(486\) 0 0
\(487\) 18448.4 1.71658 0.858291 0.513164i \(-0.171527\pi\)
0.858291 + 0.513164i \(0.171527\pi\)
\(488\) −283.345 −0.0262837
\(489\) 0 0
\(490\) 0 0
\(491\) 518.918 0.0476954 0.0238477 0.999716i \(-0.492408\pi\)
0.0238477 + 0.999716i \(0.492408\pi\)
\(492\) 0 0
\(493\) 31204.5 2.85067
\(494\) 13787.7 1.25574
\(495\) 0 0
\(496\) 4325.88 0.391608
\(497\) 10588.4 0.955640
\(498\) 0 0
\(499\) −5853.01 −0.525084 −0.262542 0.964921i \(-0.584561\pi\)
−0.262542 + 0.964921i \(0.584561\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 3190.19 0.283636
\(503\) −15178.2 −1.34546 −0.672728 0.739890i \(-0.734877\pi\)
−0.672728 + 0.739890i \(0.734877\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 2509.06 0.220437
\(507\) 0 0
\(508\) 5472.62 0.477969
\(509\) 5421.02 0.472068 0.236034 0.971745i \(-0.424152\pi\)
0.236034 + 0.971745i \(0.424152\pi\)
\(510\) 0 0
\(511\) 14309.8 1.23880
\(512\) 512.000 0.0441942
\(513\) 0 0
\(514\) 8827.20 0.757492
\(515\) 0 0
\(516\) 0 0
\(517\) −8336.22 −0.709142
\(518\) 2055.64 0.174362
\(519\) 0 0
\(520\) 0 0
\(521\) 8494.96 0.714340 0.357170 0.934039i \(-0.383742\pi\)
0.357170 + 0.934039i \(0.383742\pi\)
\(522\) 0 0
\(523\) −4363.31 −0.364808 −0.182404 0.983224i \(-0.558388\pi\)
−0.182404 + 0.983224i \(0.558388\pi\)
\(524\) 6701.11 0.558663
\(525\) 0 0
\(526\) −4624.86 −0.383372
\(527\) 30466.0 2.51825
\(528\) 0 0
\(529\) −9176.70 −0.754229
\(530\) 0 0
\(531\) 0 0
\(532\) 6853.44 0.558523
\(533\) −21126.8 −1.71689
\(534\) 0 0
\(535\) 0 0
\(536\) 5514.63 0.444395
\(537\) 0 0
\(538\) −3342.53 −0.267856
\(539\) −4205.57 −0.336079
\(540\) 0 0
\(541\) −16112.3 −1.28044 −0.640222 0.768190i \(-0.721158\pi\)
−0.640222 + 0.768190i \(0.721158\pi\)
\(542\) 3454.86 0.273799
\(543\) 0 0
\(544\) 3605.88 0.284192
\(545\) 0 0
\(546\) 0 0
\(547\) 9522.61 0.744346 0.372173 0.928163i \(-0.378613\pi\)
0.372173 + 0.928163i \(0.378613\pi\)
\(548\) −4049.02 −0.315630
\(549\) 0 0
\(550\) 0 0
\(551\) −20681.5 −1.59902
\(552\) 0 0
\(553\) −24548.7 −1.88773
\(554\) 14362.1 1.10142
\(555\) 0 0
\(556\) −635.752 −0.0484926
\(557\) −21740.5 −1.65381 −0.826907 0.562339i \(-0.809902\pi\)
−0.826907 + 0.562339i \(0.809902\pi\)
\(558\) 0 0
\(559\) −29797.2 −2.25454
\(560\) 0 0
\(561\) 0 0
\(562\) 8268.71 0.620630
\(563\) 6514.93 0.487693 0.243847 0.969814i \(-0.421591\pi\)
0.243847 + 0.969814i \(0.421591\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 10055.5 0.746759
\(567\) 0 0
\(568\) −3692.29 −0.272755
\(569\) 25108.1 1.84989 0.924944 0.380105i \(-0.124112\pi\)
0.924944 + 0.380105i \(0.124112\pi\)
\(570\) 0 0
\(571\) 1863.83 0.136600 0.0683000 0.997665i \(-0.478242\pi\)
0.0683000 + 0.997665i \(0.478242\pi\)
\(572\) 8470.69 0.619191
\(573\) 0 0
\(574\) −10501.5 −0.763632
\(575\) 0 0
\(576\) 0 0
\(577\) 20829.5 1.50285 0.751424 0.659819i \(-0.229367\pi\)
0.751424 + 0.659819i \(0.229367\pi\)
\(578\) 15569.2 1.12040
\(579\) 0 0
\(580\) 0 0
\(581\) −4475.94 −0.319610
\(582\) 0 0
\(583\) 5683.42 0.403745
\(584\) −4989.99 −0.353574
\(585\) 0 0
\(586\) −271.288 −0.0191242
\(587\) 15537.3 1.09249 0.546247 0.837624i \(-0.316056\pi\)
0.546247 + 0.837624i \(0.316056\pi\)
\(588\) 0 0
\(589\) −20192.0 −1.41256
\(590\) 0 0
\(591\) 0 0
\(592\) −716.825 −0.0497657
\(593\) −4495.44 −0.311308 −0.155654 0.987812i \(-0.549748\pi\)
−0.155654 + 0.987812i \(0.549748\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3984.89 0.273872
\(597\) 0 0
\(598\) 10095.4 0.690352
\(599\) −27270.9 −1.86020 −0.930100 0.367307i \(-0.880280\pi\)
−0.930100 + 0.367307i \(0.880280\pi\)
\(600\) 0 0
\(601\) −22616.8 −1.53504 −0.767520 0.641025i \(-0.778509\pi\)
−0.767520 + 0.641025i \(0.778509\pi\)
\(602\) −14811.3 −1.00276
\(603\) 0 0
\(604\) 968.451 0.0652413
\(605\) 0 0
\(606\) 0 0
\(607\) −19720.3 −1.31865 −0.659326 0.751857i \(-0.729158\pi\)
−0.659326 + 0.751857i \(0.729158\pi\)
\(608\) −2389.88 −0.159412
\(609\) 0 0
\(610\) 0 0
\(611\) −33541.4 −2.22085
\(612\) 0 0
\(613\) −5447.29 −0.358913 −0.179457 0.983766i \(-0.557434\pi\)
−0.179457 + 0.983766i \(0.557434\pi\)
\(614\) 5188.67 0.341039
\(615\) 0 0
\(616\) 4210.53 0.275401
\(617\) 12015.4 0.783993 0.391996 0.919967i \(-0.371785\pi\)
0.391996 + 0.919967i \(0.371785\pi\)
\(618\) 0 0
\(619\) 2316.36 0.150408 0.0752039 0.997168i \(-0.476039\pi\)
0.0752039 + 0.997168i \(0.476039\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −1036.47 −0.0668146
\(623\) 3145.49 0.202282
\(624\) 0 0
\(625\) 0 0
\(626\) −1364.14 −0.0870960
\(627\) 0 0
\(628\) −5883.86 −0.373872
\(629\) −5048.40 −0.320021
\(630\) 0 0
\(631\) 7324.32 0.462087 0.231043 0.972943i \(-0.425786\pi\)
0.231043 + 0.972943i \(0.425786\pi\)
\(632\) 8560.41 0.538789
\(633\) 0 0
\(634\) −3802.86 −0.238219
\(635\) 0 0
\(636\) 0 0
\(637\) −16921.4 −1.05251
\(638\) −12706.0 −0.788459
\(639\) 0 0
\(640\) 0 0
\(641\) −90.2295 −0.00555983 −0.00277991 0.999996i \(-0.500885\pi\)
−0.00277991 + 0.999996i \(0.500885\pi\)
\(642\) 0 0
\(643\) 11101.0 0.680842 0.340421 0.940273i \(-0.389430\pi\)
0.340421 + 0.940273i \(0.389430\pi\)
\(644\) 5018.12 0.307052
\(645\) 0 0
\(646\) −16831.2 −1.02510
\(647\) −5204.38 −0.316237 −0.158118 0.987420i \(-0.550543\pi\)
−0.158118 + 0.987420i \(0.550543\pi\)
\(648\) 0 0
\(649\) −9461.29 −0.572247
\(650\) 0 0
\(651\) 0 0
\(652\) −5527.61 −0.332022
\(653\) 18852.8 1.12981 0.564907 0.825155i \(-0.308912\pi\)
0.564907 + 0.825155i \(0.308912\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3662.00 0.217953
\(657\) 0 0
\(658\) −16672.4 −0.987780
\(659\) 13402.4 0.792238 0.396119 0.918199i \(-0.370357\pi\)
0.396119 + 0.918199i \(0.370357\pi\)
\(660\) 0 0
\(661\) −15928.1 −0.937267 −0.468633 0.883393i \(-0.655253\pi\)
−0.468633 + 0.883393i \(0.655253\pi\)
\(662\) 22454.2 1.31829
\(663\) 0 0
\(664\) 1560.81 0.0912219
\(665\) 0 0
\(666\) 0 0
\(667\) −15143.1 −0.879073
\(668\) 13254.9 0.767735
\(669\) 0 0
\(670\) 0 0
\(671\) 812.548 0.0467482
\(672\) 0 0
\(673\) 355.395 0.0203558 0.0101779 0.999948i \(-0.496760\pi\)
0.0101779 + 0.999948i \(0.496760\pi\)
\(674\) −12934.9 −0.739219
\(675\) 0 0
\(676\) 25294.4 1.43915
\(677\) 18243.7 1.03569 0.517846 0.855474i \(-0.326734\pi\)
0.517846 + 0.855474i \(0.326734\pi\)
\(678\) 0 0
\(679\) 588.351 0.0332531
\(680\) 0 0
\(681\) 0 0
\(682\) −12405.3 −0.696516
\(683\) −5682.31 −0.318342 −0.159171 0.987251i \(-0.550882\pi\)
−0.159171 + 0.987251i \(0.550882\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 7326.79 0.407782
\(687\) 0 0
\(688\) 5164.87 0.286205
\(689\) 22867.7 1.26442
\(690\) 0 0
\(691\) −24469.4 −1.34712 −0.673559 0.739133i \(-0.735235\pi\)
−0.673559 + 0.739133i \(0.735235\pi\)
\(692\) −6958.53 −0.382260
\(693\) 0 0
\(694\) −4093.81 −0.223918
\(695\) 0 0
\(696\) 0 0
\(697\) 25790.5 1.40155
\(698\) 1932.15 0.104775
\(699\) 0 0
\(700\) 0 0
\(701\) 25286.9 1.36244 0.681222 0.732077i \(-0.261449\pi\)
0.681222 + 0.732077i \(0.261449\pi\)
\(702\) 0 0
\(703\) 3345.94 0.179509
\(704\) −1468.26 −0.0786040
\(705\) 0 0
\(706\) 3575.75 0.190616
\(707\) 13071.1 0.695315
\(708\) 0 0
\(709\) 32374.8 1.71490 0.857448 0.514570i \(-0.172048\pi\)
0.857448 + 0.514570i \(0.172048\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1096.87 −0.0577345
\(713\) −14784.7 −0.776564
\(714\) 0 0
\(715\) 0 0
\(716\) −3768.91 −0.196719
\(717\) 0 0
\(718\) 19786.0 1.02842
\(719\) −22565.9 −1.17047 −0.585233 0.810865i \(-0.698997\pi\)
−0.585233 + 0.810865i \(0.698997\pi\)
\(720\) 0 0
\(721\) 26539.1 1.37083
\(722\) −2562.71 −0.132097
\(723\) 0 0
\(724\) −5012.36 −0.257297
\(725\) 0 0
\(726\) 0 0
\(727\) −24371.4 −1.24331 −0.621654 0.783292i \(-0.713539\pi\)
−0.621654 + 0.783292i \(0.713539\pi\)
\(728\) 16941.4 0.862485
\(729\) 0 0
\(730\) 0 0
\(731\) 36374.8 1.84045
\(732\) 0 0
\(733\) −13467.4 −0.678621 −0.339311 0.940674i \(-0.610194\pi\)
−0.339311 + 0.940674i \(0.610194\pi\)
\(734\) −19867.4 −0.999073
\(735\) 0 0
\(736\) −1749.88 −0.0876376
\(737\) −15814.3 −0.790404
\(738\) 0 0
\(739\) −16009.5 −0.796911 −0.398456 0.917188i \(-0.630454\pi\)
−0.398456 + 0.917188i \(0.630454\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 11366.8 0.562385
\(743\) 10714.7 0.529052 0.264526 0.964379i \(-0.414785\pi\)
0.264526 + 0.964379i \(0.414785\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −7326.16 −0.359558
\(747\) 0 0
\(748\) −10340.6 −0.505466
\(749\) 7505.40 0.366143
\(750\) 0 0
\(751\) 4772.75 0.231904 0.115952 0.993255i \(-0.463008\pi\)
0.115952 + 0.993255i \(0.463008\pi\)
\(752\) 5813.88 0.281929
\(753\) 0 0
\(754\) −51123.7 −2.46925
\(755\) 0 0
\(756\) 0 0
\(757\) −24326.3 −1.16797 −0.583985 0.811764i \(-0.698507\pi\)
−0.583985 + 0.811764i \(0.698507\pi\)
\(758\) −3509.21 −0.168153
\(759\) 0 0
\(760\) 0 0
\(761\) 13038.2 0.621070 0.310535 0.950562i \(-0.399492\pi\)
0.310535 + 0.950562i \(0.399492\pi\)
\(762\) 0 0
\(763\) 8540.11 0.405207
\(764\) 8084.09 0.382817
\(765\) 0 0
\(766\) 3559.65 0.167905
\(767\) −38068.2 −1.79213
\(768\) 0 0
\(769\) −21815.7 −1.02301 −0.511505 0.859280i \(-0.670912\pi\)
−0.511505 + 0.859280i \(0.670912\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 9508.18 0.443273
\(773\) 23946.0 1.11420 0.557100 0.830446i \(-0.311914\pi\)
0.557100 + 0.830446i \(0.311914\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −205.165 −0.00949097
\(777\) 0 0
\(778\) −19741.4 −0.909721
\(779\) −17093.2 −0.786172
\(780\) 0 0
\(781\) 10588.4 0.485123
\(782\) −12323.9 −0.563557
\(783\) 0 0
\(784\) 2933.06 0.133613
\(785\) 0 0
\(786\) 0 0
\(787\) 13567.9 0.614540 0.307270 0.951622i \(-0.400584\pi\)
0.307270 + 0.951622i \(0.400584\pi\)
\(788\) −10467.6 −0.473214
\(789\) 0 0
\(790\) 0 0
\(791\) −14424.2 −0.648375
\(792\) 0 0
\(793\) 3269.35 0.146403
\(794\) −16867.0 −0.753887
\(795\) 0 0
\(796\) 13417.3 0.597440
\(797\) −39913.7 −1.77392 −0.886962 0.461843i \(-0.847188\pi\)
−0.886962 + 0.461843i \(0.847188\pi\)
\(798\) 0 0
\(799\) 40945.5 1.81295
\(800\) 0 0
\(801\) 0 0
\(802\) 28815.0 1.26869
\(803\) 14309.8 0.628869
\(804\) 0 0
\(805\) 0 0
\(806\) −49913.7 −2.18131
\(807\) 0 0
\(808\) −4558.03 −0.198454
\(809\) 13891.2 0.603696 0.301848 0.953356i \(-0.402396\pi\)
0.301848 + 0.953356i \(0.402396\pi\)
\(810\) 0 0
\(811\) −24237.7 −1.04945 −0.524723 0.851273i \(-0.675831\pi\)
−0.524723 + 0.851273i \(0.675831\pi\)
\(812\) −25412.1 −1.09826
\(813\) 0 0
\(814\) 2055.64 0.0885136
\(815\) 0 0
\(816\) 0 0
\(817\) −24108.2 −1.03236
\(818\) −5138.65 −0.219644
\(819\) 0 0
\(820\) 0 0
\(821\) 19978.0 0.849254 0.424627 0.905368i \(-0.360405\pi\)
0.424627 + 0.905368i \(0.360405\pi\)
\(822\) 0 0
\(823\) 42871.5 1.81580 0.907902 0.419182i \(-0.137683\pi\)
0.907902 + 0.419182i \(0.137683\pi\)
\(824\) −9254.51 −0.391257
\(825\) 0 0
\(826\) −18922.6 −0.797095
\(827\) 360.143 0.0151432 0.00757159 0.999971i \(-0.497590\pi\)
0.00757159 + 0.999971i \(0.497590\pi\)
\(828\) 0 0
\(829\) −15020.5 −0.629294 −0.314647 0.949209i \(-0.601886\pi\)
−0.314647 + 0.949209i \(0.601886\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −5907.66 −0.246167
\(833\) 20656.8 0.859201
\(834\) 0 0
\(835\) 0 0
\(836\) 6853.44 0.283530
\(837\) 0 0
\(838\) 24535.1 1.01140
\(839\) −29440.2 −1.21143 −0.605714 0.795682i \(-0.707113\pi\)
−0.605714 + 0.795682i \(0.707113\pi\)
\(840\) 0 0
\(841\) 52296.5 2.14427
\(842\) −2407.45 −0.0985346
\(843\) 0 0
\(844\) −1828.45 −0.0745710
\(845\) 0 0
\(846\) 0 0
\(847\) 18460.7 0.748899
\(848\) −3963.75 −0.160514
\(849\) 0 0
\(850\) 0 0
\(851\) 2449.91 0.0986861
\(852\) 0 0
\(853\) −14688.6 −0.589601 −0.294801 0.955559i \(-0.595253\pi\)
−0.294801 + 0.955559i \(0.595253\pi\)
\(854\) 1625.10 0.0651167
\(855\) 0 0
\(856\) −2617.22 −0.104503
\(857\) −7812.22 −0.311389 −0.155694 0.987805i \(-0.549762\pi\)
−0.155694 + 0.987805i \(0.549762\pi\)
\(858\) 0 0
\(859\) 4035.68 0.160298 0.0801488 0.996783i \(-0.474460\pi\)
0.0801488 + 0.996783i \(0.474460\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 13950.8 0.551238
\(863\) −32201.0 −1.27015 −0.635073 0.772452i \(-0.719030\pi\)
−0.635073 + 0.772452i \(0.719030\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 9191.32 0.360663
\(867\) 0 0
\(868\) −24810.6 −0.970193
\(869\) −24548.7 −0.958293
\(870\) 0 0
\(871\) −63630.0 −2.47534
\(872\) −2978.04 −0.115653
\(873\) 0 0
\(874\) 8167.94 0.316115
\(875\) 0 0
\(876\) 0 0
\(877\) −18350.3 −0.706551 −0.353275 0.935519i \(-0.614932\pi\)
−0.353275 + 0.935519i \(0.614932\pi\)
\(878\) −9419.63 −0.362070
\(879\) 0 0
\(880\) 0 0
\(881\) 32914.7 1.25871 0.629356 0.777117i \(-0.283319\pi\)
0.629356 + 0.777117i \(0.283319\pi\)
\(882\) 0 0
\(883\) −27122.2 −1.03367 −0.516837 0.856084i \(-0.672891\pi\)
−0.516837 + 0.856084i \(0.672891\pi\)
\(884\) −41606.0 −1.58299
\(885\) 0 0
\(886\) 21281.9 0.806974
\(887\) 35660.0 1.34988 0.674941 0.737872i \(-0.264169\pi\)
0.674941 + 0.737872i \(0.264169\pi\)
\(888\) 0 0
\(889\) −31387.7 −1.18415
\(890\) 0 0
\(891\) 0 0
\(892\) −5024.61 −0.188606
\(893\) −27137.6 −1.01694
\(894\) 0 0
\(895\) 0 0
\(896\) −2936.52 −0.109489
\(897\) 0 0
\(898\) −8148.82 −0.302817
\(899\) 74870.5 2.77761
\(900\) 0 0
\(901\) −27915.6 −1.03219
\(902\) −10501.5 −0.387652
\(903\) 0 0
\(904\) 5029.88 0.185057
\(905\) 0 0
\(906\) 0 0
\(907\) 13630.5 0.499002 0.249501 0.968375i \(-0.419733\pi\)
0.249501 + 0.968375i \(0.419733\pi\)
\(908\) −17252.4 −0.630550
\(909\) 0 0
\(910\) 0 0
\(911\) −36521.1 −1.32821 −0.664104 0.747640i \(-0.731187\pi\)
−0.664104 + 0.747640i \(0.731187\pi\)
\(912\) 0 0
\(913\) −4475.94 −0.162248
\(914\) 28132.1 1.01808
\(915\) 0 0
\(916\) 27257.3 0.983196
\(917\) −38433.5 −1.38406
\(918\) 0 0
\(919\) 13527.6 0.485565 0.242782 0.970081i \(-0.421940\pi\)
0.242782 + 0.970081i \(0.421940\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −26268.7 −0.938301
\(923\) 42603.1 1.51928
\(924\) 0 0
\(925\) 0 0
\(926\) 279.910 0.00993348
\(927\) 0 0
\(928\) 8861.49 0.313462
\(929\) 38200.4 1.34910 0.674550 0.738229i \(-0.264338\pi\)
0.674550 + 0.738229i \(0.264338\pi\)
\(930\) 0 0
\(931\) −13690.7 −0.481950
\(932\) −20344.8 −0.715039
\(933\) 0 0
\(934\) −1174.54 −0.0411479
\(935\) 0 0
\(936\) 0 0
\(937\) 45991.8 1.60351 0.801754 0.597654i \(-0.203900\pi\)
0.801754 + 0.597654i \(0.203900\pi\)
\(938\) −31628.6 −1.10097
\(939\) 0 0
\(940\) 0 0
\(941\) 3180.14 0.110170 0.0550848 0.998482i \(-0.482457\pi\)
0.0550848 + 0.998482i \(0.482457\pi\)
\(942\) 0 0
\(943\) −12515.7 −0.432203
\(944\) 6598.52 0.227504
\(945\) 0 0
\(946\) −14811.3 −0.509045
\(947\) 56742.3 1.94707 0.973535 0.228536i \(-0.0733940\pi\)
0.973535 + 0.228536i \(0.0733940\pi\)
\(948\) 0 0
\(949\) 57576.5 1.96946
\(950\) 0 0
\(951\) 0 0
\(952\) −20681.1 −0.704075
\(953\) 17765.0 0.603846 0.301923 0.953332i \(-0.402371\pi\)
0.301923 + 0.953332i \(0.402371\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 7620.02 0.257792
\(957\) 0 0
\(958\) −30913.4 −1.04255
\(959\) 23222.7 0.781961
\(960\) 0 0
\(961\) 43307.5 1.45371
\(962\) 8271.01 0.277202
\(963\) 0 0
\(964\) 22752.2 0.760165
\(965\) 0 0
\(966\) 0 0
\(967\) 35530.1 1.18156 0.590781 0.806832i \(-0.298820\pi\)
0.590781 + 0.806832i \(0.298820\pi\)
\(968\) −6437.47 −0.213748
\(969\) 0 0
\(970\) 0 0
\(971\) −26227.6 −0.866822 −0.433411 0.901196i \(-0.642690\pi\)
−0.433411 + 0.901196i \(0.642690\pi\)
\(972\) 0 0
\(973\) 3646.29 0.120138
\(974\) 36896.7 1.21381
\(975\) 0 0
\(976\) −566.690 −0.0185854
\(977\) −13869.8 −0.454182 −0.227091 0.973874i \(-0.572921\pi\)
−0.227091 + 0.973874i \(0.572921\pi\)
\(978\) 0 0
\(979\) 3145.49 0.102687
\(980\) 0 0
\(981\) 0 0
\(982\) 1037.84 0.0337257
\(983\) 19637.7 0.637177 0.318588 0.947893i \(-0.396791\pi\)
0.318588 + 0.947893i \(0.396791\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 62409.0 2.01573
\(987\) 0 0
\(988\) 27575.3 0.887943
\(989\) −17652.1 −0.567548
\(990\) 0 0
\(991\) −5935.20 −0.190250 −0.0951251 0.995465i \(-0.530325\pi\)
−0.0951251 + 0.995465i \(0.530325\pi\)
\(992\) 8651.75 0.276909
\(993\) 0 0
\(994\) 21176.7 0.675739
\(995\) 0 0
\(996\) 0 0
\(997\) 42278.0 1.34299 0.671493 0.741011i \(-0.265653\pi\)
0.671493 + 0.741011i \(0.265653\pi\)
\(998\) −11706.0 −0.371290
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.4.a.bv.1.2 4
3.2 odd 2 1350.4.a.bu.1.2 4
5.2 odd 4 270.4.c.e.109.6 yes 8
5.3 odd 4 270.4.c.e.109.2 8
5.4 even 2 1350.4.a.bu.1.3 4
15.2 even 4 270.4.c.e.109.3 yes 8
15.8 even 4 270.4.c.e.109.7 yes 8
15.14 odd 2 inner 1350.4.a.bv.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.4.c.e.109.2 8 5.3 odd 4
270.4.c.e.109.3 yes 8 15.2 even 4
270.4.c.e.109.6 yes 8 5.2 odd 4
270.4.c.e.109.7 yes 8 15.8 even 4
1350.4.a.bu.1.2 4 3.2 odd 2
1350.4.a.bu.1.3 4 5.4 even 2
1350.4.a.bv.1.2 4 1.1 even 1 trivial
1350.4.a.bv.1.3 4 15.14 odd 2 inner