Defining parameters
| Level: | \( N \) | \(=\) | \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1350.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 48 \) | ||
| Sturm bound: | \(1080\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(7\), \(11\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1350))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 846 | 76 | 770 |
| Cusp forms | 774 | 76 | 698 |
| Eisenstein series | 72 | 0 | 72 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(111\) | \(9\) | \(102\) | \(102\) | \(9\) | \(93\) | \(9\) | \(0\) | \(9\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(102\) | \(9\) | \(93\) | \(93\) | \(9\) | \(84\) | \(9\) | \(0\) | \(9\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(102\) | \(9\) | \(93\) | \(93\) | \(9\) | \(84\) | \(9\) | \(0\) | \(9\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(108\) | \(11\) | \(97\) | \(99\) | \(11\) | \(88\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(105\) | \(8\) | \(97\) | \(96\) | \(8\) | \(88\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(105\) | \(11\) | \(94\) | \(96\) | \(11\) | \(85\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(105\) | \(10\) | \(95\) | \(96\) | \(10\) | \(86\) | \(9\) | \(0\) | \(9\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(108\) | \(9\) | \(99\) | \(99\) | \(9\) | \(90\) | \(9\) | \(0\) | \(9\) | |||
| Plus space | \(+\) | \(429\) | \(41\) | \(388\) | \(393\) | \(41\) | \(352\) | \(36\) | \(0\) | \(36\) | |||||
| Minus space | \(-\) | \(417\) | \(35\) | \(382\) | \(381\) | \(35\) | \(346\) | \(36\) | \(0\) | \(36\) | |||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1350))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1350))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1350)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(135))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(270))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(450))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(675))\)\(^{\oplus 2}\)