Defining parameters
Level: | \( N \) | = | \( 270 = 2 \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 9 \) | ||
Sturm bound: | \(15552\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(270))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 6072 | 1408 | 4664 |
Cusp forms | 5592 | 1408 | 4184 |
Eisenstein series | 480 | 0 | 480 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(270))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
270.4.a | \(\chi_{270}(1, \cdot)\) | 270.4.a.a | 1 | 1 |
270.4.a.b | 1 | |||
270.4.a.c | 1 | |||
270.4.a.d | 1 | |||
270.4.a.e | 1 | |||
270.4.a.f | 1 | |||
270.4.a.g | 1 | |||
270.4.a.h | 1 | |||
270.4.a.i | 1 | |||
270.4.a.j | 1 | |||
270.4.a.k | 1 | |||
270.4.a.l | 1 | |||
270.4.a.m | 2 | |||
270.4.a.n | 2 | |||
270.4.c | \(\chi_{270}(109, \cdot)\) | 270.4.c.a | 2 | 1 |
270.4.c.b | 2 | |||
270.4.c.c | 6 | |||
270.4.c.d | 6 | |||
270.4.c.e | 8 | |||
270.4.e | \(\chi_{270}(91, \cdot)\) | 270.4.e.a | 2 | 2 |
270.4.e.b | 4 | |||
270.4.e.c | 4 | |||
270.4.e.d | 6 | |||
270.4.e.e | 8 | |||
270.4.f | \(\chi_{270}(53, \cdot)\) | 270.4.f.a | 24 | 2 |
270.4.f.b | 24 | |||
270.4.i | \(\chi_{270}(19, \cdot)\) | 270.4.i.a | 36 | 2 |
270.4.k | \(\chi_{270}(31, \cdot)\) | n/a | 216 | 6 |
270.4.m | \(\chi_{270}(17, \cdot)\) | 270.4.m.a | 72 | 4 |
270.4.p | \(\chi_{270}(49, \cdot)\) | n/a | 324 | 6 |
270.4.r | \(\chi_{270}(23, \cdot)\) | n/a | 648 | 12 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(270))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(270)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(135))\)\(^{\oplus 2}\)