Properties

Label 270.3.g.d.217.2
Level $270$
Weight $3$
Character 270.217
Analytic conductor $7.357$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [270,3,Mod(163,270)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("270.163"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(270, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 270.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.35696713773\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 217.2
Root \(1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 270.217
Dual form 270.3.g.d.163.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +2.00000i q^{4} +(4.22474 + 2.67423i) q^{5} +(4.44949 + 4.44949i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(1.55051 + 6.89898i) q^{10} -10.2474 q^{11} +(3.55051 - 3.55051i) q^{13} +8.89898i q^{14} -4.00000 q^{16} +(15.7753 + 15.7753i) q^{17} -19.4495i q^{19} +(-5.34847 + 8.44949i) q^{20} +(-10.2474 - 10.2474i) q^{22} +(-15.0227 + 15.0227i) q^{23} +(10.6969 + 22.5959i) q^{25} +7.10102 q^{26} +(-8.89898 + 8.89898i) q^{28} +35.7980i q^{29} +27.9444 q^{31} +(-4.00000 - 4.00000i) q^{32} +31.5505i q^{34} +(6.89898 + 30.6969i) q^{35} +(-38.3939 - 38.3939i) q^{37} +(19.4495 - 19.4495i) q^{38} +(-13.7980 + 3.10102i) q^{40} -26.5403 q^{41} +(30.1918 - 30.1918i) q^{43} -20.4949i q^{44} -30.0454 q^{46} +(10.0454 + 10.0454i) q^{47} -9.40408i q^{49} +(-11.8990 + 33.2929i) q^{50} +(7.10102 + 7.10102i) q^{52} +(47.4166 - 47.4166i) q^{53} +(-43.2929 - 27.4041i) q^{55} -17.7980 q^{56} +(-35.7980 + 35.7980i) q^{58} -78.0908i q^{59} +104.778 q^{61} +(27.9444 + 27.9444i) q^{62} -8.00000i q^{64} +(24.4949 - 5.50510i) q^{65} +(-85.7423 - 85.7423i) q^{67} +(-31.5505 + 31.5505i) q^{68} +(-23.7980 + 37.5959i) q^{70} -62.2474 q^{71} +(52.5505 - 52.5505i) q^{73} -76.7878i q^{74} +38.8990 q^{76} +(-45.5959 - 45.5959i) q^{77} +104.641i q^{79} +(-16.8990 - 10.6969i) q^{80} +(-26.5403 - 26.5403i) q^{82} +(32.2145 - 32.2145i) q^{83} +(24.4597 + 108.833i) q^{85} +60.3837 q^{86} +(20.4949 - 20.4949i) q^{88} -69.9546i q^{89} +31.5959 q^{91} +(-30.0454 - 30.0454i) q^{92} +20.0908i q^{94} +(52.0125 - 82.1691i) q^{95} +(79.1010 + 79.1010i) q^{97} +(9.40408 - 9.40408i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 12 q^{5} + 8 q^{7} - 8 q^{8} + 16 q^{10} + 8 q^{11} + 24 q^{13} - 16 q^{16} + 68 q^{17} + 8 q^{20} + 8 q^{22} - 16 q^{23} - 16 q^{25} + 48 q^{26} - 16 q^{28} + 4 q^{31} - 16 q^{32} + 8 q^{35}+ \cdots + 116 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 2.00000i 0.500000i
\(5\) 4.22474 + 2.67423i 0.844949 + 0.534847i
\(6\) 0 0
\(7\) 4.44949 + 4.44949i 0.635641 + 0.635641i 0.949477 0.313836i \(-0.101614\pi\)
−0.313836 + 0.949477i \(0.601614\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) 1.55051 + 6.89898i 0.155051 + 0.689898i
\(11\) −10.2474 −0.931586 −0.465793 0.884894i \(-0.654231\pi\)
−0.465793 + 0.884894i \(0.654231\pi\)
\(12\) 0 0
\(13\) 3.55051 3.55051i 0.273116 0.273116i −0.557237 0.830353i \(-0.688139\pi\)
0.830353 + 0.557237i \(0.188139\pi\)
\(14\) 8.89898i 0.635641i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 15.7753 + 15.7753i 0.927956 + 0.927956i 0.997574 0.0696176i \(-0.0221779\pi\)
−0.0696176 + 0.997574i \(0.522178\pi\)
\(18\) 0 0
\(19\) 19.4495i 1.02366i −0.859088 0.511829i \(-0.828968\pi\)
0.859088 0.511829i \(-0.171032\pi\)
\(20\) −5.34847 + 8.44949i −0.267423 + 0.422474i
\(21\) 0 0
\(22\) −10.2474 10.2474i −0.465793 0.465793i
\(23\) −15.0227 + 15.0227i −0.653161 + 0.653161i −0.953753 0.300592i \(-0.902816\pi\)
0.300592 + 0.953753i \(0.402816\pi\)
\(24\) 0 0
\(25\) 10.6969 + 22.5959i 0.427878 + 0.903837i
\(26\) 7.10102 0.273116
\(27\) 0 0
\(28\) −8.89898 + 8.89898i −0.317821 + 0.317821i
\(29\) 35.7980i 1.23441i 0.786801 + 0.617206i \(0.211736\pi\)
−0.786801 + 0.617206i \(0.788264\pi\)
\(30\) 0 0
\(31\) 27.9444 0.901432 0.450716 0.892667i \(-0.351169\pi\)
0.450716 + 0.892667i \(0.351169\pi\)
\(32\) −4.00000 4.00000i −0.125000 0.125000i
\(33\) 0 0
\(34\) 31.5505i 0.927956i
\(35\) 6.89898 + 30.6969i 0.197114 + 0.877055i
\(36\) 0 0
\(37\) −38.3939 38.3939i −1.03767 1.03767i −0.999262 0.0384103i \(-0.987771\pi\)
−0.0384103 0.999262i \(-0.512229\pi\)
\(38\) 19.4495 19.4495i 0.511829 0.511829i
\(39\) 0 0
\(40\) −13.7980 + 3.10102i −0.344949 + 0.0775255i
\(41\) −26.5403 −0.647325 −0.323662 0.946173i \(-0.604914\pi\)
−0.323662 + 0.946173i \(0.604914\pi\)
\(42\) 0 0
\(43\) 30.1918 30.1918i 0.702136 0.702136i −0.262733 0.964869i \(-0.584624\pi\)
0.964869 + 0.262733i \(0.0846238\pi\)
\(44\) 20.4949i 0.465793i
\(45\) 0 0
\(46\) −30.0454 −0.653161
\(47\) 10.0454 + 10.0454i 0.213732 + 0.213732i 0.805851 0.592119i \(-0.201708\pi\)
−0.592119 + 0.805851i \(0.701708\pi\)
\(48\) 0 0
\(49\) 9.40408i 0.191920i
\(50\) −11.8990 + 33.2929i −0.237980 + 0.665857i
\(51\) 0 0
\(52\) 7.10102 + 7.10102i 0.136558 + 0.136558i
\(53\) 47.4166 47.4166i 0.894652 0.894652i −0.100304 0.994957i \(-0.531982\pi\)
0.994957 + 0.100304i \(0.0319816\pi\)
\(54\) 0 0
\(55\) −43.2929 27.4041i −0.787143 0.498256i
\(56\) −17.7980 −0.317821
\(57\) 0 0
\(58\) −35.7980 + 35.7980i −0.617206 + 0.617206i
\(59\) 78.0908i 1.32357i −0.749692 0.661787i \(-0.769799\pi\)
0.749692 0.661787i \(-0.230201\pi\)
\(60\) 0 0
\(61\) 104.778 1.71766 0.858832 0.512257i \(-0.171190\pi\)
0.858832 + 0.512257i \(0.171190\pi\)
\(62\) 27.9444 + 27.9444i 0.450716 + 0.450716i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 24.4949 5.50510i 0.376845 0.0846939i
\(66\) 0 0
\(67\) −85.7423 85.7423i −1.27974 1.27974i −0.940814 0.338922i \(-0.889938\pi\)
−0.338922 0.940814i \(-0.610062\pi\)
\(68\) −31.5505 + 31.5505i −0.463978 + 0.463978i
\(69\) 0 0
\(70\) −23.7980 + 37.5959i −0.339971 + 0.537085i
\(71\) −62.2474 −0.876725 −0.438362 0.898798i \(-0.644441\pi\)
−0.438362 + 0.898798i \(0.644441\pi\)
\(72\) 0 0
\(73\) 52.5505 52.5505i 0.719870 0.719870i −0.248708 0.968578i \(-0.580006\pi\)
0.968578 + 0.248708i \(0.0800061\pi\)
\(74\) 76.7878i 1.03767i
\(75\) 0 0
\(76\) 38.8990 0.511829
\(77\) −45.5959 45.5959i −0.592155 0.592155i
\(78\) 0 0
\(79\) 104.641i 1.32457i 0.749250 + 0.662287i \(0.230414\pi\)
−0.749250 + 0.662287i \(0.769586\pi\)
\(80\) −16.8990 10.6969i −0.211237 0.133712i
\(81\) 0 0
\(82\) −26.5403 26.5403i −0.323662 0.323662i
\(83\) 32.2145 32.2145i 0.388127 0.388127i −0.485892 0.874019i \(-0.661505\pi\)
0.874019 + 0.485892i \(0.161505\pi\)
\(84\) 0 0
\(85\) 24.4597 + 108.833i 0.287761 + 1.28039i
\(86\) 60.3837 0.702136
\(87\) 0 0
\(88\) 20.4949 20.4949i 0.232897 0.232897i
\(89\) 69.9546i 0.786007i −0.919537 0.393003i \(-0.871436\pi\)
0.919537 0.393003i \(-0.128564\pi\)
\(90\) 0 0
\(91\) 31.5959 0.347208
\(92\) −30.0454 30.0454i −0.326581 0.326581i
\(93\) 0 0
\(94\) 20.0908i 0.213732i
\(95\) 52.0125 82.1691i 0.547500 0.864938i
\(96\) 0 0
\(97\) 79.1010 + 79.1010i 0.815474 + 0.815474i 0.985449 0.169974i \(-0.0543684\pi\)
−0.169974 + 0.985449i \(0.554368\pi\)
\(98\) 9.40408 9.40408i 0.0959600 0.0959600i
\(99\) 0 0
\(100\) −45.1918 + 21.3939i −0.451918 + 0.213939i
\(101\) −84.8990 −0.840584 −0.420292 0.907389i \(-0.638072\pi\)
−0.420292 + 0.907389i \(0.638072\pi\)
\(102\) 0 0
\(103\) 43.0806 43.0806i 0.418258 0.418258i −0.466345 0.884603i \(-0.654429\pi\)
0.884603 + 0.466345i \(0.154429\pi\)
\(104\) 14.2020i 0.136558i
\(105\) 0 0
\(106\) 94.8332 0.894652
\(107\) −53.8434 53.8434i −0.503209 0.503209i 0.409225 0.912434i \(-0.365799\pi\)
−0.912434 + 0.409225i \(0.865799\pi\)
\(108\) 0 0
\(109\) 104.576i 0.959408i 0.877430 + 0.479704i \(0.159256\pi\)
−0.877430 + 0.479704i \(0.840744\pi\)
\(110\) −15.8888 70.6969i −0.144443 0.642699i
\(111\) 0 0
\(112\) −17.7980 17.7980i −0.158910 0.158910i
\(113\) 105.283 105.283i 0.931705 0.931705i −0.0661076 0.997812i \(-0.521058\pi\)
0.997812 + 0.0661076i \(0.0210581\pi\)
\(114\) 0 0
\(115\) −103.641 + 23.2929i −0.901229 + 0.202547i
\(116\) −71.5959 −0.617206
\(117\) 0 0
\(118\) 78.0908 78.0908i 0.661787 0.661787i
\(119\) 140.384i 1.17969i
\(120\) 0 0
\(121\) −15.9898 −0.132147
\(122\) 104.778 + 104.778i 0.858832 + 0.858832i
\(123\) 0 0
\(124\) 55.8888i 0.450716i
\(125\) −15.2350 + 124.068i −0.121880 + 0.992545i
\(126\) 0 0
\(127\) −170.126 170.126i −1.33957 1.33957i −0.896470 0.443105i \(-0.853877\pi\)
−0.443105 0.896470i \(-0.646123\pi\)
\(128\) 8.00000 8.00000i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) 30.0000 + 18.9898i 0.230769 + 0.146075i
\(131\) 146.359 1.11724 0.558621 0.829423i \(-0.311331\pi\)
0.558621 + 0.829423i \(0.311331\pi\)
\(132\) 0 0
\(133\) 86.5403 86.5403i 0.650679 0.650679i
\(134\) 171.485i 1.27974i
\(135\) 0 0
\(136\) −63.1010 −0.463978
\(137\) −35.5732 35.5732i −0.259658 0.259658i 0.565257 0.824915i \(-0.308777\pi\)
−0.824915 + 0.565257i \(0.808777\pi\)
\(138\) 0 0
\(139\) 123.889i 0.891286i −0.895211 0.445643i \(-0.852975\pi\)
0.895211 0.445643i \(-0.147025\pi\)
\(140\) −61.3939 + 13.7980i −0.438528 + 0.0985568i
\(141\) 0 0
\(142\) −62.2474 62.2474i −0.438362 0.438362i
\(143\) −36.3837 + 36.3837i −0.254431 + 0.254431i
\(144\) 0 0
\(145\) −95.7321 + 151.237i −0.660222 + 1.04302i
\(146\) 105.101 0.719870
\(147\) 0 0
\(148\) 76.7878 76.7878i 0.518836 0.518836i
\(149\) 217.237i 1.45797i 0.684531 + 0.728984i \(0.260007\pi\)
−0.684531 + 0.728984i \(0.739993\pi\)
\(150\) 0 0
\(151\) −142.808 −0.945749 −0.472875 0.881130i \(-0.656784\pi\)
−0.472875 + 0.881130i \(0.656784\pi\)
\(152\) 38.8990 + 38.8990i 0.255914 + 0.255914i
\(153\) 0 0
\(154\) 91.1918i 0.592155i
\(155\) 118.058 + 74.7298i 0.761664 + 0.482128i
\(156\) 0 0
\(157\) −29.8332 29.8332i −0.190020 0.190020i 0.605685 0.795705i \(-0.292899\pi\)
−0.795705 + 0.605685i \(0.792899\pi\)
\(158\) −104.641 + 104.641i −0.662287 + 0.662287i
\(159\) 0 0
\(160\) −6.20204 27.5959i −0.0387628 0.172474i
\(161\) −133.687 −0.830352
\(162\) 0 0
\(163\) −61.3587 + 61.3587i −0.376434 + 0.376434i −0.869814 0.493380i \(-0.835761\pi\)
0.493380 + 0.869814i \(0.335761\pi\)
\(164\) 53.0806i 0.323662i
\(165\) 0 0
\(166\) 64.4291 0.388127
\(167\) −136.240 136.240i −0.815806 0.815806i 0.169692 0.985497i \(-0.445723\pi\)
−0.985497 + 0.169692i \(0.945723\pi\)
\(168\) 0 0
\(169\) 143.788i 0.850815i
\(170\) −84.3735 + 133.293i −0.496315 + 0.784076i
\(171\) 0 0
\(172\) 60.3837 + 60.3837i 0.351068 + 0.351068i
\(173\) −149.800 + 149.800i −0.865897 + 0.865897i −0.992015 0.126118i \(-0.959748\pi\)
0.126118 + 0.992015i \(0.459748\pi\)
\(174\) 0 0
\(175\) −52.9444 + 148.136i −0.302539 + 0.846493i
\(176\) 40.9898 0.232897
\(177\) 0 0
\(178\) 69.9546 69.9546i 0.393003 0.393003i
\(179\) 186.252i 1.04051i 0.854010 + 0.520257i \(0.174164\pi\)
−0.854010 + 0.520257i \(0.825836\pi\)
\(180\) 0 0
\(181\) 258.373 1.42748 0.713739 0.700412i \(-0.247000\pi\)
0.713739 + 0.700412i \(0.247000\pi\)
\(182\) 31.5959 + 31.5959i 0.173604 + 0.173604i
\(183\) 0 0
\(184\) 60.0908i 0.326581i
\(185\) −59.5301 264.879i −0.321784 1.43178i
\(186\) 0 0
\(187\) −161.656 161.656i −0.864471 0.864471i
\(188\) −20.0908 + 20.0908i −0.106866 + 0.106866i
\(189\) 0 0
\(190\) 134.182 30.1566i 0.706219 0.158719i
\(191\) 188.924 0.989131 0.494565 0.869140i \(-0.335327\pi\)
0.494565 + 0.869140i \(0.335327\pi\)
\(192\) 0 0
\(193\) −181.237 + 181.237i −0.939053 + 0.939053i −0.998247 0.0591935i \(-0.981147\pi\)
0.0591935 + 0.998247i \(0.481147\pi\)
\(194\) 158.202i 0.815474i
\(195\) 0 0
\(196\) 18.8082 0.0959600
\(197\) 181.775 + 181.775i 0.922717 + 0.922717i 0.997221 0.0745037i \(-0.0237373\pi\)
−0.0745037 + 0.997221i \(0.523737\pi\)
\(198\) 0 0
\(199\) 67.3235i 0.338309i 0.985590 + 0.169154i \(0.0541037\pi\)
−0.985590 + 0.169154i \(0.945896\pi\)
\(200\) −66.5857 23.7980i −0.332929 0.118990i
\(201\) 0 0
\(202\) −84.8990 84.8990i −0.420292 0.420292i
\(203\) −159.283 + 159.283i −0.784644 + 0.784644i
\(204\) 0 0
\(205\) −112.126 70.9750i −0.546956 0.346220i
\(206\) 86.1612 0.418258
\(207\) 0 0
\(208\) −14.2020 + 14.2020i −0.0682790 + 0.0682790i
\(209\) 199.308i 0.953625i
\(210\) 0 0
\(211\) 191.520 0.907677 0.453839 0.891084i \(-0.350054\pi\)
0.453839 + 0.891084i \(0.350054\pi\)
\(212\) 94.8332 + 94.8332i 0.447326 + 0.447326i
\(213\) 0 0
\(214\) 107.687i 0.503209i
\(215\) 208.293 46.8128i 0.968804 0.217734i
\(216\) 0 0
\(217\) 124.338 + 124.338i 0.572987 + 0.572987i
\(218\) −104.576 + 104.576i −0.479704 + 0.479704i
\(219\) 0 0
\(220\) 54.8082 86.5857i 0.249128 0.393571i
\(221\) 112.020 0.506880
\(222\) 0 0
\(223\) 8.36888 8.36888i 0.0375286 0.0375286i −0.688093 0.725622i \(-0.741552\pi\)
0.725622 + 0.688093i \(0.241552\pi\)
\(224\) 35.5959i 0.158910i
\(225\) 0 0
\(226\) 210.565 0.931705
\(227\) −6.91148 6.91148i −0.0304470 0.0304470i 0.691719 0.722166i \(-0.256854\pi\)
−0.722166 + 0.691719i \(0.756854\pi\)
\(228\) 0 0
\(229\) 246.242i 1.07529i 0.843171 + 0.537646i \(0.180686\pi\)
−0.843171 + 0.537646i \(0.819314\pi\)
\(230\) −126.934 80.3485i −0.551888 0.349341i
\(231\) 0 0
\(232\) −71.5959 71.5959i −0.308603 0.308603i
\(233\) 182.586 182.586i 0.783630 0.783630i −0.196812 0.980441i \(-0.563059\pi\)
0.980441 + 0.196812i \(0.0630587\pi\)
\(234\) 0 0
\(235\) 15.5755 + 69.3031i 0.0662788 + 0.294907i
\(236\) 156.182 0.661787
\(237\) 0 0
\(238\) −140.384 + 140.384i −0.589847 + 0.589847i
\(239\) 174.409i 0.729743i 0.931058 + 0.364872i \(0.118887\pi\)
−0.931058 + 0.364872i \(0.881113\pi\)
\(240\) 0 0
\(241\) −190.333 −0.789762 −0.394881 0.918732i \(-0.629214\pi\)
−0.394881 + 0.918732i \(0.629214\pi\)
\(242\) −15.9898 15.9898i −0.0660735 0.0660735i
\(243\) 0 0
\(244\) 209.555i 0.858832i
\(245\) 25.1487 39.7298i 0.102648 0.162163i
\(246\) 0 0
\(247\) −69.0556 69.0556i −0.279577 0.279577i
\(248\) −55.8888 + 55.8888i −0.225358 + 0.225358i
\(249\) 0 0
\(250\) −139.303 + 108.833i −0.557212 + 0.435333i
\(251\) −421.707 −1.68011 −0.840054 0.542503i \(-0.817477\pi\)
−0.840054 + 0.542503i \(0.817477\pi\)
\(252\) 0 0
\(253\) 153.944 153.944i 0.608476 0.608476i
\(254\) 340.252i 1.33957i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −88.6288 88.6288i −0.344859 0.344859i 0.513331 0.858191i \(-0.328411\pi\)
−0.858191 + 0.513331i \(0.828411\pi\)
\(258\) 0 0
\(259\) 341.666i 1.31917i
\(260\) 11.0102 + 48.9898i 0.0423469 + 0.188422i
\(261\) 0 0
\(262\) 146.359 + 146.359i 0.558621 + 0.558621i
\(263\) −25.1214 + 25.1214i −0.0955187 + 0.0955187i −0.753251 0.657733i \(-0.771516\pi\)
0.657733 + 0.753251i \(0.271516\pi\)
\(264\) 0 0
\(265\) 327.126 73.5199i 1.23444 0.277434i
\(266\) 173.081 0.650679
\(267\) 0 0
\(268\) 171.485 171.485i 0.639868 0.639868i
\(269\) 197.621i 0.734650i −0.930093 0.367325i \(-0.880274\pi\)
0.930093 0.367325i \(-0.119726\pi\)
\(270\) 0 0
\(271\) −158.258 −0.583977 −0.291988 0.956422i \(-0.594317\pi\)
−0.291988 + 0.956422i \(0.594317\pi\)
\(272\) −63.1010 63.1010i −0.231989 0.231989i
\(273\) 0 0
\(274\) 71.1464i 0.259658i
\(275\) −109.616 231.551i −0.398605 0.842002i
\(276\) 0 0
\(277\) 82.7321 + 82.7321i 0.298672 + 0.298672i 0.840494 0.541822i \(-0.182265\pi\)
−0.541822 + 0.840494i \(0.682265\pi\)
\(278\) 123.889 123.889i 0.445643 0.445643i
\(279\) 0 0
\(280\) −75.1918 47.5959i −0.268542 0.169985i
\(281\) −123.353 −0.438979 −0.219489 0.975615i \(-0.570439\pi\)
−0.219489 + 0.975615i \(0.570439\pi\)
\(282\) 0 0
\(283\) −194.980 + 194.980i −0.688974 + 0.688974i −0.962005 0.273031i \(-0.911974\pi\)
0.273031 + 0.962005i \(0.411974\pi\)
\(284\) 124.495i 0.438362i
\(285\) 0 0
\(286\) −72.7673 −0.254431
\(287\) −118.091 118.091i −0.411466 0.411466i
\(288\) 0 0
\(289\) 208.717i 0.722205i
\(290\) −246.969 + 55.5051i −0.851619 + 0.191397i
\(291\) 0 0
\(292\) 105.101 + 105.101i 0.359935 + 0.359935i
\(293\) 52.9921 52.9921i 0.180860 0.180860i −0.610870 0.791731i \(-0.709180\pi\)
0.791731 + 0.610870i \(0.209180\pi\)
\(294\) 0 0
\(295\) 208.833 329.914i 0.707909 1.11835i
\(296\) 153.576 0.518836
\(297\) 0 0
\(298\) −217.237 + 217.237i −0.728984 + 0.728984i
\(299\) 106.677i 0.356778i
\(300\) 0 0
\(301\) 268.677 0.892613
\(302\) −142.808 142.808i −0.472875 0.472875i
\(303\) 0 0
\(304\) 77.7980i 0.255914i
\(305\) 442.658 + 280.200i 1.45134 + 0.918688i
\(306\) 0 0
\(307\) 186.106 + 186.106i 0.606207 + 0.606207i 0.941953 0.335746i \(-0.108988\pi\)
−0.335746 + 0.941953i \(0.608988\pi\)
\(308\) 91.1918 91.1918i 0.296077 0.296077i
\(309\) 0 0
\(310\) 43.3281 + 192.788i 0.139768 + 0.621896i
\(311\) 246.858 0.793756 0.396878 0.917871i \(-0.370094\pi\)
0.396878 + 0.917871i \(0.370094\pi\)
\(312\) 0 0
\(313\) −210.161 + 210.161i −0.671442 + 0.671442i −0.958048 0.286607i \(-0.907473\pi\)
0.286607 + 0.958048i \(0.407473\pi\)
\(314\) 59.6663i 0.190020i
\(315\) 0 0
\(316\) −209.283 −0.662287
\(317\) −244.361 244.361i −0.770855 0.770855i 0.207401 0.978256i \(-0.433499\pi\)
−0.978256 + 0.207401i \(0.933499\pi\)
\(318\) 0 0
\(319\) 366.838i 1.14996i
\(320\) 21.3939 33.7980i 0.0668559 0.105619i
\(321\) 0 0
\(322\) −133.687 133.687i −0.415176 0.415176i
\(323\) 306.821 306.821i 0.949909 0.949909i
\(324\) 0 0
\(325\) 118.207 + 42.2474i 0.363713 + 0.129992i
\(326\) −122.717 −0.376434
\(327\) 0 0
\(328\) 53.0806 53.0806i 0.161831 0.161831i
\(329\) 89.3939i 0.271714i
\(330\) 0 0
\(331\) −551.464 −1.66606 −0.833028 0.553231i \(-0.813395\pi\)
−0.833028 + 0.553231i \(0.813395\pi\)
\(332\) 64.4291 + 64.4291i 0.194063 + 0.194063i
\(333\) 0 0
\(334\) 272.479i 0.815806i
\(335\) −132.944 591.535i −0.396849 1.76578i
\(336\) 0 0
\(337\) −38.7832 38.7832i −0.115084 0.115084i 0.647220 0.762303i \(-0.275932\pi\)
−0.762303 + 0.647220i \(0.775932\pi\)
\(338\) −143.788 + 143.788i −0.425408 + 0.425408i
\(339\) 0 0
\(340\) −217.666 + 48.9194i −0.640195 + 0.143881i
\(341\) −286.359 −0.839762
\(342\) 0 0
\(343\) 259.868 259.868i 0.757634 0.757634i
\(344\) 120.767i 0.351068i
\(345\) 0 0
\(346\) −299.601 −0.865897
\(347\) −402.722 402.722i −1.16058 1.16058i −0.984348 0.176234i \(-0.943609\pi\)
−0.176234 0.984348i \(-0.556391\pi\)
\(348\) 0 0
\(349\) 491.272i 1.40766i −0.710370 0.703829i \(-0.751472\pi\)
0.710370 0.703829i \(-0.248528\pi\)
\(350\) −201.081 + 95.1918i −0.574516 + 0.271977i
\(351\) 0 0
\(352\) 40.9898 + 40.9898i 0.116448 + 0.116448i
\(353\) 68.5857 68.5857i 0.194294 0.194294i −0.603255 0.797549i \(-0.706130\pi\)
0.797549 + 0.603255i \(0.206130\pi\)
\(354\) 0 0
\(355\) −262.980 166.464i −0.740788 0.468913i
\(356\) 139.909 0.393003
\(357\) 0 0
\(358\) −186.252 + 186.252i −0.520257 + 0.520257i
\(359\) 353.773i 0.985440i −0.870188 0.492720i \(-0.836003\pi\)
0.870188 0.492720i \(-0.163997\pi\)
\(360\) 0 0
\(361\) −17.2827 −0.0478744
\(362\) 258.373 + 258.373i 0.713739 + 0.713739i
\(363\) 0 0
\(364\) 63.1918i 0.173604i
\(365\) 362.545 81.4801i 0.993274 0.223233i
\(366\) 0 0
\(367\) 240.702 + 240.702i 0.655862 + 0.655862i 0.954398 0.298536i \(-0.0964983\pi\)
−0.298536 + 0.954398i \(0.596498\pi\)
\(368\) 60.0908 60.0908i 0.163290 0.163290i
\(369\) 0 0
\(370\) 205.348 324.409i 0.554996 0.876780i
\(371\) 421.959 1.13736
\(372\) 0 0
\(373\) 423.060 423.060i 1.13421 1.13421i 0.144740 0.989470i \(-0.453765\pi\)
0.989470 0.144740i \(-0.0462345\pi\)
\(374\) 323.312i 0.864471i
\(375\) 0 0
\(376\) −40.1816 −0.106866
\(377\) 127.101 + 127.101i 0.337138 + 0.337138i
\(378\) 0 0
\(379\) 57.1066i 0.150677i −0.997158 0.0753386i \(-0.975996\pi\)
0.997158 0.0753386i \(-0.0240038\pi\)
\(380\) 164.338 + 104.025i 0.432469 + 0.273750i
\(381\) 0 0
\(382\) 188.924 + 188.924i 0.494565 + 0.494565i
\(383\) −362.487 + 362.487i −0.946441 + 0.946441i −0.998637 0.0521957i \(-0.983378\pi\)
0.0521957 + 0.998637i \(0.483378\pi\)
\(384\) 0 0
\(385\) −70.6969 314.565i −0.183628 0.817053i
\(386\) −362.474 −0.939053
\(387\) 0 0
\(388\) −158.202 + 158.202i −0.407737 + 0.407737i
\(389\) 477.106i 1.22649i −0.789892 0.613246i \(-0.789863\pi\)
0.789892 0.613246i \(-0.210137\pi\)
\(390\) 0 0
\(391\) −473.974 −1.21221
\(392\) 18.8082 + 18.8082i 0.0479800 + 0.0479800i
\(393\) 0 0
\(394\) 363.551i 0.922717i
\(395\) −279.835 + 442.083i −0.708444 + 1.11920i
\(396\) 0 0
\(397\) 130.297 + 130.297i 0.328205 + 0.328205i 0.851904 0.523699i \(-0.175448\pi\)
−0.523699 + 0.851904i \(0.675448\pi\)
\(398\) −67.3235 + 67.3235i −0.169154 + 0.169154i
\(399\) 0 0
\(400\) −42.7878 90.3837i −0.106969 0.225959i
\(401\) −91.7821 −0.228883 −0.114442 0.993430i \(-0.536508\pi\)
−0.114442 + 0.993430i \(0.536508\pi\)
\(402\) 0 0
\(403\) 99.2168 99.2168i 0.246196 0.246196i
\(404\) 169.798i 0.420292i
\(405\) 0 0
\(406\) −318.565 −0.784644
\(407\) 393.439 + 393.439i 0.966681 + 0.966681i
\(408\) 0 0
\(409\) 23.2520i 0.0568509i −0.999596 0.0284255i \(-0.990951\pi\)
0.999596 0.0284255i \(-0.00904933\pi\)
\(410\) −41.1510 183.101i −0.100368 0.446588i
\(411\) 0 0
\(412\) 86.1612 + 86.1612i 0.209129 + 0.209129i
\(413\) 347.464 347.464i 0.841318 0.841318i
\(414\) 0 0
\(415\) 222.247 49.9490i 0.535536 0.120359i
\(416\) −28.4041 −0.0682790
\(417\) 0 0
\(418\) −199.308 + 199.308i −0.476813 + 0.476813i
\(419\) 675.551i 1.61229i 0.591716 + 0.806146i \(0.298451\pi\)
−0.591716 + 0.806146i \(0.701549\pi\)
\(420\) 0 0
\(421\) 307.252 0.729815 0.364907 0.931044i \(-0.381101\pi\)
0.364907 + 0.931044i \(0.381101\pi\)
\(422\) 191.520 + 191.520i 0.453839 + 0.453839i
\(423\) 0 0
\(424\) 189.666i 0.447326i
\(425\) −187.709 + 525.203i −0.441669 + 1.23577i
\(426\) 0 0
\(427\) 466.207 + 466.207i 1.09182 + 1.09182i
\(428\) 107.687 107.687i 0.251605 0.251605i
\(429\) 0 0
\(430\) 255.106 + 161.480i 0.593269 + 0.375535i
\(431\) −680.120 −1.57801 −0.789003 0.614390i \(-0.789402\pi\)
−0.789003 + 0.614390i \(0.789402\pi\)
\(432\) 0 0
\(433\) −416.479 + 416.479i −0.961845 + 0.961845i −0.999298 0.0374530i \(-0.988076\pi\)
0.0374530 + 0.999298i \(0.488076\pi\)
\(434\) 248.677i 0.572987i
\(435\) 0 0
\(436\) −209.151 −0.479704
\(437\) 292.184 + 292.184i 0.668613 + 0.668613i
\(438\) 0 0
\(439\) 325.277i 0.740950i 0.928842 + 0.370475i \(0.120805\pi\)
−0.928842 + 0.370475i \(0.879195\pi\)
\(440\) 141.394 31.7775i 0.321350 0.0722217i
\(441\) 0 0
\(442\) 112.020 + 112.020i 0.253440 + 0.253440i
\(443\) 310.330 310.330i 0.700520 0.700520i −0.264002 0.964522i \(-0.585043\pi\)
0.964522 + 0.264002i \(0.0850426\pi\)
\(444\) 0 0
\(445\) 187.075 295.540i 0.420393 0.664136i
\(446\) 16.7378 0.0375286
\(447\) 0 0
\(448\) 35.5959 35.5959i 0.0794552 0.0794552i
\(449\) 184.697i 0.411352i 0.978620 + 0.205676i \(0.0659393\pi\)
−0.978620 + 0.205676i \(0.934061\pi\)
\(450\) 0 0
\(451\) 271.970 0.603039
\(452\) 210.565 + 210.565i 0.465852 + 0.465852i
\(453\) 0 0
\(454\) 13.8230i 0.0304470i
\(455\) 133.485 + 84.4949i 0.293373 + 0.185703i
\(456\) 0 0
\(457\) 520.182 + 520.182i 1.13825 + 1.13825i 0.988763 + 0.149490i \(0.0477631\pi\)
0.149490 + 0.988763i \(0.452237\pi\)
\(458\) −246.242 + 246.242i −0.537646 + 0.537646i
\(459\) 0 0
\(460\) −46.5857 207.283i −0.101273 0.450614i
\(461\) −808.286 −1.75333 −0.876666 0.481099i \(-0.840238\pi\)
−0.876666 + 0.481099i \(0.840238\pi\)
\(462\) 0 0
\(463\) −38.8934 + 38.8934i −0.0840029 + 0.0840029i −0.747860 0.663857i \(-0.768918\pi\)
0.663857 + 0.747860i \(0.268918\pi\)
\(464\) 143.192i 0.308603i
\(465\) 0 0
\(466\) 365.171 0.783630
\(467\) 80.8411 + 80.8411i 0.173107 + 0.173107i 0.788343 0.615236i \(-0.210939\pi\)
−0.615236 + 0.788343i \(0.710939\pi\)
\(468\) 0 0
\(469\) 763.019i 1.62691i
\(470\) −53.7276 + 84.8786i −0.114314 + 0.180593i
\(471\) 0 0
\(472\) 156.182 + 156.182i 0.330893 + 0.330893i
\(473\) −309.389 + 309.389i −0.654100 + 0.654100i
\(474\) 0 0
\(475\) 439.479 208.050i 0.925219 0.438000i
\(476\) −280.767 −0.589847
\(477\) 0 0
\(478\) −174.409 + 174.409i −0.364872 + 0.364872i
\(479\) 311.773i 0.650883i 0.945562 + 0.325442i \(0.105513\pi\)
−0.945562 + 0.325442i \(0.894487\pi\)
\(480\) 0 0
\(481\) −272.636 −0.566810
\(482\) −190.333 190.333i −0.394881 0.394881i
\(483\) 0 0
\(484\) 31.9796i 0.0660735i
\(485\) 122.647 + 545.716i 0.252880 + 1.12519i
\(486\) 0 0
\(487\) −323.424 323.424i −0.664116 0.664116i 0.292232 0.956348i \(-0.405602\pi\)
−0.956348 + 0.292232i \(0.905602\pi\)
\(488\) −209.555 + 209.555i −0.429416 + 0.429416i
\(489\) 0 0
\(490\) 64.8786 14.5811i 0.132405 0.0297574i
\(491\) 753.914 1.53547 0.767733 0.640770i \(-0.221385\pi\)
0.767733 + 0.640770i \(0.221385\pi\)
\(492\) 0 0
\(493\) −564.722 + 564.722i −1.14548 + 1.14548i
\(494\) 138.111i 0.279577i
\(495\) 0 0
\(496\) −111.778 −0.225358
\(497\) −276.969 276.969i −0.557282 0.557282i
\(498\) 0 0
\(499\) 535.388i 1.07292i 0.843925 + 0.536461i \(0.180239\pi\)
−0.843925 + 0.536461i \(0.819761\pi\)
\(500\) −248.136 30.4699i −0.496272 0.0609398i
\(501\) 0 0
\(502\) −421.707 421.707i −0.840054 0.840054i
\(503\) −209.704 + 209.704i −0.416906 + 0.416906i −0.884136 0.467230i \(-0.845252\pi\)
0.467230 + 0.884136i \(0.345252\pi\)
\(504\) 0 0
\(505\) −358.677 227.040i −0.710251 0.449584i
\(506\) 307.889 0.608476
\(507\) 0 0
\(508\) 340.252 340.252i 0.669787 0.669787i
\(509\) 57.2122i 0.112401i 0.998419 + 0.0562006i \(0.0178986\pi\)
−0.998419 + 0.0562006i \(0.982101\pi\)
\(510\) 0 0
\(511\) 467.646 0.915158
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 177.258i 0.344859i
\(515\) 297.212 66.7969i 0.577111 0.129703i
\(516\) 0 0
\(517\) −102.940 102.940i −0.199110 0.199110i
\(518\) 341.666 341.666i 0.659587 0.659587i
\(519\) 0 0
\(520\) −37.9796 + 60.0000i −0.0730377 + 0.115385i
\(521\) −344.611 −0.661441 −0.330720 0.943729i \(-0.607292\pi\)
−0.330720 + 0.943729i \(0.607292\pi\)
\(522\) 0 0
\(523\) −66.7923 + 66.7923i −0.127710 + 0.127710i −0.768073 0.640363i \(-0.778784\pi\)
0.640363 + 0.768073i \(0.278784\pi\)
\(524\) 292.717i 0.558621i
\(525\) 0 0
\(526\) −50.2429 −0.0955187
\(527\) 440.830 + 440.830i 0.836489 + 0.836489i
\(528\) 0 0
\(529\) 77.6367i 0.146761i
\(530\) 400.646 + 253.606i 0.755936 + 0.478502i
\(531\) 0 0
\(532\) 173.081 + 173.081i 0.325339 + 0.325339i
\(533\) −94.2316 + 94.2316i −0.176795 + 0.176795i
\(534\) 0 0
\(535\) −83.4847 371.464i −0.156046 0.694326i
\(536\) 342.969 0.639868
\(537\) 0 0
\(538\) 197.621 197.621i 0.367325 0.367325i
\(539\) 96.3678i 0.178790i
\(540\) 0 0
\(541\) −943.383 −1.74378 −0.871888 0.489706i \(-0.837104\pi\)
−0.871888 + 0.489706i \(0.837104\pi\)
\(542\) −158.258 158.258i −0.291988 0.291988i
\(543\) 0 0
\(544\) 126.202i 0.231989i
\(545\) −279.659 + 441.805i −0.513137 + 0.810651i
\(546\) 0 0
\(547\) 669.929 + 669.929i 1.22473 + 1.22473i 0.965930 + 0.258802i \(0.0833277\pi\)
0.258802 + 0.965930i \(0.416672\pi\)
\(548\) 71.1464 71.1464i 0.129829 0.129829i
\(549\) 0 0
\(550\) 121.934 341.167i 0.221699 0.620303i
\(551\) 696.252 1.26362
\(552\) 0 0
\(553\) −465.601 + 465.601i −0.841954 + 0.841954i
\(554\) 165.464i 0.298672i
\(555\) 0 0
\(556\) 247.778 0.445643
\(557\) −128.586 128.586i −0.230854 0.230854i 0.582195 0.813049i \(-0.302194\pi\)
−0.813049 + 0.582195i \(0.802194\pi\)
\(558\) 0 0
\(559\) 214.393i 0.383529i
\(560\) −27.5959 122.788i −0.0492784 0.219264i
\(561\) 0 0
\(562\) −123.353 123.353i −0.219489 0.219489i
\(563\) −53.5301 + 53.5301i −0.0950801 + 0.0950801i −0.753047 0.657967i \(-0.771417\pi\)
0.657967 + 0.753047i \(0.271417\pi\)
\(564\) 0 0
\(565\) 726.343 163.242i 1.28556 0.288924i
\(566\) −389.959 −0.688974
\(567\) 0 0
\(568\) 124.495 124.495i 0.219181 0.219181i
\(569\) 449.959i 0.790789i −0.918511 0.395395i \(-0.870608\pi\)
0.918511 0.395395i \(-0.129392\pi\)
\(570\) 0 0
\(571\) 28.7526 0.0503547 0.0251774 0.999683i \(-0.491985\pi\)
0.0251774 + 0.999683i \(0.491985\pi\)
\(572\) −72.7673 72.7673i −0.127216 0.127216i
\(573\) 0 0
\(574\) 236.182i 0.411466i
\(575\) −500.149 178.755i −0.869824 0.310878i
\(576\) 0 0
\(577\) −664.135 664.135i −1.15101 1.15101i −0.986350 0.164665i \(-0.947346\pi\)
−0.164665 0.986350i \(-0.552654\pi\)
\(578\) −208.717 + 208.717i −0.361103 + 0.361103i
\(579\) 0 0
\(580\) −302.474 191.464i −0.521508 0.330111i
\(581\) 286.677 0.493419
\(582\) 0 0
\(583\) −485.899 + 485.899i −0.833446 + 0.833446i
\(584\) 210.202i 0.359935i
\(585\) 0 0
\(586\) 105.984 0.180860
\(587\) −304.083 304.083i −0.518029 0.518029i 0.398946 0.916975i \(-0.369376\pi\)
−0.916975 + 0.398946i \(0.869376\pi\)
\(588\) 0 0
\(589\) 543.504i 0.922757i
\(590\) 538.747 121.081i 0.913130 0.205221i
\(591\) 0 0
\(592\) 153.576 + 153.576i 0.259418 + 0.259418i
\(593\) 588.102 588.102i 0.991741 0.991741i −0.00822539 0.999966i \(-0.502618\pi\)
0.999966 + 0.00822539i \(0.00261825\pi\)
\(594\) 0 0
\(595\) −375.419 + 593.085i −0.630956 + 0.996782i
\(596\) −434.474 −0.728984
\(597\) 0 0
\(598\) −106.677 + 106.677i −0.178389 + 0.178389i
\(599\) 160.252i 0.267533i 0.991013 + 0.133766i \(0.0427072\pi\)
−0.991013 + 0.133766i \(0.957293\pi\)
\(600\) 0 0
\(601\) −1157.79 −1.92644 −0.963218 0.268722i \(-0.913399\pi\)
−0.963218 + 0.268722i \(0.913399\pi\)
\(602\) 268.677 + 268.677i 0.446307 + 0.446307i
\(603\) 0 0
\(604\) 285.616i 0.472875i
\(605\) −67.5528 42.7605i −0.111658 0.0706785i
\(606\) 0 0
\(607\) 312.303 + 312.303i 0.514503 + 0.514503i 0.915903 0.401400i \(-0.131476\pi\)
−0.401400 + 0.915903i \(0.631476\pi\)
\(608\) −77.7980 + 77.7980i −0.127957 + 0.127957i
\(609\) 0 0
\(610\) 162.459 + 722.858i 0.266326 + 1.18501i
\(611\) 71.3326 0.116747
\(612\) 0 0
\(613\) 687.959 687.959i 1.12228 1.12228i 0.130885 0.991398i \(-0.458218\pi\)
0.991398 0.130885i \(-0.0417818\pi\)
\(614\) 372.211i 0.606207i
\(615\) 0 0
\(616\) 182.384 0.296077
\(617\) 213.421 + 213.421i 0.345901 + 0.345901i 0.858580 0.512679i \(-0.171347\pi\)
−0.512679 + 0.858580i \(0.671347\pi\)
\(618\) 0 0
\(619\) 86.9082i 0.140401i −0.997533 0.0702004i \(-0.977636\pi\)
0.997533 0.0702004i \(-0.0223639\pi\)
\(620\) −149.460 + 236.116i −0.241064 + 0.380832i
\(621\) 0 0
\(622\) 246.858 + 246.858i 0.396878 + 0.396878i
\(623\) 311.262 311.262i 0.499618 0.499618i
\(624\) 0 0
\(625\) −396.151 + 483.414i −0.633842 + 0.773463i
\(626\) −420.322 −0.671442
\(627\) 0 0
\(628\) 59.6663 59.6663i 0.0950101 0.0950101i
\(629\) 1211.35i 1.92583i
\(630\) 0 0
\(631\) 302.298 0.479078 0.239539 0.970887i \(-0.423004\pi\)
0.239539 + 0.970887i \(0.423004\pi\)
\(632\) −209.283 209.283i −0.331143 0.331143i
\(633\) 0 0
\(634\) 488.722i 0.770855i
\(635\) −263.782 1173.70i −0.415405 1.84834i
\(636\) 0 0
\(637\) −33.3893 33.3893i −0.0524165 0.0524165i
\(638\) 366.838 366.838i 0.574981 0.574981i
\(639\) 0 0
\(640\) 55.1918 12.4041i 0.0862372 0.0193814i
\(641\) −667.060 −1.04066 −0.520328 0.853967i \(-0.674190\pi\)
−0.520328 + 0.853967i \(0.674190\pi\)
\(642\) 0 0
\(643\) 246.581 246.581i 0.383485 0.383485i −0.488871 0.872356i \(-0.662591\pi\)
0.872356 + 0.488871i \(0.162591\pi\)
\(644\) 267.373i 0.415176i
\(645\) 0 0
\(646\) 613.641 0.949909
\(647\) −43.7900 43.7900i −0.0676817 0.0676817i 0.672456 0.740137i \(-0.265240\pi\)
−0.740137 + 0.672456i \(0.765240\pi\)
\(648\) 0 0
\(649\) 800.232i 1.23302i
\(650\) 75.9592 + 160.454i 0.116860 + 0.246852i
\(651\) 0 0
\(652\) −122.717 122.717i −0.188217 0.188217i
\(653\) −72.4268 + 72.4268i −0.110914 + 0.110914i −0.760386 0.649472i \(-0.774990\pi\)
0.649472 + 0.760386i \(0.274990\pi\)
\(654\) 0 0
\(655\) 618.328 + 391.397i 0.944012 + 0.597553i
\(656\) 106.161 0.161831
\(657\) 0 0
\(658\) −89.3939 + 89.3939i −0.135857 + 0.135857i
\(659\) 346.636i 0.526003i −0.964795 0.263001i \(-0.915288\pi\)
0.964795 0.263001i \(-0.0847124\pi\)
\(660\) 0 0
\(661\) −474.152 −0.717325 −0.358663 0.933467i \(-0.616767\pi\)
−0.358663 + 0.933467i \(0.616767\pi\)
\(662\) −551.464 551.464i −0.833028 0.833028i
\(663\) 0 0
\(664\) 128.858i 0.194063i
\(665\) 597.040 134.182i 0.897804 0.201777i
\(666\) 0 0
\(667\) −537.782 537.782i −0.806270 0.806270i
\(668\) 272.479 272.479i 0.407903 0.407903i
\(669\) 0 0
\(670\) 458.590 724.479i 0.684463 1.08131i
\(671\) −1073.70 −1.60015
\(672\) 0 0
\(673\) −70.7332 + 70.7332i −0.105101 + 0.105101i −0.757702 0.652601i \(-0.773678\pi\)
0.652601 + 0.757702i \(0.273678\pi\)
\(674\) 77.5663i 0.115084i
\(675\) 0 0
\(676\) −287.576 −0.425408
\(677\) 162.009 + 162.009i 0.239305 + 0.239305i 0.816562 0.577258i \(-0.195877\pi\)
−0.577258 + 0.816562i \(0.695877\pi\)
\(678\) 0 0
\(679\) 703.918i 1.03670i
\(680\) −266.586 168.747i −0.392038 0.248157i
\(681\) 0 0
\(682\) −286.359 286.359i −0.419881 0.419881i
\(683\) −855.304 + 855.304i −1.25228 + 1.25228i −0.297578 + 0.954697i \(0.596179\pi\)
−0.954697 + 0.297578i \(0.903821\pi\)
\(684\) 0 0
\(685\) −55.1566 245.419i −0.0805206 0.358276i
\(686\) 519.737 0.757634
\(687\) 0 0
\(688\) −120.767 + 120.767i −0.175534 + 0.175534i
\(689\) 336.706i 0.488688i
\(690\) 0 0
\(691\) 122.430 0.177178 0.0885891 0.996068i \(-0.471764\pi\)
0.0885891 + 0.996068i \(0.471764\pi\)
\(692\) −299.601 299.601i −0.432949 0.432949i
\(693\) 0 0
\(694\) 805.444i 1.16058i
\(695\) 331.308 523.398i 0.476702 0.753091i
\(696\) 0 0
\(697\) −418.680 418.680i −0.600689 0.600689i
\(698\) 491.272 491.272i 0.703829 0.703829i
\(699\) 0 0
\(700\) −296.272 105.889i −0.423246 0.151270i
\(701\) 1322.17 1.88613 0.943063 0.332613i \(-0.107930\pi\)
0.943063 + 0.332613i \(0.107930\pi\)
\(702\) 0 0
\(703\) −746.741 + 746.741i −1.06222 + 1.06222i
\(704\) 81.9796i 0.116448i
\(705\) 0 0
\(706\) 137.171 0.194294
\(707\) −377.757 377.757i −0.534310 0.534310i
\(708\) 0 0
\(709\) 779.909i 1.10001i −0.835160 0.550006i \(-0.814625\pi\)
0.835160 0.550006i \(-0.185375\pi\)
\(710\) −96.5153 429.444i −0.135937 0.604851i
\(711\) 0 0
\(712\) 139.909 + 139.909i 0.196502 + 0.196502i
\(713\) −419.800 + 419.800i −0.588780 + 0.588780i
\(714\) 0 0
\(715\) −251.010 + 56.4133i −0.351063 + 0.0788997i
\(716\) −372.504 −0.520257
\(717\) 0 0
\(718\) 353.773 353.773i 0.492720 0.492720i
\(719\) 572.652i 0.796456i −0.917287 0.398228i \(-0.869625\pi\)
0.917287 0.398228i \(-0.130375\pi\)
\(720\) 0 0
\(721\) 383.373 0.531725
\(722\) −17.2827 17.2827i −0.0239372 0.0239372i
\(723\) 0 0
\(724\) 516.747i 0.713739i
\(725\) −808.888 + 382.929i −1.11571 + 0.528177i
\(726\) 0 0
\(727\) 231.748 + 231.748i 0.318773 + 0.318773i 0.848296 0.529523i \(-0.177629\pi\)
−0.529523 + 0.848296i \(0.677629\pi\)
\(728\) −63.1918 + 63.1918i −0.0868020 + 0.0868020i
\(729\) 0 0
\(730\) 444.025 + 281.065i 0.608253 + 0.385020i
\(731\) 952.568 1.30310
\(732\) 0 0
\(733\) 739.626 739.626i 1.00904 1.00904i 0.00908011 0.999959i \(-0.497110\pi\)
0.999959 0.00908011i \(-0.00289033\pi\)
\(734\) 481.403i 0.655862i
\(735\) 0 0
\(736\) 120.182 0.163290
\(737\) 878.640 + 878.640i 1.19218 + 1.19218i
\(738\) 0 0
\(739\) 506.539i 0.685439i 0.939438 + 0.342719i \(0.111348\pi\)
−0.939438 + 0.342719i \(0.888652\pi\)
\(740\) 529.757 119.060i 0.715888 0.160892i
\(741\) 0 0
\(742\) 421.959 + 421.959i 0.568678 + 0.568678i
\(743\) −10.7219 + 10.7219i −0.0144306 + 0.0144306i −0.714285 0.699855i \(-0.753248\pi\)
0.699855 + 0.714285i \(0.253248\pi\)
\(744\) 0 0
\(745\) −580.943 + 917.772i −0.779790 + 1.23191i
\(746\) 846.120 1.13421
\(747\) 0 0
\(748\) 323.312 323.312i 0.432236 0.432236i
\(749\) 479.151i 0.639721i
\(750\) 0 0
\(751\) 813.075 1.08266 0.541328 0.840811i \(-0.317922\pi\)
0.541328 + 0.840811i \(0.317922\pi\)
\(752\) −40.1816 40.1816i −0.0534330 0.0534330i
\(753\) 0 0
\(754\) 254.202i 0.337138i
\(755\) −603.328 381.903i −0.799110 0.505831i
\(756\) 0 0
\(757\) 132.514 + 132.514i 0.175052 + 0.175052i 0.789195 0.614143i \(-0.210498\pi\)
−0.614143 + 0.789195i \(0.710498\pi\)
\(758\) 57.1066 57.1066i 0.0753386 0.0753386i
\(759\) 0 0
\(760\) 60.3133 + 268.363i 0.0793596 + 0.353110i
\(761\) 412.252 0.541724 0.270862 0.962618i \(-0.412691\pi\)
0.270862 + 0.962618i \(0.412691\pi\)
\(762\) 0 0
\(763\) −465.308 + 465.308i −0.609840 + 0.609840i
\(764\) 377.848i 0.494565i
\(765\) 0 0
\(766\) −724.974 −0.946441
\(767\) −277.262 277.262i −0.361489 0.361489i
\(768\) 0 0
\(769\) 867.393i 1.12795i 0.825792 + 0.563975i \(0.190728\pi\)
−0.825792 + 0.563975i \(0.809272\pi\)
\(770\) 243.868 385.262i 0.316712 0.500341i
\(771\) 0 0
\(772\) −362.474 362.474i −0.469527 0.469527i
\(773\) 295.578 295.578i 0.382377 0.382377i −0.489581 0.871958i \(-0.662850\pi\)
0.871958 + 0.489581i \(0.162850\pi\)
\(774\) 0 0
\(775\) 298.919 + 631.429i 0.385702 + 0.814747i
\(776\) −316.404 −0.407737
\(777\) 0 0
\(778\) 477.106 477.106i 0.613246 0.613246i
\(779\) 516.195i 0.662639i
\(780\) 0 0
\(781\) 637.878 0.816745
\(782\) −473.974 473.974i −0.606105 0.606105i
\(783\) 0 0
\(784\) 37.6163i 0.0479800i
\(785\) −46.2566 205.818i −0.0589256 0.262189i
\(786\) 0 0
\(787\) 179.899 + 179.899i 0.228588 + 0.228588i 0.812103 0.583514i \(-0.198323\pi\)
−0.583514 + 0.812103i \(0.698323\pi\)
\(788\) −363.551 + 363.551i −0.461359 + 0.461359i
\(789\) 0 0
\(790\) −721.918 + 162.247i −0.913821 + 0.205377i
\(791\) 936.908 1.18446
\(792\) 0 0
\(793\) 372.014 372.014i 0.469122 0.469122i
\(794\) 260.595i 0.328205i
\(795\) 0 0
\(796\) −134.647 −0.169154
\(797\) −40.0023 40.0023i −0.0501911 0.0501911i 0.681566 0.731757i \(-0.261299\pi\)
−0.731757 + 0.681566i \(0.761299\pi\)
\(798\) 0 0
\(799\) 316.938i 0.396668i
\(800\) 47.5959 133.171i 0.0594949 0.166464i
\(801\) 0 0
\(802\) −91.7821 91.7821i −0.114442 0.114442i
\(803\) −538.509 + 538.509i −0.670621 + 0.670621i
\(804\) 0 0
\(805\) −564.792 357.510i −0.701605 0.444111i
\(806\) 198.434 0.246196
\(807\) 0 0
\(808\) 169.798 169.798i 0.210146 0.210146i
\(809\) 135.875i 0.167954i 0.996468 + 0.0839771i \(0.0267623\pi\)
−0.996468 + 0.0839771i \(0.973238\pi\)
\(810\) 0 0
\(811\) 1361.17 1.67838 0.839192 0.543835i \(-0.183028\pi\)
0.839192 + 0.543835i \(0.183028\pi\)
\(812\) −318.565 318.565i −0.392322 0.392322i
\(813\) 0 0
\(814\) 786.879i 0.966681i
\(815\) −423.312 + 95.1373i −0.519402 + 0.116733i
\(816\) 0 0
\(817\) −587.216 587.216i −0.718746 0.718746i
\(818\) 23.2520 23.2520i 0.0284255 0.0284255i
\(819\) 0 0
\(820\) 141.950 224.252i 0.173110 0.273478i
\(821\) −369.630 −0.450219 −0.225110 0.974333i \(-0.572274\pi\)
−0.225110 + 0.974333i \(0.572274\pi\)
\(822\) 0 0
\(823\) 752.514 752.514i 0.914355 0.914355i −0.0822561 0.996611i \(-0.526213\pi\)
0.996611 + 0.0822561i \(0.0262125\pi\)
\(824\) 172.322i 0.209129i
\(825\) 0 0
\(826\) 694.929 0.841318
\(827\) −263.579 263.579i −0.318717 0.318717i 0.529557 0.848274i \(-0.322358\pi\)
−0.848274 + 0.529557i \(0.822358\pi\)
\(828\) 0 0
\(829\) 367.171i 0.442909i 0.975171 + 0.221454i \(0.0710804\pi\)
−0.975171 + 0.221454i \(0.928920\pi\)
\(830\) 272.196 + 172.298i 0.327947 + 0.207589i
\(831\) 0 0
\(832\) −28.4041 28.4041i −0.0341395 0.0341395i
\(833\) 148.352 148.352i 0.178093 0.178093i
\(834\) 0 0
\(835\) −211.241 939.914i −0.252983 1.12565i
\(836\) −398.615 −0.476813
\(837\) 0 0
\(838\) −675.551 + 675.551i −0.806146 + 0.806146i
\(839\) 601.970i 0.717486i 0.933436 + 0.358743i \(0.116794\pi\)
−0.933436 + 0.358743i \(0.883206\pi\)
\(840\) 0 0
\(841\) −440.494 −0.523774
\(842\) 307.252 + 307.252i 0.364907 + 0.364907i
\(843\) 0 0
\(844\) 383.040i 0.453839i
\(845\) −384.522 + 607.467i −0.455056 + 0.718895i
\(846\) 0 0
\(847\) −71.1464 71.1464i −0.0839981 0.0839981i
\(848\) −189.666 + 189.666i −0.223663 + 0.223663i
\(849\) 0 0
\(850\) −712.913 + 337.494i −0.838721 + 0.397052i
\(851\) 1153.56 1.35553
\(852\) 0 0
\(853\) 370.767 370.767i 0.434663 0.434663i −0.455548 0.890211i \(-0.650557\pi\)
0.890211 + 0.455548i \(0.150557\pi\)
\(854\) 932.413i 1.09182i
\(855\) 0 0
\(856\) 215.373 0.251605
\(857\) −128.073 128.073i −0.149443 0.149443i 0.628426 0.777869i \(-0.283699\pi\)
−0.777869 + 0.628426i \(0.783699\pi\)
\(858\) 0 0
\(859\) 518.610i 0.603737i −0.953350 0.301868i \(-0.902390\pi\)
0.953350 0.301868i \(-0.0976103\pi\)
\(860\) 93.6255 + 416.586i 0.108867 + 0.484402i
\(861\) 0 0
\(862\) −680.120 680.120i −0.789003 0.789003i
\(863\) −519.729 + 519.729i −0.602235 + 0.602235i −0.940905 0.338670i \(-0.890023\pi\)
0.338670 + 0.940905i \(0.390023\pi\)
\(864\) 0 0
\(865\) −1033.47 + 232.267i −1.19476 + 0.268517i
\(866\) −832.958 −0.961845
\(867\) 0 0
\(868\) −248.677 + 248.677i −0.286494 + 0.286494i
\(869\) 1072.31i 1.23395i
\(870\) 0 0
\(871\) −608.858 −0.699033
\(872\) −209.151 209.151i −0.239852 0.239852i
\(873\) 0 0
\(874\) 584.368i 0.668613i
\(875\) −619.828 + 484.252i −0.708374 + 0.553431i
\(876\) 0 0
\(877\) −339.915 339.915i −0.387588 0.387588i 0.486238 0.873826i \(-0.338369\pi\)
−0.873826 + 0.486238i \(0.838369\pi\)
\(878\) −325.277 + 325.277i −0.370475 + 0.370475i
\(879\) 0 0
\(880\) 173.171 + 109.616i 0.196786 + 0.124564i
\(881\) −1325.62 −1.50468 −0.752340 0.658775i \(-0.771075\pi\)
−0.752340 + 0.658775i \(0.771075\pi\)
\(882\) 0 0
\(883\) 393.358 393.358i 0.445479 0.445479i −0.448370 0.893848i \(-0.647995\pi\)
0.893848 + 0.448370i \(0.147995\pi\)
\(884\) 224.041i 0.253440i
\(885\) 0 0
\(886\) 620.661 0.700520
\(887\) 430.936 + 430.936i 0.485836 + 0.485836i 0.906989 0.421153i \(-0.138375\pi\)
−0.421153 + 0.906989i \(0.638375\pi\)
\(888\) 0 0
\(889\) 1513.95i 1.70298i
\(890\) 482.615 108.465i 0.542264 0.121871i
\(891\) 0 0
\(892\) 16.7378 + 16.7378i 0.0187643 + 0.0187643i
\(893\) 195.378 195.378i 0.218788 0.218788i
\(894\) 0 0
\(895\) −498.082 + 786.867i −0.556516 + 0.879181i
\(896\) 71.1918 0.0794552
\(897\) 0 0
\(898\) −184.697 + 184.697i −0.205676 + 0.205676i
\(899\) 1000.35i 1.11274i
\(900\) 0 0
\(901\) 1496.02 1.66040
\(902\) 271.970 + 271.970i 0.301519 + 0.301519i
\(903\) 0 0
\(904\) 421.131i 0.465852i
\(905\) 1091.56 + 690.951i 1.20615 + 0.763482i
\(906\) 0 0
\(907\) −1199.45 1199.45i −1.32244 1.32244i −0.911796 0.410644i \(-0.865304\pi\)
−0.410644 0.911796i \(-0.634696\pi\)
\(908\) 13.8230 13.8230i 0.0152235 0.0152235i
\(909\) 0 0
\(910\) 48.9898 + 217.980i 0.0538349 + 0.239538i
\(911\) 1159.45 1.27273 0.636363 0.771390i \(-0.280438\pi\)
0.636363 + 0.771390i \(0.280438\pi\)
\(912\) 0 0
\(913\) −330.117 + 330.117i −0.361574 + 0.361574i
\(914\) 1040.36i 1.13825i
\(915\) 0 0
\(916\) −492.484 −0.537646
\(917\) 651.221 + 651.221i 0.710165 + 0.710165i
\(918\) 0 0
\(919\) 279.362i 0.303985i 0.988382 + 0.151993i \(0.0485690\pi\)
−0.988382 + 0.151993i \(0.951431\pi\)
\(920\) 160.697 253.868i 0.174671 0.275944i
\(921\) 0 0
\(922\) −808.286 808.286i −0.876666 0.876666i
\(923\) −221.010 + 221.010i −0.239448 + 0.239448i
\(924\) 0 0
\(925\) 456.848 1278.24i 0.493890 1.38188i
\(926\) −77.7867 −0.0840029
\(927\) 0 0
\(928\) 143.192 143.192i 0.154302 0.154302i
\(929\) 1140.90i 1.22810i 0.789269 + 0.614048i \(0.210460\pi\)
−0.789269 + 0.614048i \(0.789540\pi\)
\(930\) 0 0
\(931\) −182.905 −0.196460
\(932\) 365.171 + 365.171i 0.391815 + 0.391815i
\(933\) 0 0
\(934\) 161.682i 0.173107i
\(935\) −250.649 1115.26i −0.268074 1.19279i
\(936\) 0 0
\(937\) −267.535 267.535i −0.285523 0.285523i 0.549784 0.835307i \(-0.314710\pi\)
−0.835307 + 0.549784i \(0.814710\pi\)
\(938\) 763.019 763.019i 0.813453 0.813453i
\(939\) 0 0
\(940\) −138.606 + 31.1510i −0.147453 + 0.0331394i
\(941\) −859.065 −0.912928 −0.456464 0.889742i \(-0.650884\pi\)
−0.456464 + 0.889742i \(0.650884\pi\)
\(942\) 0 0
\(943\) 398.707 398.707i 0.422807 0.422807i
\(944\) 312.363i 0.330893i
\(945\) 0 0
\(946\) −618.779 −0.654100
\(947\) 675.159 + 675.159i 0.712945 + 0.712945i 0.967150 0.254205i \(-0.0818139\pi\)
−0.254205 + 0.967150i \(0.581814\pi\)
\(948\) 0 0
\(949\) 373.162i 0.393216i
\(950\) 647.529 + 231.429i 0.681610 + 0.243610i
\(951\) 0 0
\(952\) −280.767 280.767i −0.294924 0.294924i
\(953\) −297.873 + 297.873i −0.312563 + 0.312563i −0.845902 0.533338i \(-0.820937\pi\)
0.533338 + 0.845902i \(0.320937\pi\)
\(954\) 0 0
\(955\) 798.156 + 505.227i 0.835765 + 0.529034i
\(956\) −348.817 −0.364872
\(957\) 0 0
\(958\) −311.773 + 311.773i −0.325442 + 0.325442i
\(959\) 316.565i 0.330099i
\(960\) 0 0
\(961\) −180.111 −0.187421
\(962\) −272.636 272.636i −0.283405 0.283405i
\(963\) 0 0
\(964\) 380.665i 0.394881i
\(965\) −1250.35 + 281.010i −1.29570 + 0.291202i
\(966\) 0 0
\(967\) 140.955 + 140.955i 0.145765 + 0.145765i 0.776223 0.630458i \(-0.217133\pi\)
−0.630458 + 0.776223i \(0.717133\pi\)
\(968\) 31.9796 31.9796i 0.0330368 0.0330368i
\(969\) 0 0
\(970\) −423.069 + 668.363i −0.436154 + 0.689034i
\(971\) 1252.45 1.28985 0.644927 0.764245i \(-0.276888\pi\)
0.644927 + 0.764245i \(0.276888\pi\)
\(972\) 0 0
\(973\) 551.242 551.242i 0.566538 0.566538i
\(974\) 646.849i 0.664116i
\(975\) 0 0
\(976\) −419.110 −0.429416
\(977\) 192.172 + 192.172i 0.196696 + 0.196696i 0.798582 0.601886i \(-0.205584\pi\)
−0.601886 + 0.798582i \(0.705584\pi\)
\(978\) 0 0
\(979\) 716.856i 0.732233i
\(980\) 79.4597 + 50.2974i 0.0810813 + 0.0513239i
\(981\) 0 0
\(982\) 753.914 + 753.914i 0.767733 + 0.767733i
\(983\) −994.178 + 994.178i −1.01137 + 1.01137i −0.0114370 + 0.999935i \(0.503641\pi\)
−0.999935 + 0.0114370i \(0.996359\pi\)
\(984\) 0 0
\(985\) 281.844 + 1254.06i 0.286136 + 1.27316i
\(986\) −1129.44 −1.14548
\(987\) 0 0
\(988\) 138.111 138.111i 0.139789 0.139789i
\(989\) 907.126i 0.917215i
\(990\) 0 0
\(991\) 651.166 0.657080 0.328540 0.944490i \(-0.393444\pi\)
0.328540 + 0.944490i \(0.393444\pi\)
\(992\) −111.778 111.778i −0.112679 0.112679i
\(993\) 0 0
\(994\) 553.939i 0.557282i
\(995\) −180.039 + 284.424i −0.180943 + 0.285854i
\(996\) 0 0
\(997\) −430.853 430.853i −0.432149 0.432149i 0.457210 0.889359i \(-0.348849\pi\)
−0.889359 + 0.457210i \(0.848849\pi\)
\(998\) −535.388 + 535.388i −0.536461 + 0.536461i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.3.g.d.217.2 yes 4
3.2 odd 2 270.3.g.a.217.1 yes 4
5.2 odd 4 1350.3.g.b.1243.1 4
5.3 odd 4 inner 270.3.g.d.163.2 yes 4
5.4 even 2 1350.3.g.b.757.1 4
15.2 even 4 1350.3.g.h.1243.1 4
15.8 even 4 270.3.g.a.163.1 4
15.14 odd 2 1350.3.g.h.757.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.3.g.a.163.1 4 15.8 even 4
270.3.g.a.217.1 yes 4 3.2 odd 2
270.3.g.d.163.2 yes 4 5.3 odd 4 inner
270.3.g.d.217.2 yes 4 1.1 even 1 trivial
1350.3.g.b.757.1 4 5.4 even 2
1350.3.g.b.1243.1 4 5.2 odd 4
1350.3.g.h.757.1 4 15.14 odd 2
1350.3.g.h.1243.1 4 15.2 even 4