Properties

Label 1350.3.g.h.1243.1
Level $1350$
Weight $3$
Character 1350.1243
Analytic conductor $36.785$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,3,Mod(757,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.757"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1350.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,0,0,0,0,-8,-8,0,0,-8,0,-24,0,0,-16,68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7848356886\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1243.1
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1350.1243
Dual form 1350.3.g.h.757.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} -2.00000i q^{4} +(-4.44949 + 4.44949i) q^{7} +(-2.00000 - 2.00000i) q^{8} +10.2474 q^{11} +(-3.55051 - 3.55051i) q^{13} +8.89898i q^{14} -4.00000 q^{16} +(15.7753 - 15.7753i) q^{17} +19.4495i q^{19} +(10.2474 - 10.2474i) q^{22} +(-15.0227 - 15.0227i) q^{23} -7.10102 q^{26} +(8.89898 + 8.89898i) q^{28} +35.7980i q^{29} +27.9444 q^{31} +(-4.00000 + 4.00000i) q^{32} -31.5505i q^{34} +(38.3939 - 38.3939i) q^{37} +(19.4495 + 19.4495i) q^{38} +26.5403 q^{41} +(-30.1918 - 30.1918i) q^{43} -20.4949i q^{44} -30.0454 q^{46} +(10.0454 - 10.0454i) q^{47} +9.40408i q^{49} +(-7.10102 + 7.10102i) q^{52} +(47.4166 + 47.4166i) q^{53} +17.7980 q^{56} +(35.7980 + 35.7980i) q^{58} -78.0908i q^{59} +104.778 q^{61} +(27.9444 - 27.9444i) q^{62} +8.00000i q^{64} +(85.7423 - 85.7423i) q^{67} +(-31.5505 - 31.5505i) q^{68} +62.2474 q^{71} +(-52.5505 - 52.5505i) q^{73} -76.7878i q^{74} +38.8990 q^{76} +(-45.5959 + 45.5959i) q^{77} -104.641i q^{79} +(26.5403 - 26.5403i) q^{82} +(32.2145 + 32.2145i) q^{83} -60.3837 q^{86} +(-20.4949 - 20.4949i) q^{88} -69.9546i q^{89} +31.5959 q^{91} +(-30.0454 + 30.0454i) q^{92} -20.0908i q^{94} +(-79.1010 + 79.1010i) q^{97} +(9.40408 + 9.40408i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{7} - 8 q^{8} - 8 q^{11} - 24 q^{13} - 16 q^{16} + 68 q^{17} - 8 q^{22} - 16 q^{23} - 48 q^{26} + 16 q^{28} + 4 q^{31} - 16 q^{32} + 36 q^{37} + 68 q^{38} - 80 q^{41} + 36 q^{43} - 32 q^{46}+ \cdots + 116 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.500000 0.500000i
\(3\) 0 0
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) −4.44949 + 4.44949i −0.635641 + 0.635641i −0.949477 0.313836i \(-0.898386\pi\)
0.313836 + 0.949477i \(0.398386\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 0 0
\(10\) 0 0
\(11\) 10.2474 0.931586 0.465793 0.884894i \(-0.345769\pi\)
0.465793 + 0.884894i \(0.345769\pi\)
\(12\) 0 0
\(13\) −3.55051 3.55051i −0.273116 0.273116i 0.557237 0.830353i \(-0.311861\pi\)
−0.830353 + 0.557237i \(0.811861\pi\)
\(14\) 8.89898i 0.635641i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) 15.7753 15.7753i 0.927956 0.927956i −0.0696176 0.997574i \(-0.522178\pi\)
0.997574 + 0.0696176i \(0.0221779\pi\)
\(18\) 0 0
\(19\) 19.4495i 1.02366i 0.859088 + 0.511829i \(0.171032\pi\)
−0.859088 + 0.511829i \(0.828968\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 10.2474 10.2474i 0.465793 0.465793i
\(23\) −15.0227 15.0227i −0.653161 0.653161i 0.300592 0.953753i \(-0.402816\pi\)
−0.953753 + 0.300592i \(0.902816\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −7.10102 −0.273116
\(27\) 0 0
\(28\) 8.89898 + 8.89898i 0.317821 + 0.317821i
\(29\) 35.7980i 1.23441i 0.786801 + 0.617206i \(0.211736\pi\)
−0.786801 + 0.617206i \(0.788264\pi\)
\(30\) 0 0
\(31\) 27.9444 0.901432 0.450716 0.892667i \(-0.351169\pi\)
0.450716 + 0.892667i \(0.351169\pi\)
\(32\) −4.00000 + 4.00000i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 31.5505i 0.927956i
\(35\) 0 0
\(36\) 0 0
\(37\) 38.3939 38.3939i 1.03767 1.03767i 0.0384103 0.999262i \(-0.487771\pi\)
0.999262 0.0384103i \(-0.0122294\pi\)
\(38\) 19.4495 + 19.4495i 0.511829 + 0.511829i
\(39\) 0 0
\(40\) 0 0
\(41\) 26.5403 0.647325 0.323662 0.946173i \(-0.395086\pi\)
0.323662 + 0.946173i \(0.395086\pi\)
\(42\) 0 0
\(43\) −30.1918 30.1918i −0.702136 0.702136i 0.262733 0.964869i \(-0.415376\pi\)
−0.964869 + 0.262733i \(0.915376\pi\)
\(44\) 20.4949i 0.465793i
\(45\) 0 0
\(46\) −30.0454 −0.653161
\(47\) 10.0454 10.0454i 0.213732 0.213732i −0.592119 0.805851i \(-0.701708\pi\)
0.805851 + 0.592119i \(0.201708\pi\)
\(48\) 0 0
\(49\) 9.40408i 0.191920i
\(50\) 0 0
\(51\) 0 0
\(52\) −7.10102 + 7.10102i −0.136558 + 0.136558i
\(53\) 47.4166 + 47.4166i 0.894652 + 0.894652i 0.994957 0.100304i \(-0.0319816\pi\)
−0.100304 + 0.994957i \(0.531982\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 17.7980 0.317821
\(57\) 0 0
\(58\) 35.7980 + 35.7980i 0.617206 + 0.617206i
\(59\) 78.0908i 1.32357i −0.749692 0.661787i \(-0.769799\pi\)
0.749692 0.661787i \(-0.230201\pi\)
\(60\) 0 0
\(61\) 104.778 1.71766 0.858832 0.512257i \(-0.171190\pi\)
0.858832 + 0.512257i \(0.171190\pi\)
\(62\) 27.9444 27.9444i 0.450716 0.450716i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 0 0
\(67\) 85.7423 85.7423i 1.27974 1.27974i 0.338922 0.940814i \(-0.389938\pi\)
0.940814 0.338922i \(-0.110062\pi\)
\(68\) −31.5505 31.5505i −0.463978 0.463978i
\(69\) 0 0
\(70\) 0 0
\(71\) 62.2474 0.876725 0.438362 0.898798i \(-0.355559\pi\)
0.438362 + 0.898798i \(0.355559\pi\)
\(72\) 0 0
\(73\) −52.5505 52.5505i −0.719870 0.719870i 0.248708 0.968578i \(-0.419994\pi\)
−0.968578 + 0.248708i \(0.919994\pi\)
\(74\) 76.7878i 1.03767i
\(75\) 0 0
\(76\) 38.8990 0.511829
\(77\) −45.5959 + 45.5959i −0.592155 + 0.592155i
\(78\) 0 0
\(79\) 104.641i 1.32457i −0.749250 0.662287i \(-0.769586\pi\)
0.749250 0.662287i \(-0.230414\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 26.5403 26.5403i 0.323662 0.323662i
\(83\) 32.2145 + 32.2145i 0.388127 + 0.388127i 0.874019 0.485892i \(-0.161505\pi\)
−0.485892 + 0.874019i \(0.661505\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −60.3837 −0.702136
\(87\) 0 0
\(88\) −20.4949 20.4949i −0.232897 0.232897i
\(89\) 69.9546i 0.786007i −0.919537 0.393003i \(-0.871436\pi\)
0.919537 0.393003i \(-0.128564\pi\)
\(90\) 0 0
\(91\) 31.5959 0.347208
\(92\) −30.0454 + 30.0454i −0.326581 + 0.326581i
\(93\) 0 0
\(94\) 20.0908i 0.213732i
\(95\) 0 0
\(96\) 0 0
\(97\) −79.1010 + 79.1010i −0.815474 + 0.815474i −0.985449 0.169974i \(-0.945632\pi\)
0.169974 + 0.985449i \(0.445632\pi\)
\(98\) 9.40408 + 9.40408i 0.0959600 + 0.0959600i
\(99\) 0 0
\(100\) 0 0
\(101\) 84.8990 0.840584 0.420292 0.907389i \(-0.361928\pi\)
0.420292 + 0.907389i \(0.361928\pi\)
\(102\) 0 0
\(103\) −43.0806 43.0806i −0.418258 0.418258i 0.466345 0.884603i \(-0.345571\pi\)
−0.884603 + 0.466345i \(0.845571\pi\)
\(104\) 14.2020i 0.136558i
\(105\) 0 0
\(106\) 94.8332 0.894652
\(107\) −53.8434 + 53.8434i −0.503209 + 0.503209i −0.912434 0.409225i \(-0.865799\pi\)
0.409225 + 0.912434i \(0.365799\pi\)
\(108\) 0 0
\(109\) 104.576i 0.959408i −0.877430 0.479704i \(-0.840744\pi\)
0.877430 0.479704i \(-0.159256\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 17.7980 17.7980i 0.158910 0.158910i
\(113\) 105.283 + 105.283i 0.931705 + 0.931705i 0.997812 0.0661076i \(-0.0210581\pi\)
−0.0661076 + 0.997812i \(0.521058\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 71.5959 0.617206
\(117\) 0 0
\(118\) −78.0908 78.0908i −0.661787 0.661787i
\(119\) 140.384i 1.17969i
\(120\) 0 0
\(121\) −15.9898 −0.132147
\(122\) 104.778 104.778i 0.858832 0.858832i
\(123\) 0 0
\(124\) 55.8888i 0.450716i
\(125\) 0 0
\(126\) 0 0
\(127\) 170.126 170.126i 1.33957 1.33957i 0.443105 0.896470i \(-0.353877\pi\)
0.896470 0.443105i \(-0.146123\pi\)
\(128\) 8.00000 + 8.00000i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 0 0
\(131\) −146.359 −1.11724 −0.558621 0.829423i \(-0.688669\pi\)
−0.558621 + 0.829423i \(0.688669\pi\)
\(132\) 0 0
\(133\) −86.5403 86.5403i −0.650679 0.650679i
\(134\) 171.485i 1.27974i
\(135\) 0 0
\(136\) −63.1010 −0.463978
\(137\) −35.5732 + 35.5732i −0.259658 + 0.259658i −0.824915 0.565257i \(-0.808777\pi\)
0.565257 + 0.824915i \(0.308777\pi\)
\(138\) 0 0
\(139\) 123.889i 0.891286i 0.895211 + 0.445643i \(0.147025\pi\)
−0.895211 + 0.445643i \(0.852975\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 62.2474 62.2474i 0.438362 0.438362i
\(143\) −36.3837 36.3837i −0.254431 0.254431i
\(144\) 0 0
\(145\) 0 0
\(146\) −105.101 −0.719870
\(147\) 0 0
\(148\) −76.7878 76.7878i −0.518836 0.518836i
\(149\) 217.237i 1.45797i 0.684531 + 0.728984i \(0.260007\pi\)
−0.684531 + 0.728984i \(0.739993\pi\)
\(150\) 0 0
\(151\) −142.808 −0.945749 −0.472875 0.881130i \(-0.656784\pi\)
−0.472875 + 0.881130i \(0.656784\pi\)
\(152\) 38.8990 38.8990i 0.255914 0.255914i
\(153\) 0 0
\(154\) 91.1918i 0.592155i
\(155\) 0 0
\(156\) 0 0
\(157\) 29.8332 29.8332i 0.190020 0.190020i −0.605685 0.795705i \(-0.707101\pi\)
0.795705 + 0.605685i \(0.207101\pi\)
\(158\) −104.641 104.641i −0.662287 0.662287i
\(159\) 0 0
\(160\) 0 0
\(161\) 133.687 0.830352
\(162\) 0 0
\(163\) 61.3587 + 61.3587i 0.376434 + 0.376434i 0.869814 0.493380i \(-0.164239\pi\)
−0.493380 + 0.869814i \(0.664239\pi\)
\(164\) 53.0806i 0.323662i
\(165\) 0 0
\(166\) 64.4291 0.388127
\(167\) −136.240 + 136.240i −0.815806 + 0.815806i −0.985497 0.169692i \(-0.945723\pi\)
0.169692 + 0.985497i \(0.445723\pi\)
\(168\) 0 0
\(169\) 143.788i 0.850815i
\(170\) 0 0
\(171\) 0 0
\(172\) −60.3837 + 60.3837i −0.351068 + 0.351068i
\(173\) −149.800 149.800i −0.865897 0.865897i 0.126118 0.992015i \(-0.459748\pi\)
−0.992015 + 0.126118i \(0.959748\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −40.9898 −0.232897
\(177\) 0 0
\(178\) −69.9546 69.9546i −0.393003 0.393003i
\(179\) 186.252i 1.04051i 0.854010 + 0.520257i \(0.174164\pi\)
−0.854010 + 0.520257i \(0.825836\pi\)
\(180\) 0 0
\(181\) 258.373 1.42748 0.713739 0.700412i \(-0.247000\pi\)
0.713739 + 0.700412i \(0.247000\pi\)
\(182\) 31.5959 31.5959i 0.173604 0.173604i
\(183\) 0 0
\(184\) 60.0908i 0.326581i
\(185\) 0 0
\(186\) 0 0
\(187\) 161.656 161.656i 0.864471 0.864471i
\(188\) −20.0908 20.0908i −0.106866 0.106866i
\(189\) 0 0
\(190\) 0 0
\(191\) −188.924 −0.989131 −0.494565 0.869140i \(-0.664673\pi\)
−0.494565 + 0.869140i \(0.664673\pi\)
\(192\) 0 0
\(193\) 181.237 + 181.237i 0.939053 + 0.939053i 0.998247 0.0591935i \(-0.0188529\pi\)
−0.0591935 + 0.998247i \(0.518853\pi\)
\(194\) 158.202i 0.815474i
\(195\) 0 0
\(196\) 18.8082 0.0959600
\(197\) 181.775 181.775i 0.922717 0.922717i −0.0745037 0.997221i \(-0.523737\pi\)
0.997221 + 0.0745037i \(0.0237373\pi\)
\(198\) 0 0
\(199\) 67.3235i 0.338309i −0.985590 0.169154i \(-0.945896\pi\)
0.985590 0.169154i \(-0.0541037\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 84.8990 84.8990i 0.420292 0.420292i
\(203\) −159.283 159.283i −0.784644 0.784644i
\(204\) 0 0
\(205\) 0 0
\(206\) −86.1612 −0.418258
\(207\) 0 0
\(208\) 14.2020 + 14.2020i 0.0682790 + 0.0682790i
\(209\) 199.308i 0.953625i
\(210\) 0 0
\(211\) 191.520 0.907677 0.453839 0.891084i \(-0.350054\pi\)
0.453839 + 0.891084i \(0.350054\pi\)
\(212\) 94.8332 94.8332i 0.447326 0.447326i
\(213\) 0 0
\(214\) 107.687i 0.503209i
\(215\) 0 0
\(216\) 0 0
\(217\) −124.338 + 124.338i −0.572987 + 0.572987i
\(218\) −104.576 104.576i −0.479704 0.479704i
\(219\) 0 0
\(220\) 0 0
\(221\) −112.020 −0.506880
\(222\) 0 0
\(223\) −8.36888 8.36888i −0.0375286 0.0375286i 0.688093 0.725622i \(-0.258448\pi\)
−0.725622 + 0.688093i \(0.758448\pi\)
\(224\) 35.5959i 0.158910i
\(225\) 0 0
\(226\) 210.565 0.931705
\(227\) −6.91148 + 6.91148i −0.0304470 + 0.0304470i −0.722166 0.691719i \(-0.756854\pi\)
0.691719 + 0.722166i \(0.256854\pi\)
\(228\) 0 0
\(229\) 246.242i 1.07529i −0.843171 0.537646i \(-0.819314\pi\)
0.843171 0.537646i \(-0.180686\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 71.5959 71.5959i 0.308603 0.308603i
\(233\) 182.586 + 182.586i 0.783630 + 0.783630i 0.980441 0.196812i \(-0.0630587\pi\)
−0.196812 + 0.980441i \(0.563059\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −156.182 −0.661787
\(237\) 0 0
\(238\) 140.384 + 140.384i 0.589847 + 0.589847i
\(239\) 174.409i 0.729743i 0.931058 + 0.364872i \(0.118887\pi\)
−0.931058 + 0.364872i \(0.881113\pi\)
\(240\) 0 0
\(241\) −190.333 −0.789762 −0.394881 0.918732i \(-0.629214\pi\)
−0.394881 + 0.918732i \(0.629214\pi\)
\(242\) −15.9898 + 15.9898i −0.0660735 + 0.0660735i
\(243\) 0 0
\(244\) 209.555i 0.858832i
\(245\) 0 0
\(246\) 0 0
\(247\) 69.0556 69.0556i 0.279577 0.279577i
\(248\) −55.8888 55.8888i −0.225358 0.225358i
\(249\) 0 0
\(250\) 0 0
\(251\) 421.707 1.68011 0.840054 0.542503i \(-0.182523\pi\)
0.840054 + 0.542503i \(0.182523\pi\)
\(252\) 0 0
\(253\) −153.944 153.944i −0.608476 0.608476i
\(254\) 340.252i 1.33957i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) −88.6288 + 88.6288i −0.344859 + 0.344859i −0.858191 0.513331i \(-0.828411\pi\)
0.513331 + 0.858191i \(0.328411\pi\)
\(258\) 0 0
\(259\) 341.666i 1.31917i
\(260\) 0 0
\(261\) 0 0
\(262\) −146.359 + 146.359i −0.558621 + 0.558621i
\(263\) −25.1214 25.1214i −0.0955187 0.0955187i 0.657733 0.753251i \(-0.271516\pi\)
−0.753251 + 0.657733i \(0.771516\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −173.081 −0.650679
\(267\) 0 0
\(268\) −171.485 171.485i −0.639868 0.639868i
\(269\) 197.621i 0.734650i −0.930093 0.367325i \(-0.880274\pi\)
0.930093 0.367325i \(-0.119726\pi\)
\(270\) 0 0
\(271\) −158.258 −0.583977 −0.291988 0.956422i \(-0.594317\pi\)
−0.291988 + 0.956422i \(0.594317\pi\)
\(272\) −63.1010 + 63.1010i −0.231989 + 0.231989i
\(273\) 0 0
\(274\) 71.1464i 0.259658i
\(275\) 0 0
\(276\) 0 0
\(277\) −82.7321 + 82.7321i −0.298672 + 0.298672i −0.840494 0.541822i \(-0.817735\pi\)
0.541822 + 0.840494i \(0.317735\pi\)
\(278\) 123.889 + 123.889i 0.445643 + 0.445643i
\(279\) 0 0
\(280\) 0 0
\(281\) 123.353 0.438979 0.219489 0.975615i \(-0.429561\pi\)
0.219489 + 0.975615i \(0.429561\pi\)
\(282\) 0 0
\(283\) 194.980 + 194.980i 0.688974 + 0.688974i 0.962005 0.273031i \(-0.0880263\pi\)
−0.273031 + 0.962005i \(0.588026\pi\)
\(284\) 124.495i 0.438362i
\(285\) 0 0
\(286\) −72.7673 −0.254431
\(287\) −118.091 + 118.091i −0.411466 + 0.411466i
\(288\) 0 0
\(289\) 208.717i 0.722205i
\(290\) 0 0
\(291\) 0 0
\(292\) −105.101 + 105.101i −0.359935 + 0.359935i
\(293\) 52.9921 + 52.9921i 0.180860 + 0.180860i 0.791731 0.610870i \(-0.209180\pi\)
−0.610870 + 0.791731i \(0.709180\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −153.576 −0.518836
\(297\) 0 0
\(298\) 217.237 + 217.237i 0.728984 + 0.728984i
\(299\) 106.677i 0.356778i
\(300\) 0 0
\(301\) 268.677 0.892613
\(302\) −142.808 + 142.808i −0.472875 + 0.472875i
\(303\) 0 0
\(304\) 77.7980i 0.255914i
\(305\) 0 0
\(306\) 0 0
\(307\) −186.106 + 186.106i −0.606207 + 0.606207i −0.941953 0.335746i \(-0.891012\pi\)
0.335746 + 0.941953i \(0.391012\pi\)
\(308\) 91.1918 + 91.1918i 0.296077 + 0.296077i
\(309\) 0 0
\(310\) 0 0
\(311\) −246.858 −0.793756 −0.396878 0.917871i \(-0.629906\pi\)
−0.396878 + 0.917871i \(0.629906\pi\)
\(312\) 0 0
\(313\) 210.161 + 210.161i 0.671442 + 0.671442i 0.958048 0.286607i \(-0.0925273\pi\)
−0.286607 + 0.958048i \(0.592527\pi\)
\(314\) 59.6663i 0.190020i
\(315\) 0 0
\(316\) −209.283 −0.662287
\(317\) −244.361 + 244.361i −0.770855 + 0.770855i −0.978256 0.207401i \(-0.933499\pi\)
0.207401 + 0.978256i \(0.433499\pi\)
\(318\) 0 0
\(319\) 366.838i 1.14996i
\(320\) 0 0
\(321\) 0 0
\(322\) 133.687 133.687i 0.415176 0.415176i
\(323\) 306.821 + 306.821i 0.949909 + 0.949909i
\(324\) 0 0
\(325\) 0 0
\(326\) 122.717 0.376434
\(327\) 0 0
\(328\) −53.0806 53.0806i −0.161831 0.161831i
\(329\) 89.3939i 0.271714i
\(330\) 0 0
\(331\) −551.464 −1.66606 −0.833028 0.553231i \(-0.813395\pi\)
−0.833028 + 0.553231i \(0.813395\pi\)
\(332\) 64.4291 64.4291i 0.194063 0.194063i
\(333\) 0 0
\(334\) 272.479i 0.815806i
\(335\) 0 0
\(336\) 0 0
\(337\) 38.7832 38.7832i 0.115084 0.115084i −0.647220 0.762303i \(-0.724068\pi\)
0.762303 + 0.647220i \(0.224068\pi\)
\(338\) −143.788 143.788i −0.425408 0.425408i
\(339\) 0 0
\(340\) 0 0
\(341\) 286.359 0.839762
\(342\) 0 0
\(343\) −259.868 259.868i −0.757634 0.757634i
\(344\) 120.767i 0.351068i
\(345\) 0 0
\(346\) −299.601 −0.865897
\(347\) −402.722 + 402.722i −1.16058 + 1.16058i −0.176234 + 0.984348i \(0.556391\pi\)
−0.984348 + 0.176234i \(0.943609\pi\)
\(348\) 0 0
\(349\) 491.272i 1.40766i 0.710370 + 0.703829i \(0.248528\pi\)
−0.710370 + 0.703829i \(0.751472\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −40.9898 + 40.9898i −0.116448 + 0.116448i
\(353\) 68.5857 + 68.5857i 0.194294 + 0.194294i 0.797549 0.603255i \(-0.206130\pi\)
−0.603255 + 0.797549i \(0.706130\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −139.909 −0.393003
\(357\) 0 0
\(358\) 186.252 + 186.252i 0.520257 + 0.520257i
\(359\) 353.773i 0.985440i −0.870188 0.492720i \(-0.836003\pi\)
0.870188 0.492720i \(-0.163997\pi\)
\(360\) 0 0
\(361\) −17.2827 −0.0478744
\(362\) 258.373 258.373i 0.713739 0.713739i
\(363\) 0 0
\(364\) 63.1918i 0.173604i
\(365\) 0 0
\(366\) 0 0
\(367\) −240.702 + 240.702i −0.655862 + 0.655862i −0.954398 0.298536i \(-0.903502\pi\)
0.298536 + 0.954398i \(0.403502\pi\)
\(368\) 60.0908 + 60.0908i 0.163290 + 0.163290i
\(369\) 0 0
\(370\) 0 0
\(371\) −421.959 −1.13736
\(372\) 0 0
\(373\) −423.060 423.060i −1.13421 1.13421i −0.989470 0.144740i \(-0.953765\pi\)
−0.144740 0.989470i \(-0.546235\pi\)
\(374\) 323.312i 0.864471i
\(375\) 0 0
\(376\) −40.1816 −0.106866
\(377\) 127.101 127.101i 0.337138 0.337138i
\(378\) 0 0
\(379\) 57.1066i 0.150677i 0.997158 + 0.0753386i \(0.0240038\pi\)
−0.997158 + 0.0753386i \(0.975996\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −188.924 + 188.924i −0.494565 + 0.494565i
\(383\) −362.487 362.487i −0.946441 0.946441i 0.0521957 0.998637i \(-0.483378\pi\)
−0.998637 + 0.0521957i \(0.983378\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 362.474 0.939053
\(387\) 0 0
\(388\) 158.202 + 158.202i 0.407737 + 0.407737i
\(389\) 477.106i 1.22649i −0.789892 0.613246i \(-0.789863\pi\)
0.789892 0.613246i \(-0.210137\pi\)
\(390\) 0 0
\(391\) −473.974 −1.21221
\(392\) 18.8082 18.8082i 0.0479800 0.0479800i
\(393\) 0 0
\(394\) 363.551i 0.922717i
\(395\) 0 0
\(396\) 0 0
\(397\) −130.297 + 130.297i −0.328205 + 0.328205i −0.851904 0.523699i \(-0.824552\pi\)
0.523699 + 0.851904i \(0.324552\pi\)
\(398\) −67.3235 67.3235i −0.169154 0.169154i
\(399\) 0 0
\(400\) 0 0
\(401\) 91.7821 0.228883 0.114442 0.993430i \(-0.463492\pi\)
0.114442 + 0.993430i \(0.463492\pi\)
\(402\) 0 0
\(403\) −99.2168 99.2168i −0.246196 0.246196i
\(404\) 169.798i 0.420292i
\(405\) 0 0
\(406\) −318.565 −0.784644
\(407\) 393.439 393.439i 0.966681 0.966681i
\(408\) 0 0
\(409\) 23.2520i 0.0568509i 0.999596 + 0.0284255i \(0.00904933\pi\)
−0.999596 + 0.0284255i \(0.990951\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −86.1612 + 86.1612i −0.209129 + 0.209129i
\(413\) 347.464 + 347.464i 0.841318 + 0.841318i
\(414\) 0 0
\(415\) 0 0
\(416\) 28.4041 0.0682790
\(417\) 0 0
\(418\) 199.308 + 199.308i 0.476813 + 0.476813i
\(419\) 675.551i 1.61229i 0.591716 + 0.806146i \(0.298451\pi\)
−0.591716 + 0.806146i \(0.701549\pi\)
\(420\) 0 0
\(421\) 307.252 0.729815 0.364907 0.931044i \(-0.381101\pi\)
0.364907 + 0.931044i \(0.381101\pi\)
\(422\) 191.520 191.520i 0.453839 0.453839i
\(423\) 0 0
\(424\) 189.666i 0.447326i
\(425\) 0 0
\(426\) 0 0
\(427\) −466.207 + 466.207i −1.09182 + 1.09182i
\(428\) 107.687 + 107.687i 0.251605 + 0.251605i
\(429\) 0 0
\(430\) 0 0
\(431\) 680.120 1.57801 0.789003 0.614390i \(-0.210598\pi\)
0.789003 + 0.614390i \(0.210598\pi\)
\(432\) 0 0
\(433\) 416.479 + 416.479i 0.961845 + 0.961845i 0.999298 0.0374530i \(-0.0119244\pi\)
−0.0374530 + 0.999298i \(0.511924\pi\)
\(434\) 248.677i 0.572987i
\(435\) 0 0
\(436\) −209.151 −0.479704
\(437\) 292.184 292.184i 0.668613 0.668613i
\(438\) 0 0
\(439\) 325.277i 0.740950i −0.928842 0.370475i \(-0.879195\pi\)
0.928842 0.370475i \(-0.120805\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −112.020 + 112.020i −0.253440 + 0.253440i
\(443\) 310.330 + 310.330i 0.700520 + 0.700520i 0.964522 0.264002i \(-0.0850426\pi\)
−0.264002 + 0.964522i \(0.585043\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −16.7378 −0.0375286
\(447\) 0 0
\(448\) −35.5959 35.5959i −0.0794552 0.0794552i
\(449\) 184.697i 0.411352i 0.978620 + 0.205676i \(0.0659393\pi\)
−0.978620 + 0.205676i \(0.934061\pi\)
\(450\) 0 0
\(451\) 271.970 0.603039
\(452\) 210.565 210.565i 0.465852 0.465852i
\(453\) 0 0
\(454\) 13.8230i 0.0304470i
\(455\) 0 0
\(456\) 0 0
\(457\) −520.182 + 520.182i −1.13825 + 1.13825i −0.149490 + 0.988763i \(0.547763\pi\)
−0.988763 + 0.149490i \(0.952237\pi\)
\(458\) −246.242 246.242i −0.537646 0.537646i
\(459\) 0 0
\(460\) 0 0
\(461\) 808.286 1.75333 0.876666 0.481099i \(-0.159762\pi\)
0.876666 + 0.481099i \(0.159762\pi\)
\(462\) 0 0
\(463\) 38.8934 + 38.8934i 0.0840029 + 0.0840029i 0.747860 0.663857i \(-0.231082\pi\)
−0.663857 + 0.747860i \(0.731082\pi\)
\(464\) 143.192i 0.308603i
\(465\) 0 0
\(466\) 365.171 0.783630
\(467\) 80.8411 80.8411i 0.173107 0.173107i −0.615236 0.788343i \(-0.710939\pi\)
0.788343 + 0.615236i \(0.210939\pi\)
\(468\) 0 0
\(469\) 763.019i 1.62691i
\(470\) 0 0
\(471\) 0 0
\(472\) −156.182 + 156.182i −0.330893 + 0.330893i
\(473\) −309.389 309.389i −0.654100 0.654100i
\(474\) 0 0
\(475\) 0 0
\(476\) 280.767 0.589847
\(477\) 0 0
\(478\) 174.409 + 174.409i 0.364872 + 0.364872i
\(479\) 311.773i 0.650883i 0.945562 + 0.325442i \(0.105513\pi\)
−0.945562 + 0.325442i \(0.894487\pi\)
\(480\) 0 0
\(481\) −272.636 −0.566810
\(482\) −190.333 + 190.333i −0.394881 + 0.394881i
\(483\) 0 0
\(484\) 31.9796i 0.0660735i
\(485\) 0 0
\(486\) 0 0
\(487\) 323.424 323.424i 0.664116 0.664116i −0.292232 0.956348i \(-0.594398\pi\)
0.956348 + 0.292232i \(0.0943978\pi\)
\(488\) −209.555 209.555i −0.429416 0.429416i
\(489\) 0 0
\(490\) 0 0
\(491\) −753.914 −1.53547 −0.767733 0.640770i \(-0.778615\pi\)
−0.767733 + 0.640770i \(0.778615\pi\)
\(492\) 0 0
\(493\) 564.722 + 564.722i 1.14548 + 1.14548i
\(494\) 138.111i 0.279577i
\(495\) 0 0
\(496\) −111.778 −0.225358
\(497\) −276.969 + 276.969i −0.557282 + 0.557282i
\(498\) 0 0
\(499\) 535.388i 1.07292i −0.843925 0.536461i \(-0.819761\pi\)
0.843925 0.536461i \(-0.180239\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 421.707 421.707i 0.840054 0.840054i
\(503\) −209.704 209.704i −0.416906 0.416906i 0.467230 0.884136i \(-0.345252\pi\)
−0.884136 + 0.467230i \(0.845252\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −307.889 −0.608476
\(507\) 0 0
\(508\) −340.252 340.252i −0.669787 0.669787i
\(509\) 57.2122i 0.112401i 0.998419 + 0.0562006i \(0.0178986\pi\)
−0.998419 + 0.0562006i \(0.982101\pi\)
\(510\) 0 0
\(511\) 467.646 0.915158
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 177.258i 0.344859i
\(515\) 0 0
\(516\) 0 0
\(517\) 102.940 102.940i 0.199110 0.199110i
\(518\) 341.666 + 341.666i 0.659587 + 0.659587i
\(519\) 0 0
\(520\) 0 0
\(521\) 344.611 0.661441 0.330720 0.943729i \(-0.392708\pi\)
0.330720 + 0.943729i \(0.392708\pi\)
\(522\) 0 0
\(523\) 66.7923 + 66.7923i 0.127710 + 0.127710i 0.768073 0.640363i \(-0.221216\pi\)
−0.640363 + 0.768073i \(0.721216\pi\)
\(524\) 292.717i 0.558621i
\(525\) 0 0
\(526\) −50.2429 −0.0955187
\(527\) 440.830 440.830i 0.836489 0.836489i
\(528\) 0 0
\(529\) 77.6367i 0.146761i
\(530\) 0 0
\(531\) 0 0
\(532\) −173.081 + 173.081i −0.325339 + 0.325339i
\(533\) −94.2316 94.2316i −0.176795 0.176795i
\(534\) 0 0
\(535\) 0 0
\(536\) −342.969 −0.639868
\(537\) 0 0
\(538\) −197.621 197.621i −0.367325 0.367325i
\(539\) 96.3678i 0.178790i
\(540\) 0 0
\(541\) −943.383 −1.74378 −0.871888 0.489706i \(-0.837104\pi\)
−0.871888 + 0.489706i \(0.837104\pi\)
\(542\) −158.258 + 158.258i −0.291988 + 0.291988i
\(543\) 0 0
\(544\) 126.202i 0.231989i
\(545\) 0 0
\(546\) 0 0
\(547\) −669.929 + 669.929i −1.22473 + 1.22473i −0.258802 + 0.965930i \(0.583328\pi\)
−0.965930 + 0.258802i \(0.916672\pi\)
\(548\) 71.1464 + 71.1464i 0.129829 + 0.129829i
\(549\) 0 0
\(550\) 0 0
\(551\) −696.252 −1.26362
\(552\) 0 0
\(553\) 465.601 + 465.601i 0.841954 + 0.841954i
\(554\) 165.464i 0.298672i
\(555\) 0 0
\(556\) 247.778 0.445643
\(557\) −128.586 + 128.586i −0.230854 + 0.230854i −0.813049 0.582195i \(-0.802194\pi\)
0.582195 + 0.813049i \(0.302194\pi\)
\(558\) 0 0
\(559\) 214.393i 0.383529i
\(560\) 0 0
\(561\) 0 0
\(562\) 123.353 123.353i 0.219489 0.219489i
\(563\) −53.5301 53.5301i −0.0950801 0.0950801i 0.657967 0.753047i \(-0.271417\pi\)
−0.753047 + 0.657967i \(0.771417\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 389.959 0.688974
\(567\) 0 0
\(568\) −124.495 124.495i −0.219181 0.219181i
\(569\) 449.959i 0.790789i −0.918511 0.395395i \(-0.870608\pi\)
0.918511 0.395395i \(-0.129392\pi\)
\(570\) 0 0
\(571\) 28.7526 0.0503547 0.0251774 0.999683i \(-0.491985\pi\)
0.0251774 + 0.999683i \(0.491985\pi\)
\(572\) −72.7673 + 72.7673i −0.127216 + 0.127216i
\(573\) 0 0
\(574\) 236.182i 0.411466i
\(575\) 0 0
\(576\) 0 0
\(577\) 664.135 664.135i 1.15101 1.15101i 0.164665 0.986350i \(-0.447346\pi\)
0.986350 0.164665i \(-0.0526542\pi\)
\(578\) −208.717 208.717i −0.361103 0.361103i
\(579\) 0 0
\(580\) 0 0
\(581\) −286.677 −0.493419
\(582\) 0 0
\(583\) 485.899 + 485.899i 0.833446 + 0.833446i
\(584\) 210.202i 0.359935i
\(585\) 0 0
\(586\) 105.984 0.180860
\(587\) −304.083 + 304.083i −0.518029 + 0.518029i −0.916975 0.398946i \(-0.869376\pi\)
0.398946 + 0.916975i \(0.369376\pi\)
\(588\) 0 0
\(589\) 543.504i 0.922757i
\(590\) 0 0
\(591\) 0 0
\(592\) −153.576 + 153.576i −0.259418 + 0.259418i
\(593\) 588.102 + 588.102i 0.991741 + 0.991741i 0.999966 0.00822539i \(-0.00261825\pi\)
−0.00822539 + 0.999966i \(0.502618\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 434.474 0.728984
\(597\) 0 0
\(598\) 106.677 + 106.677i 0.178389 + 0.178389i
\(599\) 160.252i 0.267533i 0.991013 + 0.133766i \(0.0427072\pi\)
−0.991013 + 0.133766i \(0.957293\pi\)
\(600\) 0 0
\(601\) −1157.79 −1.92644 −0.963218 0.268722i \(-0.913399\pi\)
−0.963218 + 0.268722i \(0.913399\pi\)
\(602\) 268.677 268.677i 0.446307 0.446307i
\(603\) 0 0
\(604\) 285.616i 0.472875i
\(605\) 0 0
\(606\) 0 0
\(607\) −312.303 + 312.303i −0.514503 + 0.514503i −0.915903 0.401400i \(-0.868524\pi\)
0.401400 + 0.915903i \(0.368524\pi\)
\(608\) −77.7980 77.7980i −0.127957 0.127957i
\(609\) 0 0
\(610\) 0 0
\(611\) −71.3326 −0.116747
\(612\) 0 0
\(613\) −687.959 687.959i −1.12228 1.12228i −0.991398 0.130885i \(-0.958218\pi\)
−0.130885 0.991398i \(-0.541782\pi\)
\(614\) 372.211i 0.606207i
\(615\) 0 0
\(616\) 182.384 0.296077
\(617\) 213.421 213.421i 0.345901 0.345901i −0.512679 0.858580i \(-0.671347\pi\)
0.858580 + 0.512679i \(0.171347\pi\)
\(618\) 0 0
\(619\) 86.9082i 0.140401i 0.997533 + 0.0702004i \(0.0223639\pi\)
−0.997533 + 0.0702004i \(0.977636\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −246.858 + 246.858i −0.396878 + 0.396878i
\(623\) 311.262 + 311.262i 0.499618 + 0.499618i
\(624\) 0 0
\(625\) 0 0
\(626\) 420.322 0.671442
\(627\) 0 0
\(628\) −59.6663 59.6663i −0.0950101 0.0950101i
\(629\) 1211.35i 1.92583i
\(630\) 0 0
\(631\) 302.298 0.479078 0.239539 0.970887i \(-0.423004\pi\)
0.239539 + 0.970887i \(0.423004\pi\)
\(632\) −209.283 + 209.283i −0.331143 + 0.331143i
\(633\) 0 0
\(634\) 488.722i 0.770855i
\(635\) 0 0
\(636\) 0 0
\(637\) 33.3893 33.3893i 0.0524165 0.0524165i
\(638\) 366.838 + 366.838i 0.574981 + 0.574981i
\(639\) 0 0
\(640\) 0 0
\(641\) 667.060 1.04066 0.520328 0.853967i \(-0.325810\pi\)
0.520328 + 0.853967i \(0.325810\pi\)
\(642\) 0 0
\(643\) −246.581 246.581i −0.383485 0.383485i 0.488871 0.872356i \(-0.337409\pi\)
−0.872356 + 0.488871i \(0.837409\pi\)
\(644\) 267.373i 0.415176i
\(645\) 0 0
\(646\) 613.641 0.949909
\(647\) −43.7900 + 43.7900i −0.0676817 + 0.0676817i −0.740137 0.672456i \(-0.765240\pi\)
0.672456 + 0.740137i \(0.265240\pi\)
\(648\) 0 0
\(649\) 800.232i 1.23302i
\(650\) 0 0
\(651\) 0 0
\(652\) 122.717 122.717i 0.188217 0.188217i
\(653\) −72.4268 72.4268i −0.110914 0.110914i 0.649472 0.760386i \(-0.274990\pi\)
−0.760386 + 0.649472i \(0.774990\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −106.161 −0.161831
\(657\) 0 0
\(658\) 89.3939 + 89.3939i 0.135857 + 0.135857i
\(659\) 346.636i 0.526003i −0.964795 0.263001i \(-0.915288\pi\)
0.964795 0.263001i \(-0.0847124\pi\)
\(660\) 0 0
\(661\) −474.152 −0.717325 −0.358663 0.933467i \(-0.616767\pi\)
−0.358663 + 0.933467i \(0.616767\pi\)
\(662\) −551.464 + 551.464i −0.833028 + 0.833028i
\(663\) 0 0
\(664\) 128.858i 0.194063i
\(665\) 0 0
\(666\) 0 0
\(667\) 537.782 537.782i 0.806270 0.806270i
\(668\) 272.479 + 272.479i 0.407903 + 0.407903i
\(669\) 0 0
\(670\) 0 0
\(671\) 1073.70 1.60015
\(672\) 0 0
\(673\) 70.7332 + 70.7332i 0.105101 + 0.105101i 0.757702 0.652601i \(-0.226322\pi\)
−0.652601 + 0.757702i \(0.726322\pi\)
\(674\) 77.5663i 0.115084i
\(675\) 0 0
\(676\) −287.576 −0.425408
\(677\) 162.009 162.009i 0.239305 0.239305i −0.577258 0.816562i \(-0.695877\pi\)
0.816562 + 0.577258i \(0.195877\pi\)
\(678\) 0 0
\(679\) 703.918i 1.03670i
\(680\) 0 0
\(681\) 0 0
\(682\) 286.359 286.359i 0.419881 0.419881i
\(683\) −855.304 855.304i −1.25228 1.25228i −0.954697 0.297578i \(-0.903821\pi\)
−0.297578 0.954697i \(-0.596179\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −519.737 −0.757634
\(687\) 0 0
\(688\) 120.767 + 120.767i 0.175534 + 0.175534i
\(689\) 336.706i 0.488688i
\(690\) 0 0
\(691\) 122.430 0.177178 0.0885891 0.996068i \(-0.471764\pi\)
0.0885891 + 0.996068i \(0.471764\pi\)
\(692\) −299.601 + 299.601i −0.432949 + 0.432949i
\(693\) 0 0
\(694\) 805.444i 1.16058i
\(695\) 0 0
\(696\) 0 0
\(697\) 418.680 418.680i 0.600689 0.600689i
\(698\) 491.272 + 491.272i 0.703829 + 0.703829i
\(699\) 0 0
\(700\) 0 0
\(701\) −1322.17 −1.88613 −0.943063 0.332613i \(-0.892070\pi\)
−0.943063 + 0.332613i \(0.892070\pi\)
\(702\) 0 0
\(703\) 746.741 + 746.741i 1.06222 + 1.06222i
\(704\) 81.9796i 0.116448i
\(705\) 0 0
\(706\) 137.171 0.194294
\(707\) −377.757 + 377.757i −0.534310 + 0.534310i
\(708\) 0 0
\(709\) 779.909i 1.10001i 0.835160 + 0.550006i \(0.185375\pi\)
−0.835160 + 0.550006i \(0.814625\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −139.909 + 139.909i −0.196502 + 0.196502i
\(713\) −419.800 419.800i −0.588780 0.588780i
\(714\) 0 0
\(715\) 0 0
\(716\) 372.504 0.520257
\(717\) 0 0
\(718\) −353.773 353.773i −0.492720 0.492720i
\(719\) 572.652i 0.796456i −0.917287 0.398228i \(-0.869625\pi\)
0.917287 0.398228i \(-0.130375\pi\)
\(720\) 0 0
\(721\) 383.373 0.531725
\(722\) −17.2827 + 17.2827i −0.0239372 + 0.0239372i
\(723\) 0 0
\(724\) 516.747i 0.713739i
\(725\) 0 0
\(726\) 0 0
\(727\) −231.748 + 231.748i −0.318773 + 0.318773i −0.848296 0.529523i \(-0.822371\pi\)
0.529523 + 0.848296i \(0.322371\pi\)
\(728\) −63.1918 63.1918i −0.0868020 0.0868020i
\(729\) 0 0
\(730\) 0 0
\(731\) −952.568 −1.30310
\(732\) 0 0
\(733\) −739.626 739.626i −1.00904 1.00904i −0.999959 0.00908011i \(-0.997110\pi\)
−0.00908011 0.999959i \(-0.502890\pi\)
\(734\) 481.403i 0.655862i
\(735\) 0 0
\(736\) 120.182 0.163290
\(737\) 878.640 878.640i 1.19218 1.19218i
\(738\) 0 0
\(739\) 506.539i 0.685439i −0.939438 0.342719i \(-0.888652\pi\)
0.939438 0.342719i \(-0.111348\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −421.959 + 421.959i −0.568678 + 0.568678i
\(743\) −10.7219 10.7219i −0.0144306 0.0144306i 0.699855 0.714285i \(-0.253248\pi\)
−0.714285 + 0.699855i \(0.753248\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −846.120 −1.13421
\(747\) 0 0
\(748\) −323.312 323.312i −0.432236 0.432236i
\(749\) 479.151i 0.639721i
\(750\) 0 0
\(751\) 813.075 1.08266 0.541328 0.840811i \(-0.317922\pi\)
0.541328 + 0.840811i \(0.317922\pi\)
\(752\) −40.1816 + 40.1816i −0.0534330 + 0.0534330i
\(753\) 0 0
\(754\) 254.202i 0.337138i
\(755\) 0 0
\(756\) 0 0
\(757\) −132.514 + 132.514i −0.175052 + 0.175052i −0.789195 0.614143i \(-0.789502\pi\)
0.614143 + 0.789195i \(0.289502\pi\)
\(758\) 57.1066 + 57.1066i 0.0753386 + 0.0753386i
\(759\) 0 0
\(760\) 0 0
\(761\) −412.252 −0.541724 −0.270862 0.962618i \(-0.587309\pi\)
−0.270862 + 0.962618i \(0.587309\pi\)
\(762\) 0 0
\(763\) 465.308 + 465.308i 0.609840 + 0.609840i
\(764\) 377.848i 0.494565i
\(765\) 0 0
\(766\) −724.974 −0.946441
\(767\) −277.262 + 277.262i −0.361489 + 0.361489i
\(768\) 0 0
\(769\) 867.393i 1.12795i −0.825792 0.563975i \(-0.809272\pi\)
0.825792 0.563975i \(-0.190728\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 362.474 362.474i 0.469527 0.469527i
\(773\) 295.578 + 295.578i 0.382377 + 0.382377i 0.871958 0.489581i \(-0.162850\pi\)
−0.489581 + 0.871958i \(0.662850\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 316.404 0.407737
\(777\) 0 0
\(778\) −477.106 477.106i −0.613246 0.613246i
\(779\) 516.195i 0.662639i
\(780\) 0 0
\(781\) 637.878 0.816745
\(782\) −473.974 + 473.974i −0.606105 + 0.606105i
\(783\) 0 0
\(784\) 37.6163i 0.0479800i
\(785\) 0 0
\(786\) 0 0
\(787\) −179.899 + 179.899i −0.228588 + 0.228588i −0.812103 0.583514i \(-0.801677\pi\)
0.583514 + 0.812103i \(0.301677\pi\)
\(788\) −363.551 363.551i −0.461359 0.461359i
\(789\) 0 0
\(790\) 0 0
\(791\) −936.908 −1.18446
\(792\) 0 0
\(793\) −372.014 372.014i −0.469122 0.469122i
\(794\) 260.595i 0.328205i
\(795\) 0 0
\(796\) −134.647 −0.169154
\(797\) −40.0023 + 40.0023i −0.0501911 + 0.0501911i −0.731757 0.681566i \(-0.761299\pi\)
0.681566 + 0.731757i \(0.261299\pi\)
\(798\) 0 0
\(799\) 316.938i 0.396668i
\(800\) 0 0
\(801\) 0 0
\(802\) 91.7821 91.7821i 0.114442 0.114442i
\(803\) −538.509 538.509i −0.670621 0.670621i
\(804\) 0 0
\(805\) 0 0
\(806\) −198.434 −0.246196
\(807\) 0 0
\(808\) −169.798 169.798i −0.210146 0.210146i
\(809\) 135.875i 0.167954i 0.996468 + 0.0839771i \(0.0267623\pi\)
−0.996468 + 0.0839771i \(0.973238\pi\)
\(810\) 0 0
\(811\) 1361.17 1.67838 0.839192 0.543835i \(-0.183028\pi\)
0.839192 + 0.543835i \(0.183028\pi\)
\(812\) −318.565 + 318.565i −0.392322 + 0.392322i
\(813\) 0 0
\(814\) 786.879i 0.966681i
\(815\) 0 0
\(816\) 0 0
\(817\) 587.216 587.216i 0.718746 0.718746i
\(818\) 23.2520 + 23.2520i 0.0284255 + 0.0284255i
\(819\) 0 0
\(820\) 0 0
\(821\) 369.630 0.450219 0.225110 0.974333i \(-0.427726\pi\)
0.225110 + 0.974333i \(0.427726\pi\)
\(822\) 0 0
\(823\) −752.514 752.514i −0.914355 0.914355i 0.0822561 0.996611i \(-0.473787\pi\)
−0.996611 + 0.0822561i \(0.973787\pi\)
\(824\) 172.322i 0.209129i
\(825\) 0 0
\(826\) 694.929 0.841318
\(827\) −263.579 + 263.579i −0.318717 + 0.318717i −0.848274 0.529557i \(-0.822358\pi\)
0.529557 + 0.848274i \(0.322358\pi\)
\(828\) 0 0
\(829\) 367.171i 0.442909i −0.975171 0.221454i \(-0.928920\pi\)
0.975171 0.221454i \(-0.0710804\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 28.4041 28.4041i 0.0341395 0.0341395i
\(833\) 148.352 + 148.352i 0.178093 + 0.178093i
\(834\) 0 0
\(835\) 0 0
\(836\) 398.615 0.476813
\(837\) 0 0
\(838\) 675.551 + 675.551i 0.806146 + 0.806146i
\(839\) 601.970i 0.717486i 0.933436 + 0.358743i \(0.116794\pi\)
−0.933436 + 0.358743i \(0.883206\pi\)
\(840\) 0 0
\(841\) −440.494 −0.523774
\(842\) 307.252 307.252i 0.364907 0.364907i
\(843\) 0 0
\(844\) 383.040i 0.453839i
\(845\) 0 0
\(846\) 0 0
\(847\) 71.1464 71.1464i 0.0839981 0.0839981i
\(848\) −189.666 189.666i −0.223663 0.223663i
\(849\) 0 0
\(850\) 0 0
\(851\) −1153.56 −1.35553
\(852\) 0 0
\(853\) −370.767 370.767i −0.434663 0.434663i 0.455548 0.890211i \(-0.349443\pi\)
−0.890211 + 0.455548i \(0.849443\pi\)
\(854\) 932.413i 1.09182i
\(855\) 0 0
\(856\) 215.373 0.251605
\(857\) −128.073 + 128.073i −0.149443 + 0.149443i −0.777869 0.628426i \(-0.783699\pi\)
0.628426 + 0.777869i \(0.283699\pi\)
\(858\) 0 0
\(859\) 518.610i 0.603737i 0.953350 + 0.301868i \(0.0976103\pi\)
−0.953350 + 0.301868i \(0.902390\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 680.120 680.120i 0.789003 0.789003i
\(863\) −519.729 519.729i −0.602235 0.602235i 0.338670 0.940905i \(-0.390023\pi\)
−0.940905 + 0.338670i \(0.890023\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 832.958 0.961845
\(867\) 0 0
\(868\) 248.677 + 248.677i 0.286494 + 0.286494i
\(869\) 1072.31i 1.23395i
\(870\) 0 0
\(871\) −608.858 −0.699033
\(872\) −209.151 + 209.151i −0.239852 + 0.239852i
\(873\) 0 0
\(874\) 584.368i 0.668613i
\(875\) 0 0
\(876\) 0 0
\(877\) 339.915 339.915i 0.387588 0.387588i −0.486238 0.873826i \(-0.661631\pi\)
0.873826 + 0.486238i \(0.161631\pi\)
\(878\) −325.277 325.277i −0.370475 0.370475i
\(879\) 0 0
\(880\) 0 0
\(881\) 1325.62 1.50468 0.752340 0.658775i \(-0.228925\pi\)
0.752340 + 0.658775i \(0.228925\pi\)
\(882\) 0 0
\(883\) −393.358 393.358i −0.445479 0.445479i 0.448370 0.893848i \(-0.352005\pi\)
−0.893848 + 0.448370i \(0.852005\pi\)
\(884\) 224.041i 0.253440i
\(885\) 0 0
\(886\) 620.661 0.700520
\(887\) 430.936 430.936i 0.485836 0.485836i −0.421153 0.906989i \(-0.638375\pi\)
0.906989 + 0.421153i \(0.138375\pi\)
\(888\) 0 0
\(889\) 1513.95i 1.70298i
\(890\) 0 0
\(891\) 0 0
\(892\) −16.7378 + 16.7378i −0.0187643 + 0.0187643i
\(893\) 195.378 + 195.378i 0.218788 + 0.218788i
\(894\) 0 0
\(895\) 0 0
\(896\) −71.1918 −0.0794552
\(897\) 0 0
\(898\) 184.697 + 184.697i 0.205676 + 0.205676i
\(899\) 1000.35i 1.11274i
\(900\) 0 0
\(901\) 1496.02 1.66040
\(902\) 271.970 271.970i 0.301519 0.301519i
\(903\) 0 0
\(904\) 421.131i 0.465852i
\(905\) 0 0
\(906\) 0 0
\(907\) 1199.45 1199.45i 1.32244 1.32244i 0.410644 0.911796i \(-0.365304\pi\)
0.911796 0.410644i \(-0.134696\pi\)
\(908\) 13.8230 + 13.8230i 0.0152235 + 0.0152235i
\(909\) 0 0
\(910\) 0 0
\(911\) −1159.45 −1.27273 −0.636363 0.771390i \(-0.719562\pi\)
−0.636363 + 0.771390i \(0.719562\pi\)
\(912\) 0 0
\(913\) 330.117 + 330.117i 0.361574 + 0.361574i
\(914\) 1040.36i 1.13825i
\(915\) 0 0
\(916\) −492.484 −0.537646
\(917\) 651.221 651.221i 0.710165 0.710165i
\(918\) 0 0
\(919\) 279.362i 0.303985i −0.988382 0.151993i \(-0.951431\pi\)
0.988382 0.151993i \(-0.0485690\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 808.286 808.286i 0.876666 0.876666i
\(923\) −221.010 221.010i −0.239448 0.239448i
\(924\) 0 0
\(925\) 0 0
\(926\) 77.7867 0.0840029
\(927\) 0 0
\(928\) −143.192 143.192i −0.154302 0.154302i
\(929\) 1140.90i 1.22810i 0.789269 + 0.614048i \(0.210460\pi\)
−0.789269 + 0.614048i \(0.789540\pi\)
\(930\) 0 0
\(931\) −182.905 −0.196460
\(932\) 365.171 365.171i 0.391815 0.391815i
\(933\) 0 0
\(934\) 161.682i 0.173107i
\(935\) 0 0
\(936\) 0 0
\(937\) 267.535 267.535i 0.285523 0.285523i −0.549784 0.835307i \(-0.685290\pi\)
0.835307 + 0.549784i \(0.185290\pi\)
\(938\) 763.019 + 763.019i 0.813453 + 0.813453i
\(939\) 0 0
\(940\) 0 0
\(941\) 859.065 0.912928 0.456464 0.889742i \(-0.349116\pi\)
0.456464 + 0.889742i \(0.349116\pi\)
\(942\) 0 0
\(943\) −398.707 398.707i −0.422807 0.422807i
\(944\) 312.363i 0.330893i
\(945\) 0 0
\(946\) −618.779 −0.654100
\(947\) 675.159 675.159i 0.712945 0.712945i −0.254205 0.967150i \(-0.581814\pi\)
0.967150 + 0.254205i \(0.0818139\pi\)
\(948\) 0 0
\(949\) 373.162i 0.393216i
\(950\) 0 0
\(951\) 0 0
\(952\) 280.767 280.767i 0.294924 0.294924i
\(953\) −297.873 297.873i −0.312563 0.312563i 0.533338 0.845902i \(-0.320937\pi\)
−0.845902 + 0.533338i \(0.820937\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 348.817 0.364872
\(957\) 0 0
\(958\) 311.773 + 311.773i 0.325442 + 0.325442i
\(959\) 316.565i 0.330099i
\(960\) 0 0
\(961\) −180.111 −0.187421
\(962\) −272.636 + 272.636i −0.283405 + 0.283405i
\(963\) 0 0
\(964\) 380.665i 0.394881i
\(965\) 0 0
\(966\) 0 0
\(967\) −140.955 + 140.955i −0.145765 + 0.145765i −0.776223 0.630458i \(-0.782867\pi\)
0.630458 + 0.776223i \(0.282867\pi\)
\(968\) 31.9796 + 31.9796i 0.0330368 + 0.0330368i
\(969\) 0 0
\(970\) 0 0
\(971\) −1252.45 −1.28985 −0.644927 0.764245i \(-0.723112\pi\)
−0.644927 + 0.764245i \(0.723112\pi\)
\(972\) 0 0
\(973\) −551.242 551.242i −0.566538 0.566538i
\(974\) 646.849i 0.664116i
\(975\) 0 0
\(976\) −419.110 −0.429416
\(977\) 192.172 192.172i 0.196696 0.196696i −0.601886 0.798582i \(-0.705584\pi\)
0.798582 + 0.601886i \(0.205584\pi\)
\(978\) 0 0
\(979\) 716.856i 0.732233i
\(980\) 0 0
\(981\) 0 0
\(982\) −753.914 + 753.914i −0.767733 + 0.767733i
\(983\) −994.178 994.178i −1.01137 1.01137i −0.999935 0.0114370i \(-0.996359\pi\)
−0.0114370 0.999935i \(-0.503641\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1129.44 1.14548
\(987\) 0 0
\(988\) −138.111 138.111i −0.139789 0.139789i
\(989\) 907.126i 0.917215i
\(990\) 0 0
\(991\) 651.166 0.657080 0.328540 0.944490i \(-0.393444\pi\)
0.328540 + 0.944490i \(0.393444\pi\)
\(992\) −111.778 + 111.778i −0.112679 + 0.112679i
\(993\) 0 0
\(994\) 553.939i 0.557282i
\(995\) 0 0
\(996\) 0 0
\(997\) 430.853 430.853i 0.432149 0.432149i −0.457210 0.889359i \(-0.651151\pi\)
0.889359 + 0.457210i \(0.151151\pi\)
\(998\) −535.388 535.388i −0.536461 0.536461i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.3.g.h.1243.1 4
3.2 odd 2 1350.3.g.b.1243.1 4
5.2 odd 4 inner 1350.3.g.h.757.1 4
5.3 odd 4 270.3.g.a.217.1 yes 4
5.4 even 2 270.3.g.a.163.1 4
15.2 even 4 1350.3.g.b.757.1 4
15.8 even 4 270.3.g.d.217.2 yes 4
15.14 odd 2 270.3.g.d.163.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.3.g.a.163.1 4 5.4 even 2
270.3.g.a.217.1 yes 4 5.3 odd 4
270.3.g.d.163.2 yes 4 15.14 odd 2
270.3.g.d.217.2 yes 4 15.8 even 4
1350.3.g.b.757.1 4 15.2 even 4
1350.3.g.b.1243.1 4 3.2 odd 2
1350.3.g.h.757.1 4 5.2 odd 4 inner
1350.3.g.h.1243.1 4 1.1 even 1 trivial