Properties

Label 1350.3.g.b.757.1
Level $1350$
Weight $3$
Character 1350.757
Analytic conductor $36.785$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1350,3,Mod(757,1350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1350.757"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1350, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1350 = 2 \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1350.g (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4,0,0,0,0,-8,8,0,0,8,0,-24,0,0,-16,-68] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.7848356886\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 270)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 757.1
Root \(-1.22474 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1350.757
Dual form 1350.3.g.b.1243.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +2.00000i q^{4} +(-4.44949 - 4.44949i) q^{7} +(2.00000 - 2.00000i) q^{8} -10.2474 q^{11} +(-3.55051 + 3.55051i) q^{13} +8.89898i q^{14} -4.00000 q^{16} +(-15.7753 - 15.7753i) q^{17} -19.4495i q^{19} +(10.2474 + 10.2474i) q^{22} +(15.0227 - 15.0227i) q^{23} +7.10102 q^{26} +(8.89898 - 8.89898i) q^{28} +35.7980i q^{29} +27.9444 q^{31} +(4.00000 + 4.00000i) q^{32} +31.5505i q^{34} +(38.3939 + 38.3939i) q^{37} +(-19.4495 + 19.4495i) q^{38} -26.5403 q^{41} +(-30.1918 + 30.1918i) q^{43} -20.4949i q^{44} -30.0454 q^{46} +(-10.0454 - 10.0454i) q^{47} -9.40408i q^{49} +(-7.10102 - 7.10102i) q^{52} +(-47.4166 + 47.4166i) q^{53} -17.7980 q^{56} +(35.7980 - 35.7980i) q^{58} -78.0908i q^{59} +104.778 q^{61} +(-27.9444 - 27.9444i) q^{62} -8.00000i q^{64} +(85.7423 + 85.7423i) q^{67} +(31.5505 - 31.5505i) q^{68} -62.2474 q^{71} +(-52.5505 + 52.5505i) q^{73} -76.7878i q^{74} +38.8990 q^{76} +(45.5959 + 45.5959i) q^{77} +104.641i q^{79} +(26.5403 + 26.5403i) q^{82} +(-32.2145 + 32.2145i) q^{83} +60.3837 q^{86} +(-20.4949 + 20.4949i) q^{88} -69.9546i q^{89} +31.5959 q^{91} +(30.0454 + 30.0454i) q^{92} +20.0908i q^{94} +(-79.1010 - 79.1010i) q^{97} +(-9.40408 + 9.40408i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 8 q^{7} + 8 q^{8} + 8 q^{11} - 24 q^{13} - 16 q^{16} - 68 q^{17} - 8 q^{22} + 16 q^{23} + 48 q^{26} + 16 q^{28} + 4 q^{31} + 16 q^{32} + 36 q^{37} - 68 q^{38} + 80 q^{41} + 36 q^{43} - 32 q^{46}+ \cdots - 116 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1350\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1027\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.500000 0.500000i
\(3\) 0 0
\(4\) 2.00000i 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) −4.44949 4.44949i −0.635641 0.635641i 0.313836 0.949477i \(-0.398386\pi\)
−0.949477 + 0.313836i \(0.898386\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 0 0
\(10\) 0 0
\(11\) −10.2474 −0.931586 −0.465793 0.884894i \(-0.654231\pi\)
−0.465793 + 0.884894i \(0.654231\pi\)
\(12\) 0 0
\(13\) −3.55051 + 3.55051i −0.273116 + 0.273116i −0.830353 0.557237i \(-0.811861\pi\)
0.557237 + 0.830353i \(0.311861\pi\)
\(14\) 8.89898i 0.635641i
\(15\) 0 0
\(16\) −4.00000 −0.250000
\(17\) −15.7753 15.7753i −0.927956 0.927956i 0.0696176 0.997574i \(-0.477822\pi\)
−0.997574 + 0.0696176i \(0.977822\pi\)
\(18\) 0 0
\(19\) 19.4495i 1.02366i −0.859088 0.511829i \(-0.828968\pi\)
0.859088 0.511829i \(-0.171032\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 10.2474 + 10.2474i 0.465793 + 0.465793i
\(23\) 15.0227 15.0227i 0.653161 0.653161i −0.300592 0.953753i \(-0.597184\pi\)
0.953753 + 0.300592i \(0.0971842\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 7.10102 0.273116
\(27\) 0 0
\(28\) 8.89898 8.89898i 0.317821 0.317821i
\(29\) 35.7980i 1.23441i 0.786801 + 0.617206i \(0.211736\pi\)
−0.786801 + 0.617206i \(0.788264\pi\)
\(30\) 0 0
\(31\) 27.9444 0.901432 0.450716 0.892667i \(-0.351169\pi\)
0.450716 + 0.892667i \(0.351169\pi\)
\(32\) 4.00000 + 4.00000i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) 31.5505i 0.927956i
\(35\) 0 0
\(36\) 0 0
\(37\) 38.3939 + 38.3939i 1.03767 + 1.03767i 0.999262 + 0.0384103i \(0.0122294\pi\)
0.0384103 + 0.999262i \(0.487771\pi\)
\(38\) −19.4495 + 19.4495i −0.511829 + 0.511829i
\(39\) 0 0
\(40\) 0 0
\(41\) −26.5403 −0.647325 −0.323662 0.946173i \(-0.604914\pi\)
−0.323662 + 0.946173i \(0.604914\pi\)
\(42\) 0 0
\(43\) −30.1918 + 30.1918i −0.702136 + 0.702136i −0.964869 0.262733i \(-0.915376\pi\)
0.262733 + 0.964869i \(0.415376\pi\)
\(44\) 20.4949i 0.465793i
\(45\) 0 0
\(46\) −30.0454 −0.653161
\(47\) −10.0454 10.0454i −0.213732 0.213732i 0.592119 0.805851i \(-0.298292\pi\)
−0.805851 + 0.592119i \(0.798292\pi\)
\(48\) 0 0
\(49\) 9.40408i 0.191920i
\(50\) 0 0
\(51\) 0 0
\(52\) −7.10102 7.10102i −0.136558 0.136558i
\(53\) −47.4166 + 47.4166i −0.894652 + 0.894652i −0.994957 0.100304i \(-0.968018\pi\)
0.100304 + 0.994957i \(0.468018\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −17.7980 −0.317821
\(57\) 0 0
\(58\) 35.7980 35.7980i 0.617206 0.617206i
\(59\) 78.0908i 1.32357i −0.749692 0.661787i \(-0.769799\pi\)
0.749692 0.661787i \(-0.230201\pi\)
\(60\) 0 0
\(61\) 104.778 1.71766 0.858832 0.512257i \(-0.171190\pi\)
0.858832 + 0.512257i \(0.171190\pi\)
\(62\) −27.9444 27.9444i −0.450716 0.450716i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 0 0
\(67\) 85.7423 + 85.7423i 1.27974 + 1.27974i 0.940814 + 0.338922i \(0.110062\pi\)
0.338922 + 0.940814i \(0.389938\pi\)
\(68\) 31.5505 31.5505i 0.463978 0.463978i
\(69\) 0 0
\(70\) 0 0
\(71\) −62.2474 −0.876725 −0.438362 0.898798i \(-0.644441\pi\)
−0.438362 + 0.898798i \(0.644441\pi\)
\(72\) 0 0
\(73\) −52.5505 + 52.5505i −0.719870 + 0.719870i −0.968578 0.248708i \(-0.919994\pi\)
0.248708 + 0.968578i \(0.419994\pi\)
\(74\) 76.7878i 1.03767i
\(75\) 0 0
\(76\) 38.8990 0.511829
\(77\) 45.5959 + 45.5959i 0.592155 + 0.592155i
\(78\) 0 0
\(79\) 104.641i 1.32457i 0.749250 + 0.662287i \(0.230414\pi\)
−0.749250 + 0.662287i \(0.769586\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 26.5403 + 26.5403i 0.323662 + 0.323662i
\(83\) −32.2145 + 32.2145i −0.388127 + 0.388127i −0.874019 0.485892i \(-0.838495\pi\)
0.485892 + 0.874019i \(0.338495\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 60.3837 0.702136
\(87\) 0 0
\(88\) −20.4949 + 20.4949i −0.232897 + 0.232897i
\(89\) 69.9546i 0.786007i −0.919537 0.393003i \(-0.871436\pi\)
0.919537 0.393003i \(-0.128564\pi\)
\(90\) 0 0
\(91\) 31.5959 0.347208
\(92\) 30.0454 + 30.0454i 0.326581 + 0.326581i
\(93\) 0 0
\(94\) 20.0908i 0.213732i
\(95\) 0 0
\(96\) 0 0
\(97\) −79.1010 79.1010i −0.815474 0.815474i 0.169974 0.985449i \(-0.445632\pi\)
−0.985449 + 0.169974i \(0.945632\pi\)
\(98\) −9.40408 + 9.40408i −0.0959600 + 0.0959600i
\(99\) 0 0
\(100\) 0 0
\(101\) −84.8990 −0.840584 −0.420292 0.907389i \(-0.638072\pi\)
−0.420292 + 0.907389i \(0.638072\pi\)
\(102\) 0 0
\(103\) −43.0806 + 43.0806i −0.418258 + 0.418258i −0.884603 0.466345i \(-0.845571\pi\)
0.466345 + 0.884603i \(0.345571\pi\)
\(104\) 14.2020i 0.136558i
\(105\) 0 0
\(106\) 94.8332 0.894652
\(107\) 53.8434 + 53.8434i 0.503209 + 0.503209i 0.912434 0.409225i \(-0.134201\pi\)
−0.409225 + 0.912434i \(0.634201\pi\)
\(108\) 0 0
\(109\) 104.576i 0.959408i 0.877430 + 0.479704i \(0.159256\pi\)
−0.877430 + 0.479704i \(0.840744\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 17.7980 + 17.7980i 0.158910 + 0.158910i
\(113\) −105.283 + 105.283i −0.931705 + 0.931705i −0.997812 0.0661076i \(-0.978942\pi\)
0.0661076 + 0.997812i \(0.478942\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −71.5959 −0.617206
\(117\) 0 0
\(118\) −78.0908 + 78.0908i −0.661787 + 0.661787i
\(119\) 140.384i 1.17969i
\(120\) 0 0
\(121\) −15.9898 −0.132147
\(122\) −104.778 104.778i −0.858832 0.858832i
\(123\) 0 0
\(124\) 55.8888i 0.450716i
\(125\) 0 0
\(126\) 0 0
\(127\) 170.126 + 170.126i 1.33957 + 1.33957i 0.896470 + 0.443105i \(0.146123\pi\)
0.443105 + 0.896470i \(0.353877\pi\)
\(128\) −8.00000 + 8.00000i −0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 0 0
\(131\) 146.359 1.11724 0.558621 0.829423i \(-0.311331\pi\)
0.558621 + 0.829423i \(0.311331\pi\)
\(132\) 0 0
\(133\) −86.5403 + 86.5403i −0.650679 + 0.650679i
\(134\) 171.485i 1.27974i
\(135\) 0 0
\(136\) −63.1010 −0.463978
\(137\) 35.5732 + 35.5732i 0.259658 + 0.259658i 0.824915 0.565257i \(-0.191223\pi\)
−0.565257 + 0.824915i \(0.691223\pi\)
\(138\) 0 0
\(139\) 123.889i 0.891286i −0.895211 0.445643i \(-0.852975\pi\)
0.895211 0.445643i \(-0.147025\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 62.2474 + 62.2474i 0.438362 + 0.438362i
\(143\) 36.3837 36.3837i 0.254431 0.254431i
\(144\) 0 0
\(145\) 0 0
\(146\) 105.101 0.719870
\(147\) 0 0
\(148\) −76.7878 + 76.7878i −0.518836 + 0.518836i
\(149\) 217.237i 1.45797i 0.684531 + 0.728984i \(0.260007\pi\)
−0.684531 + 0.728984i \(0.739993\pi\)
\(150\) 0 0
\(151\) −142.808 −0.945749 −0.472875 0.881130i \(-0.656784\pi\)
−0.472875 + 0.881130i \(0.656784\pi\)
\(152\) −38.8990 38.8990i −0.255914 0.255914i
\(153\) 0 0
\(154\) 91.1918i 0.592155i
\(155\) 0 0
\(156\) 0 0
\(157\) 29.8332 + 29.8332i 0.190020 + 0.190020i 0.795705 0.605685i \(-0.207101\pi\)
−0.605685 + 0.795705i \(0.707101\pi\)
\(158\) 104.641 104.641i 0.662287 0.662287i
\(159\) 0 0
\(160\) 0 0
\(161\) −133.687 −0.830352
\(162\) 0 0
\(163\) 61.3587 61.3587i 0.376434 0.376434i −0.493380 0.869814i \(-0.664239\pi\)
0.869814 + 0.493380i \(0.164239\pi\)
\(164\) 53.0806i 0.323662i
\(165\) 0 0
\(166\) 64.4291 0.388127
\(167\) 136.240 + 136.240i 0.815806 + 0.815806i 0.985497 0.169692i \(-0.0542772\pi\)
−0.169692 + 0.985497i \(0.554277\pi\)
\(168\) 0 0
\(169\) 143.788i 0.850815i
\(170\) 0 0
\(171\) 0 0
\(172\) −60.3837 60.3837i −0.351068 0.351068i
\(173\) 149.800 149.800i 0.865897 0.865897i −0.126118 0.992015i \(-0.540252\pi\)
0.992015 + 0.126118i \(0.0402517\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 40.9898 0.232897
\(177\) 0 0
\(178\) −69.9546 + 69.9546i −0.393003 + 0.393003i
\(179\) 186.252i 1.04051i 0.854010 + 0.520257i \(0.174164\pi\)
−0.854010 + 0.520257i \(0.825836\pi\)
\(180\) 0 0
\(181\) 258.373 1.42748 0.713739 0.700412i \(-0.247000\pi\)
0.713739 + 0.700412i \(0.247000\pi\)
\(182\) −31.5959 31.5959i −0.173604 0.173604i
\(183\) 0 0
\(184\) 60.0908i 0.326581i
\(185\) 0 0
\(186\) 0 0
\(187\) 161.656 + 161.656i 0.864471 + 0.864471i
\(188\) 20.0908 20.0908i 0.106866 0.106866i
\(189\) 0 0
\(190\) 0 0
\(191\) 188.924 0.989131 0.494565 0.869140i \(-0.335327\pi\)
0.494565 + 0.869140i \(0.335327\pi\)
\(192\) 0 0
\(193\) 181.237 181.237i 0.939053 0.939053i −0.0591935 0.998247i \(-0.518853\pi\)
0.998247 + 0.0591935i \(0.0188529\pi\)
\(194\) 158.202i 0.815474i
\(195\) 0 0
\(196\) 18.8082 0.0959600
\(197\) −181.775 181.775i −0.922717 0.922717i 0.0745037 0.997221i \(-0.476263\pi\)
−0.997221 + 0.0745037i \(0.976263\pi\)
\(198\) 0 0
\(199\) 67.3235i 0.338309i 0.985590 + 0.169154i \(0.0541037\pi\)
−0.985590 + 0.169154i \(0.945896\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 84.8990 + 84.8990i 0.420292 + 0.420292i
\(203\) 159.283 159.283i 0.784644 0.784644i
\(204\) 0 0
\(205\) 0 0
\(206\) 86.1612 0.418258
\(207\) 0 0
\(208\) 14.2020 14.2020i 0.0682790 0.0682790i
\(209\) 199.308i 0.953625i
\(210\) 0 0
\(211\) 191.520 0.907677 0.453839 0.891084i \(-0.350054\pi\)
0.453839 + 0.891084i \(0.350054\pi\)
\(212\) −94.8332 94.8332i −0.447326 0.447326i
\(213\) 0 0
\(214\) 107.687i 0.503209i
\(215\) 0 0
\(216\) 0 0
\(217\) −124.338 124.338i −0.572987 0.572987i
\(218\) 104.576 104.576i 0.479704 0.479704i
\(219\) 0 0
\(220\) 0 0
\(221\) 112.020 0.506880
\(222\) 0 0
\(223\) −8.36888 + 8.36888i −0.0375286 + 0.0375286i −0.725622 0.688093i \(-0.758448\pi\)
0.688093 + 0.725622i \(0.258448\pi\)
\(224\) 35.5959i 0.158910i
\(225\) 0 0
\(226\) 210.565 0.931705
\(227\) 6.91148 + 6.91148i 0.0304470 + 0.0304470i 0.722166 0.691719i \(-0.243146\pi\)
−0.691719 + 0.722166i \(0.743146\pi\)
\(228\) 0 0
\(229\) 246.242i 1.07529i 0.843171 + 0.537646i \(0.180686\pi\)
−0.843171 + 0.537646i \(0.819314\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 71.5959 + 71.5959i 0.308603 + 0.308603i
\(233\) −182.586 + 182.586i −0.783630 + 0.783630i −0.980441 0.196812i \(-0.936941\pi\)
0.196812 + 0.980441i \(0.436941\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 156.182 0.661787
\(237\) 0 0
\(238\) 140.384 140.384i 0.589847 0.589847i
\(239\) 174.409i 0.729743i 0.931058 + 0.364872i \(0.118887\pi\)
−0.931058 + 0.364872i \(0.881113\pi\)
\(240\) 0 0
\(241\) −190.333 −0.789762 −0.394881 0.918732i \(-0.629214\pi\)
−0.394881 + 0.918732i \(0.629214\pi\)
\(242\) 15.9898 + 15.9898i 0.0660735 + 0.0660735i
\(243\) 0 0
\(244\) 209.555i 0.858832i
\(245\) 0 0
\(246\) 0 0
\(247\) 69.0556 + 69.0556i 0.279577 + 0.279577i
\(248\) 55.8888 55.8888i 0.225358 0.225358i
\(249\) 0 0
\(250\) 0 0
\(251\) −421.707 −1.68011 −0.840054 0.542503i \(-0.817477\pi\)
−0.840054 + 0.542503i \(0.817477\pi\)
\(252\) 0 0
\(253\) −153.944 + 153.944i −0.608476 + 0.608476i
\(254\) 340.252i 1.33957i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 88.6288 + 88.6288i 0.344859 + 0.344859i 0.858191 0.513331i \(-0.171589\pi\)
−0.513331 + 0.858191i \(0.671589\pi\)
\(258\) 0 0
\(259\) 341.666i 1.31917i
\(260\) 0 0
\(261\) 0 0
\(262\) −146.359 146.359i −0.558621 0.558621i
\(263\) 25.1214 25.1214i 0.0955187 0.0955187i −0.657733 0.753251i \(-0.728484\pi\)
0.753251 + 0.657733i \(0.228484\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 173.081 0.650679
\(267\) 0 0
\(268\) −171.485 + 171.485i −0.639868 + 0.639868i
\(269\) 197.621i 0.734650i −0.930093 0.367325i \(-0.880274\pi\)
0.930093 0.367325i \(-0.119726\pi\)
\(270\) 0 0
\(271\) −158.258 −0.583977 −0.291988 0.956422i \(-0.594317\pi\)
−0.291988 + 0.956422i \(0.594317\pi\)
\(272\) 63.1010 + 63.1010i 0.231989 + 0.231989i
\(273\) 0 0
\(274\) 71.1464i 0.259658i
\(275\) 0 0
\(276\) 0 0
\(277\) −82.7321 82.7321i −0.298672 0.298672i 0.541822 0.840494i \(-0.317735\pi\)
−0.840494 + 0.541822i \(0.817735\pi\)
\(278\) −123.889 + 123.889i −0.445643 + 0.445643i
\(279\) 0 0
\(280\) 0 0
\(281\) −123.353 −0.438979 −0.219489 0.975615i \(-0.570439\pi\)
−0.219489 + 0.975615i \(0.570439\pi\)
\(282\) 0 0
\(283\) 194.980 194.980i 0.688974 0.688974i −0.273031 0.962005i \(-0.588026\pi\)
0.962005 + 0.273031i \(0.0880263\pi\)
\(284\) 124.495i 0.438362i
\(285\) 0 0
\(286\) −72.7673 −0.254431
\(287\) 118.091 + 118.091i 0.411466 + 0.411466i
\(288\) 0 0
\(289\) 208.717i 0.722205i
\(290\) 0 0
\(291\) 0 0
\(292\) −105.101 105.101i −0.359935 0.359935i
\(293\) −52.9921 + 52.9921i −0.180860 + 0.180860i −0.791731 0.610870i \(-0.790820\pi\)
0.610870 + 0.791731i \(0.290820\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 153.576 0.518836
\(297\) 0 0
\(298\) 217.237 217.237i 0.728984 0.728984i
\(299\) 106.677i 0.356778i
\(300\) 0 0
\(301\) 268.677 0.892613
\(302\) 142.808 + 142.808i 0.472875 + 0.472875i
\(303\) 0 0
\(304\) 77.7980i 0.255914i
\(305\) 0 0
\(306\) 0 0
\(307\) −186.106 186.106i −0.606207 0.606207i 0.335746 0.941953i \(-0.391012\pi\)
−0.941953 + 0.335746i \(0.891012\pi\)
\(308\) −91.1918 + 91.1918i −0.296077 + 0.296077i
\(309\) 0 0
\(310\) 0 0
\(311\) 246.858 0.793756 0.396878 0.917871i \(-0.370094\pi\)
0.396878 + 0.917871i \(0.370094\pi\)
\(312\) 0 0
\(313\) 210.161 210.161i 0.671442 0.671442i −0.286607 0.958048i \(-0.592527\pi\)
0.958048 + 0.286607i \(0.0925273\pi\)
\(314\) 59.6663i 0.190020i
\(315\) 0 0
\(316\) −209.283 −0.662287
\(317\) 244.361 + 244.361i 0.770855 + 0.770855i 0.978256 0.207401i \(-0.0665005\pi\)
−0.207401 + 0.978256i \(0.566501\pi\)
\(318\) 0 0
\(319\) 366.838i 1.14996i
\(320\) 0 0
\(321\) 0 0
\(322\) 133.687 + 133.687i 0.415176 + 0.415176i
\(323\) −306.821 + 306.821i −0.949909 + 0.949909i
\(324\) 0 0
\(325\) 0 0
\(326\) −122.717 −0.376434
\(327\) 0 0
\(328\) −53.0806 + 53.0806i −0.161831 + 0.161831i
\(329\) 89.3939i 0.271714i
\(330\) 0 0
\(331\) −551.464 −1.66606 −0.833028 0.553231i \(-0.813395\pi\)
−0.833028 + 0.553231i \(0.813395\pi\)
\(332\) −64.4291 64.4291i −0.194063 0.194063i
\(333\) 0 0
\(334\) 272.479i 0.815806i
\(335\) 0 0
\(336\) 0 0
\(337\) 38.7832 + 38.7832i 0.115084 + 0.115084i 0.762303 0.647220i \(-0.224068\pi\)
−0.647220 + 0.762303i \(0.724068\pi\)
\(338\) 143.788 143.788i 0.425408 0.425408i
\(339\) 0 0
\(340\) 0 0
\(341\) −286.359 −0.839762
\(342\) 0 0
\(343\) −259.868 + 259.868i −0.757634 + 0.757634i
\(344\) 120.767i 0.351068i
\(345\) 0 0
\(346\) −299.601 −0.865897
\(347\) 402.722 + 402.722i 1.16058 + 1.16058i 0.984348 + 0.176234i \(0.0563914\pi\)
0.176234 + 0.984348i \(0.443609\pi\)
\(348\) 0 0
\(349\) 491.272i 1.40766i −0.710370 0.703829i \(-0.751472\pi\)
0.710370 0.703829i \(-0.248528\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −40.9898 40.9898i −0.116448 0.116448i
\(353\) −68.5857 + 68.5857i −0.194294 + 0.194294i −0.797549 0.603255i \(-0.793870\pi\)
0.603255 + 0.797549i \(0.293870\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 139.909 0.393003
\(357\) 0 0
\(358\) 186.252 186.252i 0.520257 0.520257i
\(359\) 353.773i 0.985440i −0.870188 0.492720i \(-0.836003\pi\)
0.870188 0.492720i \(-0.163997\pi\)
\(360\) 0 0
\(361\) −17.2827 −0.0478744
\(362\) −258.373 258.373i −0.713739 0.713739i
\(363\) 0 0
\(364\) 63.1918i 0.173604i
\(365\) 0 0
\(366\) 0 0
\(367\) −240.702 240.702i −0.655862 0.655862i 0.298536 0.954398i \(-0.403502\pi\)
−0.954398 + 0.298536i \(0.903502\pi\)
\(368\) −60.0908 + 60.0908i −0.163290 + 0.163290i
\(369\) 0 0
\(370\) 0 0
\(371\) 421.959 1.13736
\(372\) 0 0
\(373\) −423.060 + 423.060i −1.13421 + 1.13421i −0.144740 + 0.989470i \(0.546235\pi\)
−0.989470 + 0.144740i \(0.953765\pi\)
\(374\) 323.312i 0.864471i
\(375\) 0 0
\(376\) −40.1816 −0.106866
\(377\) −127.101 127.101i −0.337138 0.337138i
\(378\) 0 0
\(379\) 57.1066i 0.150677i −0.997158 0.0753386i \(-0.975996\pi\)
0.997158 0.0753386i \(-0.0240038\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −188.924 188.924i −0.494565 0.494565i
\(383\) 362.487 362.487i 0.946441 0.946441i −0.0521957 0.998637i \(-0.516622\pi\)
0.998637 + 0.0521957i \(0.0166219\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −362.474 −0.939053
\(387\) 0 0
\(388\) 158.202 158.202i 0.407737 0.407737i
\(389\) 477.106i 1.22649i −0.789892 0.613246i \(-0.789863\pi\)
0.789892 0.613246i \(-0.210137\pi\)
\(390\) 0 0
\(391\) −473.974 −1.21221
\(392\) −18.8082 18.8082i −0.0479800 0.0479800i
\(393\) 0 0
\(394\) 363.551i 0.922717i
\(395\) 0 0
\(396\) 0 0
\(397\) −130.297 130.297i −0.328205 0.328205i 0.523699 0.851904i \(-0.324552\pi\)
−0.851904 + 0.523699i \(0.824552\pi\)
\(398\) 67.3235 67.3235i 0.169154 0.169154i
\(399\) 0 0
\(400\) 0 0
\(401\) −91.7821 −0.228883 −0.114442 0.993430i \(-0.536508\pi\)
−0.114442 + 0.993430i \(0.536508\pi\)
\(402\) 0 0
\(403\) −99.2168 + 99.2168i −0.246196 + 0.246196i
\(404\) 169.798i 0.420292i
\(405\) 0 0
\(406\) −318.565 −0.784644
\(407\) −393.439 393.439i −0.966681 0.966681i
\(408\) 0 0
\(409\) 23.2520i 0.0568509i −0.999596 0.0284255i \(-0.990951\pi\)
0.999596 0.0284255i \(-0.00904933\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −86.1612 86.1612i −0.209129 0.209129i
\(413\) −347.464 + 347.464i −0.841318 + 0.841318i
\(414\) 0 0
\(415\) 0 0
\(416\) −28.4041 −0.0682790
\(417\) 0 0
\(418\) 199.308 199.308i 0.476813 0.476813i
\(419\) 675.551i 1.61229i 0.591716 + 0.806146i \(0.298451\pi\)
−0.591716 + 0.806146i \(0.701549\pi\)
\(420\) 0 0
\(421\) 307.252 0.729815 0.364907 0.931044i \(-0.381101\pi\)
0.364907 + 0.931044i \(0.381101\pi\)
\(422\) −191.520 191.520i −0.453839 0.453839i
\(423\) 0 0
\(424\) 189.666i 0.447326i
\(425\) 0 0
\(426\) 0 0
\(427\) −466.207 466.207i −1.09182 1.09182i
\(428\) −107.687 + 107.687i −0.251605 + 0.251605i
\(429\) 0 0
\(430\) 0 0
\(431\) −680.120 −1.57801 −0.789003 0.614390i \(-0.789402\pi\)
−0.789003 + 0.614390i \(0.789402\pi\)
\(432\) 0 0
\(433\) 416.479 416.479i 0.961845 0.961845i −0.0374530 0.999298i \(-0.511924\pi\)
0.999298 + 0.0374530i \(0.0119244\pi\)
\(434\) 248.677i 0.572987i
\(435\) 0 0
\(436\) −209.151 −0.479704
\(437\) −292.184 292.184i −0.668613 0.668613i
\(438\) 0 0
\(439\) 325.277i 0.740950i 0.928842 + 0.370475i \(0.120805\pi\)
−0.928842 + 0.370475i \(0.879195\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −112.020 112.020i −0.253440 0.253440i
\(443\) −310.330 + 310.330i −0.700520 + 0.700520i −0.964522 0.264002i \(-0.914957\pi\)
0.264002 + 0.964522i \(0.414957\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 16.7378 0.0375286
\(447\) 0 0
\(448\) −35.5959 + 35.5959i −0.0794552 + 0.0794552i
\(449\) 184.697i 0.411352i 0.978620 + 0.205676i \(0.0659393\pi\)
−0.978620 + 0.205676i \(0.934061\pi\)
\(450\) 0 0
\(451\) 271.970 0.603039
\(452\) −210.565 210.565i −0.465852 0.465852i
\(453\) 0 0
\(454\) 13.8230i 0.0304470i
\(455\) 0 0
\(456\) 0 0
\(457\) −520.182 520.182i −1.13825 1.13825i −0.988763 0.149490i \(-0.952237\pi\)
−0.149490 0.988763i \(-0.547763\pi\)
\(458\) 246.242 246.242i 0.537646 0.537646i
\(459\) 0 0
\(460\) 0 0
\(461\) −808.286 −1.75333 −0.876666 0.481099i \(-0.840238\pi\)
−0.876666 + 0.481099i \(0.840238\pi\)
\(462\) 0 0
\(463\) 38.8934 38.8934i 0.0840029 0.0840029i −0.663857 0.747860i \(-0.731082\pi\)
0.747860 + 0.663857i \(0.231082\pi\)
\(464\) 143.192i 0.308603i
\(465\) 0 0
\(466\) 365.171 0.783630
\(467\) −80.8411 80.8411i −0.173107 0.173107i 0.615236 0.788343i \(-0.289061\pi\)
−0.788343 + 0.615236i \(0.789061\pi\)
\(468\) 0 0
\(469\) 763.019i 1.62691i
\(470\) 0 0
\(471\) 0 0
\(472\) −156.182 156.182i −0.330893 0.330893i
\(473\) 309.389 309.389i 0.654100 0.654100i
\(474\) 0 0
\(475\) 0 0
\(476\) −280.767 −0.589847
\(477\) 0 0
\(478\) 174.409 174.409i 0.364872 0.364872i
\(479\) 311.773i 0.650883i 0.945562 + 0.325442i \(0.105513\pi\)
−0.945562 + 0.325442i \(0.894487\pi\)
\(480\) 0 0
\(481\) −272.636 −0.566810
\(482\) 190.333 + 190.333i 0.394881 + 0.394881i
\(483\) 0 0
\(484\) 31.9796i 0.0660735i
\(485\) 0 0
\(486\) 0 0
\(487\) 323.424 + 323.424i 0.664116 + 0.664116i 0.956348 0.292232i \(-0.0943978\pi\)
−0.292232 + 0.956348i \(0.594398\pi\)
\(488\) 209.555 209.555i 0.429416 0.429416i
\(489\) 0 0
\(490\) 0 0
\(491\) 753.914 1.53547 0.767733 0.640770i \(-0.221385\pi\)
0.767733 + 0.640770i \(0.221385\pi\)
\(492\) 0 0
\(493\) 564.722 564.722i 1.14548 1.14548i
\(494\) 138.111i 0.279577i
\(495\) 0 0
\(496\) −111.778 −0.225358
\(497\) 276.969 + 276.969i 0.557282 + 0.557282i
\(498\) 0 0
\(499\) 535.388i 1.07292i 0.843925 + 0.536461i \(0.180239\pi\)
−0.843925 + 0.536461i \(0.819761\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 421.707 + 421.707i 0.840054 + 0.840054i
\(503\) 209.704 209.704i 0.416906 0.416906i −0.467230 0.884136i \(-0.654748\pi\)
0.884136 + 0.467230i \(0.154748\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 307.889 0.608476
\(507\) 0 0
\(508\) −340.252 + 340.252i −0.669787 + 0.669787i
\(509\) 57.2122i 0.112401i 0.998419 + 0.0562006i \(0.0178986\pi\)
−0.998419 + 0.0562006i \(0.982101\pi\)
\(510\) 0 0
\(511\) 467.646 0.915158
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 0 0
\(514\) 177.258i 0.344859i
\(515\) 0 0
\(516\) 0 0
\(517\) 102.940 + 102.940i 0.199110 + 0.199110i
\(518\) −341.666 + 341.666i −0.659587 + 0.659587i
\(519\) 0 0
\(520\) 0 0
\(521\) −344.611 −0.661441 −0.330720 0.943729i \(-0.607292\pi\)
−0.330720 + 0.943729i \(0.607292\pi\)
\(522\) 0 0
\(523\) 66.7923 66.7923i 0.127710 0.127710i −0.640363 0.768073i \(-0.721216\pi\)
0.768073 + 0.640363i \(0.221216\pi\)
\(524\) 292.717i 0.558621i
\(525\) 0 0
\(526\) −50.2429 −0.0955187
\(527\) −440.830 440.830i −0.836489 0.836489i
\(528\) 0 0
\(529\) 77.6367i 0.146761i
\(530\) 0 0
\(531\) 0 0
\(532\) −173.081 173.081i −0.325339 0.325339i
\(533\) 94.2316 94.2316i 0.176795 0.176795i
\(534\) 0 0
\(535\) 0 0
\(536\) 342.969 0.639868
\(537\) 0 0
\(538\) −197.621 + 197.621i −0.367325 + 0.367325i
\(539\) 96.3678i 0.178790i
\(540\) 0 0
\(541\) −943.383 −1.74378 −0.871888 0.489706i \(-0.837104\pi\)
−0.871888 + 0.489706i \(0.837104\pi\)
\(542\) 158.258 + 158.258i 0.291988 + 0.291988i
\(543\) 0 0
\(544\) 126.202i 0.231989i
\(545\) 0 0
\(546\) 0 0
\(547\) −669.929 669.929i −1.22473 1.22473i −0.965930 0.258802i \(-0.916672\pi\)
−0.258802 0.965930i \(-0.583328\pi\)
\(548\) −71.1464 + 71.1464i −0.129829 + 0.129829i
\(549\) 0 0
\(550\) 0 0
\(551\) 696.252 1.26362
\(552\) 0 0
\(553\) 465.601 465.601i 0.841954 0.841954i
\(554\) 165.464i 0.298672i
\(555\) 0 0
\(556\) 247.778 0.445643
\(557\) 128.586 + 128.586i 0.230854 + 0.230854i 0.813049 0.582195i \(-0.197806\pi\)
−0.582195 + 0.813049i \(0.697806\pi\)
\(558\) 0 0
\(559\) 214.393i 0.383529i
\(560\) 0 0
\(561\) 0 0
\(562\) 123.353 + 123.353i 0.219489 + 0.219489i
\(563\) 53.5301 53.5301i 0.0950801 0.0950801i −0.657967 0.753047i \(-0.728583\pi\)
0.753047 + 0.657967i \(0.228583\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −389.959 −0.688974
\(567\) 0 0
\(568\) −124.495 + 124.495i −0.219181 + 0.219181i
\(569\) 449.959i 0.790789i −0.918511 0.395395i \(-0.870608\pi\)
0.918511 0.395395i \(-0.129392\pi\)
\(570\) 0 0
\(571\) 28.7526 0.0503547 0.0251774 0.999683i \(-0.491985\pi\)
0.0251774 + 0.999683i \(0.491985\pi\)
\(572\) 72.7673 + 72.7673i 0.127216 + 0.127216i
\(573\) 0 0
\(574\) 236.182i 0.411466i
\(575\) 0 0
\(576\) 0 0
\(577\) 664.135 + 664.135i 1.15101 + 1.15101i 0.986350 + 0.164665i \(0.0526542\pi\)
0.164665 + 0.986350i \(0.447346\pi\)
\(578\) 208.717 208.717i 0.361103 0.361103i
\(579\) 0 0
\(580\) 0 0
\(581\) 286.677 0.493419
\(582\) 0 0
\(583\) 485.899 485.899i 0.833446 0.833446i
\(584\) 210.202i 0.359935i
\(585\) 0 0
\(586\) 105.984 0.180860
\(587\) 304.083 + 304.083i 0.518029 + 0.518029i 0.916975 0.398946i \(-0.130624\pi\)
−0.398946 + 0.916975i \(0.630624\pi\)
\(588\) 0 0
\(589\) 543.504i 0.922757i
\(590\) 0 0
\(591\) 0 0
\(592\) −153.576 153.576i −0.259418 0.259418i
\(593\) −588.102 + 588.102i −0.991741 + 0.991741i −0.999966 0.00822539i \(-0.997382\pi\)
0.00822539 + 0.999966i \(0.497382\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −434.474 −0.728984
\(597\) 0 0
\(598\) 106.677 106.677i 0.178389 0.178389i
\(599\) 160.252i 0.267533i 0.991013 + 0.133766i \(0.0427072\pi\)
−0.991013 + 0.133766i \(0.957293\pi\)
\(600\) 0 0
\(601\) −1157.79 −1.92644 −0.963218 0.268722i \(-0.913399\pi\)
−0.963218 + 0.268722i \(0.913399\pi\)
\(602\) −268.677 268.677i −0.446307 0.446307i
\(603\) 0 0
\(604\) 285.616i 0.472875i
\(605\) 0 0
\(606\) 0 0
\(607\) −312.303 312.303i −0.514503 0.514503i 0.401400 0.915903i \(-0.368524\pi\)
−0.915903 + 0.401400i \(0.868524\pi\)
\(608\) 77.7980 77.7980i 0.127957 0.127957i
\(609\) 0 0
\(610\) 0 0
\(611\) 71.3326 0.116747
\(612\) 0 0
\(613\) −687.959 + 687.959i −1.12228 + 1.12228i −0.130885 + 0.991398i \(0.541782\pi\)
−0.991398 + 0.130885i \(0.958218\pi\)
\(614\) 372.211i 0.606207i
\(615\) 0 0
\(616\) 182.384 0.296077
\(617\) −213.421 213.421i −0.345901 0.345901i 0.512679 0.858580i \(-0.328653\pi\)
−0.858580 + 0.512679i \(0.828653\pi\)
\(618\) 0 0
\(619\) 86.9082i 0.140401i −0.997533 0.0702004i \(-0.977636\pi\)
0.997533 0.0702004i \(-0.0223639\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −246.858 246.858i −0.396878 0.396878i
\(623\) −311.262 + 311.262i −0.499618 + 0.499618i
\(624\) 0 0
\(625\) 0 0
\(626\) −420.322 −0.671442
\(627\) 0 0
\(628\) −59.6663 + 59.6663i −0.0950101 + 0.0950101i
\(629\) 1211.35i 1.92583i
\(630\) 0 0
\(631\) 302.298 0.479078 0.239539 0.970887i \(-0.423004\pi\)
0.239539 + 0.970887i \(0.423004\pi\)
\(632\) 209.283 + 209.283i 0.331143 + 0.331143i
\(633\) 0 0
\(634\) 488.722i 0.770855i
\(635\) 0 0
\(636\) 0 0
\(637\) 33.3893 + 33.3893i 0.0524165 + 0.0524165i
\(638\) −366.838 + 366.838i −0.574981 + 0.574981i
\(639\) 0 0
\(640\) 0 0
\(641\) −667.060 −1.04066 −0.520328 0.853967i \(-0.674190\pi\)
−0.520328 + 0.853967i \(0.674190\pi\)
\(642\) 0 0
\(643\) −246.581 + 246.581i −0.383485 + 0.383485i −0.872356 0.488871i \(-0.837409\pi\)
0.488871 + 0.872356i \(0.337409\pi\)
\(644\) 267.373i 0.415176i
\(645\) 0 0
\(646\) 613.641 0.949909
\(647\) 43.7900 + 43.7900i 0.0676817 + 0.0676817i 0.740137 0.672456i \(-0.234760\pi\)
−0.672456 + 0.740137i \(0.734760\pi\)
\(648\) 0 0
\(649\) 800.232i 1.23302i
\(650\) 0 0
\(651\) 0 0
\(652\) 122.717 + 122.717i 0.188217 + 0.188217i
\(653\) 72.4268 72.4268i 0.110914 0.110914i −0.649472 0.760386i \(-0.725010\pi\)
0.760386 + 0.649472i \(0.225010\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 106.161 0.161831
\(657\) 0 0
\(658\) 89.3939 89.3939i 0.135857 0.135857i
\(659\) 346.636i 0.526003i −0.964795 0.263001i \(-0.915288\pi\)
0.964795 0.263001i \(-0.0847124\pi\)
\(660\) 0 0
\(661\) −474.152 −0.717325 −0.358663 0.933467i \(-0.616767\pi\)
−0.358663 + 0.933467i \(0.616767\pi\)
\(662\) 551.464 + 551.464i 0.833028 + 0.833028i
\(663\) 0 0
\(664\) 128.858i 0.194063i
\(665\) 0 0
\(666\) 0 0
\(667\) 537.782 + 537.782i 0.806270 + 0.806270i
\(668\) −272.479 + 272.479i −0.407903 + 0.407903i
\(669\) 0 0
\(670\) 0 0
\(671\) −1073.70 −1.60015
\(672\) 0 0
\(673\) 70.7332 70.7332i 0.105101 0.105101i −0.652601 0.757702i \(-0.726322\pi\)
0.757702 + 0.652601i \(0.226322\pi\)
\(674\) 77.5663i 0.115084i
\(675\) 0 0
\(676\) −287.576 −0.425408
\(677\) −162.009 162.009i −0.239305 0.239305i 0.577258 0.816562i \(-0.304123\pi\)
−0.816562 + 0.577258i \(0.804123\pi\)
\(678\) 0 0
\(679\) 703.918i 1.03670i
\(680\) 0 0
\(681\) 0 0
\(682\) 286.359 + 286.359i 0.419881 + 0.419881i
\(683\) 855.304 855.304i 1.25228 1.25228i 0.297578 0.954697i \(-0.403821\pi\)
0.954697 0.297578i \(-0.0961789\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 519.737 0.757634
\(687\) 0 0
\(688\) 120.767 120.767i 0.175534 0.175534i
\(689\) 336.706i 0.488688i
\(690\) 0 0
\(691\) 122.430 0.177178 0.0885891 0.996068i \(-0.471764\pi\)
0.0885891 + 0.996068i \(0.471764\pi\)
\(692\) 299.601 + 299.601i 0.432949 + 0.432949i
\(693\) 0 0
\(694\) 805.444i 1.16058i
\(695\) 0 0
\(696\) 0 0
\(697\) 418.680 + 418.680i 0.600689 + 0.600689i
\(698\) −491.272 + 491.272i −0.703829 + 0.703829i
\(699\) 0 0
\(700\) 0 0
\(701\) 1322.17 1.88613 0.943063 0.332613i \(-0.107930\pi\)
0.943063 + 0.332613i \(0.107930\pi\)
\(702\) 0 0
\(703\) 746.741 746.741i 1.06222 1.06222i
\(704\) 81.9796i 0.116448i
\(705\) 0 0
\(706\) 137.171 0.194294
\(707\) 377.757 + 377.757i 0.534310 + 0.534310i
\(708\) 0 0
\(709\) 779.909i 1.10001i −0.835160 0.550006i \(-0.814625\pi\)
0.835160 0.550006i \(-0.185375\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −139.909 139.909i −0.196502 0.196502i
\(713\) 419.800 419.800i 0.588780 0.588780i
\(714\) 0 0
\(715\) 0 0
\(716\) −372.504 −0.520257
\(717\) 0 0
\(718\) −353.773 + 353.773i −0.492720 + 0.492720i
\(719\) 572.652i 0.796456i −0.917287 0.398228i \(-0.869625\pi\)
0.917287 0.398228i \(-0.130375\pi\)
\(720\) 0 0
\(721\) 383.373 0.531725
\(722\) 17.2827 + 17.2827i 0.0239372 + 0.0239372i
\(723\) 0 0
\(724\) 516.747i 0.713739i
\(725\) 0 0
\(726\) 0 0
\(727\) −231.748 231.748i −0.318773 0.318773i 0.529523 0.848296i \(-0.322371\pi\)
−0.848296 + 0.529523i \(0.822371\pi\)
\(728\) 63.1918 63.1918i 0.0868020 0.0868020i
\(729\) 0 0
\(730\) 0 0
\(731\) 952.568 1.30310
\(732\) 0 0
\(733\) −739.626 + 739.626i −1.00904 + 1.00904i −0.00908011 + 0.999959i \(0.502890\pi\)
−0.999959 + 0.00908011i \(0.997110\pi\)
\(734\) 481.403i 0.655862i
\(735\) 0 0
\(736\) 120.182 0.163290
\(737\) −878.640 878.640i −1.19218 1.19218i
\(738\) 0 0
\(739\) 506.539i 0.685439i 0.939438 + 0.342719i \(0.111348\pi\)
−0.939438 + 0.342719i \(0.888652\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −421.959 421.959i −0.568678 0.568678i
\(743\) 10.7219 10.7219i 0.0144306 0.0144306i −0.699855 0.714285i \(-0.746752\pi\)
0.714285 + 0.699855i \(0.246752\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 846.120 1.13421
\(747\) 0 0
\(748\) −323.312 + 323.312i −0.432236 + 0.432236i
\(749\) 479.151i 0.639721i
\(750\) 0 0
\(751\) 813.075 1.08266 0.541328 0.840811i \(-0.317922\pi\)
0.541328 + 0.840811i \(0.317922\pi\)
\(752\) 40.1816 + 40.1816i 0.0534330 + 0.0534330i
\(753\) 0 0
\(754\) 254.202i 0.337138i
\(755\) 0 0
\(756\) 0 0
\(757\) −132.514 132.514i −0.175052 0.175052i 0.614143 0.789195i \(-0.289502\pi\)
−0.789195 + 0.614143i \(0.789502\pi\)
\(758\) −57.1066 + 57.1066i −0.0753386 + 0.0753386i
\(759\) 0 0
\(760\) 0 0
\(761\) 412.252 0.541724 0.270862 0.962618i \(-0.412691\pi\)
0.270862 + 0.962618i \(0.412691\pi\)
\(762\) 0 0
\(763\) 465.308 465.308i 0.609840 0.609840i
\(764\) 377.848i 0.494565i
\(765\) 0 0
\(766\) −724.974 −0.946441
\(767\) 277.262 + 277.262i 0.361489 + 0.361489i
\(768\) 0 0
\(769\) 867.393i 1.12795i 0.825792 + 0.563975i \(0.190728\pi\)
−0.825792 + 0.563975i \(0.809272\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 362.474 + 362.474i 0.469527 + 0.469527i
\(773\) −295.578 + 295.578i −0.382377 + 0.382377i −0.871958 0.489581i \(-0.837150\pi\)
0.489581 + 0.871958i \(0.337150\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −316.404 −0.407737
\(777\) 0 0
\(778\) −477.106 + 477.106i −0.613246 + 0.613246i
\(779\) 516.195i 0.662639i
\(780\) 0 0
\(781\) 637.878 0.816745
\(782\) 473.974 + 473.974i 0.606105 + 0.606105i
\(783\) 0 0
\(784\) 37.6163i 0.0479800i
\(785\) 0 0
\(786\) 0 0
\(787\) −179.899 179.899i −0.228588 0.228588i 0.583514 0.812103i \(-0.301677\pi\)
−0.812103 + 0.583514i \(0.801677\pi\)
\(788\) 363.551 363.551i 0.461359 0.461359i
\(789\) 0 0
\(790\) 0 0
\(791\) 936.908 1.18446
\(792\) 0 0
\(793\) −372.014 + 372.014i −0.469122 + 0.469122i
\(794\) 260.595i 0.328205i
\(795\) 0 0
\(796\) −134.647 −0.169154
\(797\) 40.0023 + 40.0023i 0.0501911 + 0.0501911i 0.731757 0.681566i \(-0.238701\pi\)
−0.681566 + 0.731757i \(0.738701\pi\)
\(798\) 0 0
\(799\) 316.938i 0.396668i
\(800\) 0 0
\(801\) 0 0
\(802\) 91.7821 + 91.7821i 0.114442 + 0.114442i
\(803\) 538.509 538.509i 0.670621 0.670621i
\(804\) 0 0
\(805\) 0 0
\(806\) 198.434 0.246196
\(807\) 0 0
\(808\) −169.798 + 169.798i −0.210146 + 0.210146i
\(809\) 135.875i 0.167954i 0.996468 + 0.0839771i \(0.0267623\pi\)
−0.996468 + 0.0839771i \(0.973238\pi\)
\(810\) 0 0
\(811\) 1361.17 1.67838 0.839192 0.543835i \(-0.183028\pi\)
0.839192 + 0.543835i \(0.183028\pi\)
\(812\) 318.565 + 318.565i 0.392322 + 0.392322i
\(813\) 0 0
\(814\) 786.879i 0.966681i
\(815\) 0 0
\(816\) 0 0
\(817\) 587.216 + 587.216i 0.718746 + 0.718746i
\(818\) −23.2520 + 23.2520i −0.0284255 + 0.0284255i
\(819\) 0 0
\(820\) 0 0
\(821\) −369.630 −0.450219 −0.225110 0.974333i \(-0.572274\pi\)
−0.225110 + 0.974333i \(0.572274\pi\)
\(822\) 0 0
\(823\) −752.514 + 752.514i −0.914355 + 0.914355i −0.996611 0.0822561i \(-0.973787\pi\)
0.0822561 + 0.996611i \(0.473787\pi\)
\(824\) 172.322i 0.209129i
\(825\) 0 0
\(826\) 694.929 0.841318
\(827\) 263.579 + 263.579i 0.318717 + 0.318717i 0.848274 0.529557i \(-0.177642\pi\)
−0.529557 + 0.848274i \(0.677642\pi\)
\(828\) 0 0
\(829\) 367.171i 0.442909i 0.975171 + 0.221454i \(0.0710804\pi\)
−0.975171 + 0.221454i \(0.928920\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 28.4041 + 28.4041i 0.0341395 + 0.0341395i
\(833\) −148.352 + 148.352i −0.178093 + 0.178093i
\(834\) 0 0
\(835\) 0 0
\(836\) −398.615 −0.476813
\(837\) 0 0
\(838\) 675.551 675.551i 0.806146 0.806146i
\(839\) 601.970i 0.717486i 0.933436 + 0.358743i \(0.116794\pi\)
−0.933436 + 0.358743i \(0.883206\pi\)
\(840\) 0 0
\(841\) −440.494 −0.523774
\(842\) −307.252 307.252i −0.364907 0.364907i
\(843\) 0 0
\(844\) 383.040i 0.453839i
\(845\) 0 0
\(846\) 0 0
\(847\) 71.1464 + 71.1464i 0.0839981 + 0.0839981i
\(848\) 189.666 189.666i 0.223663 0.223663i
\(849\) 0 0
\(850\) 0 0
\(851\) 1153.56 1.35553
\(852\) 0 0
\(853\) −370.767 + 370.767i −0.434663 + 0.434663i −0.890211 0.455548i \(-0.849443\pi\)
0.455548 + 0.890211i \(0.349443\pi\)
\(854\) 932.413i 1.09182i
\(855\) 0 0
\(856\) 215.373 0.251605
\(857\) 128.073 + 128.073i 0.149443 + 0.149443i 0.777869 0.628426i \(-0.216301\pi\)
−0.628426 + 0.777869i \(0.716301\pi\)
\(858\) 0 0
\(859\) 518.610i 0.603737i −0.953350 0.301868i \(-0.902390\pi\)
0.953350 0.301868i \(-0.0976103\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 680.120 + 680.120i 0.789003 + 0.789003i
\(863\) 519.729 519.729i 0.602235 0.602235i −0.338670 0.940905i \(-0.609977\pi\)
0.940905 + 0.338670i \(0.109977\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −832.958 −0.961845
\(867\) 0 0
\(868\) 248.677 248.677i 0.286494 0.286494i
\(869\) 1072.31i 1.23395i
\(870\) 0 0
\(871\) −608.858 −0.699033
\(872\) 209.151 + 209.151i 0.239852 + 0.239852i
\(873\) 0 0
\(874\) 584.368i 0.668613i
\(875\) 0 0
\(876\) 0 0
\(877\) 339.915 + 339.915i 0.387588 + 0.387588i 0.873826 0.486238i \(-0.161631\pi\)
−0.486238 + 0.873826i \(0.661631\pi\)
\(878\) 325.277 325.277i 0.370475 0.370475i
\(879\) 0 0
\(880\) 0 0
\(881\) −1325.62 −1.50468 −0.752340 0.658775i \(-0.771075\pi\)
−0.752340 + 0.658775i \(0.771075\pi\)
\(882\) 0 0
\(883\) −393.358 + 393.358i −0.445479 + 0.445479i −0.893848 0.448370i \(-0.852005\pi\)
0.448370 + 0.893848i \(0.352005\pi\)
\(884\) 224.041i 0.253440i
\(885\) 0 0
\(886\) 620.661 0.700520
\(887\) −430.936 430.936i −0.485836 0.485836i 0.421153 0.906989i \(-0.361625\pi\)
−0.906989 + 0.421153i \(0.861625\pi\)
\(888\) 0 0
\(889\) 1513.95i 1.70298i
\(890\) 0 0
\(891\) 0 0
\(892\) −16.7378 16.7378i −0.0187643 0.0187643i
\(893\) −195.378 + 195.378i −0.218788 + 0.218788i
\(894\) 0 0
\(895\) 0 0
\(896\) 71.1918 0.0794552
\(897\) 0 0
\(898\) 184.697 184.697i 0.205676 0.205676i
\(899\) 1000.35i 1.11274i
\(900\) 0 0
\(901\) 1496.02 1.66040
\(902\) −271.970 271.970i −0.301519 0.301519i
\(903\) 0 0
\(904\) 421.131i 0.465852i
\(905\) 0 0
\(906\) 0 0
\(907\) 1199.45 + 1199.45i 1.32244 + 1.32244i 0.911796 + 0.410644i \(0.134696\pi\)
0.410644 + 0.911796i \(0.365304\pi\)
\(908\) −13.8230 + 13.8230i −0.0152235 + 0.0152235i
\(909\) 0 0
\(910\) 0 0
\(911\) 1159.45 1.27273 0.636363 0.771390i \(-0.280438\pi\)
0.636363 + 0.771390i \(0.280438\pi\)
\(912\) 0 0
\(913\) 330.117 330.117i 0.361574 0.361574i
\(914\) 1040.36i 1.13825i
\(915\) 0 0
\(916\) −492.484 −0.537646
\(917\) −651.221 651.221i −0.710165 0.710165i
\(918\) 0 0
\(919\) 279.362i 0.303985i 0.988382 + 0.151993i \(0.0485690\pi\)
−0.988382 + 0.151993i \(0.951431\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 808.286 + 808.286i 0.876666 + 0.876666i
\(923\) 221.010 221.010i 0.239448 0.239448i
\(924\) 0 0
\(925\) 0 0
\(926\) −77.7867 −0.0840029
\(927\) 0 0
\(928\) −143.192 + 143.192i −0.154302 + 0.154302i
\(929\) 1140.90i 1.22810i 0.789269 + 0.614048i \(0.210460\pi\)
−0.789269 + 0.614048i \(0.789540\pi\)
\(930\) 0 0
\(931\) −182.905 −0.196460
\(932\) −365.171 365.171i −0.391815 0.391815i
\(933\) 0 0
\(934\) 161.682i 0.173107i
\(935\) 0 0
\(936\) 0 0
\(937\) 267.535 + 267.535i 0.285523 + 0.285523i 0.835307 0.549784i \(-0.185290\pi\)
−0.549784 + 0.835307i \(0.685290\pi\)
\(938\) −763.019 + 763.019i −0.813453 + 0.813453i
\(939\) 0 0
\(940\) 0 0
\(941\) −859.065 −0.912928 −0.456464 0.889742i \(-0.650884\pi\)
−0.456464 + 0.889742i \(0.650884\pi\)
\(942\) 0 0
\(943\) −398.707 + 398.707i −0.422807 + 0.422807i
\(944\) 312.363i 0.330893i
\(945\) 0 0
\(946\) −618.779 −0.654100
\(947\) −675.159 675.159i −0.712945 0.712945i 0.254205 0.967150i \(-0.418186\pi\)
−0.967150 + 0.254205i \(0.918186\pi\)
\(948\) 0 0
\(949\) 373.162i 0.393216i
\(950\) 0 0
\(951\) 0 0
\(952\) 280.767 + 280.767i 0.294924 + 0.294924i
\(953\) 297.873 297.873i 0.312563 0.312563i −0.533338 0.845902i \(-0.679063\pi\)
0.845902 + 0.533338i \(0.179063\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −348.817 −0.364872
\(957\) 0 0
\(958\) 311.773 311.773i 0.325442 0.325442i
\(959\) 316.565i 0.330099i
\(960\) 0 0
\(961\) −180.111 −0.187421
\(962\) 272.636 + 272.636i 0.283405 + 0.283405i
\(963\) 0 0
\(964\) 380.665i 0.394881i
\(965\) 0 0
\(966\) 0 0
\(967\) −140.955 140.955i −0.145765 0.145765i 0.630458 0.776223i \(-0.282867\pi\)
−0.776223 + 0.630458i \(0.782867\pi\)
\(968\) −31.9796 + 31.9796i −0.0330368 + 0.0330368i
\(969\) 0 0
\(970\) 0 0
\(971\) 1252.45 1.28985 0.644927 0.764245i \(-0.276888\pi\)
0.644927 + 0.764245i \(0.276888\pi\)
\(972\) 0 0
\(973\) −551.242 + 551.242i −0.566538 + 0.566538i
\(974\) 646.849i 0.664116i
\(975\) 0 0
\(976\) −419.110 −0.429416
\(977\) −192.172 192.172i −0.196696 0.196696i 0.601886 0.798582i \(-0.294416\pi\)
−0.798582 + 0.601886i \(0.794416\pi\)
\(978\) 0 0
\(979\) 716.856i 0.732233i
\(980\) 0 0
\(981\) 0 0
\(982\) −753.914 753.914i −0.767733 0.767733i
\(983\) 994.178 994.178i 1.01137 1.01137i 0.0114370 0.999935i \(-0.496359\pi\)
0.999935 0.0114370i \(-0.00364060\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −1129.44 −1.14548
\(987\) 0 0
\(988\) −138.111 + 138.111i −0.139789 + 0.139789i
\(989\) 907.126i 0.917215i
\(990\) 0 0
\(991\) 651.166 0.657080 0.328540 0.944490i \(-0.393444\pi\)
0.328540 + 0.944490i \(0.393444\pi\)
\(992\) 111.778 + 111.778i 0.112679 + 0.112679i
\(993\) 0 0
\(994\) 553.939i 0.557282i
\(995\) 0 0
\(996\) 0 0
\(997\) 430.853 + 430.853i 0.432149 + 0.432149i 0.889359 0.457210i \(-0.151151\pi\)
−0.457210 + 0.889359i \(0.651151\pi\)
\(998\) 535.388 535.388i 0.536461 0.536461i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1350.3.g.b.757.1 4
3.2 odd 2 1350.3.g.h.757.1 4
5.2 odd 4 270.3.g.d.163.2 yes 4
5.3 odd 4 inner 1350.3.g.b.1243.1 4
5.4 even 2 270.3.g.d.217.2 yes 4
15.2 even 4 270.3.g.a.163.1 4
15.8 even 4 1350.3.g.h.1243.1 4
15.14 odd 2 270.3.g.a.217.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
270.3.g.a.163.1 4 15.2 even 4
270.3.g.a.217.1 yes 4 15.14 odd 2
270.3.g.d.163.2 yes 4 5.2 odd 4
270.3.g.d.217.2 yes 4 5.4 even 2
1350.3.g.b.757.1 4 1.1 even 1 trivial
1350.3.g.b.1243.1 4 5.3 odd 4 inner
1350.3.g.h.757.1 4 3.2 odd 2
1350.3.g.h.1243.1 4 15.8 even 4