Properties

Label 27.11.d.a.8.6
Level $27$
Weight $11$
Character 27.8
Analytic conductor $17.155$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,11,Mod(8,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.8"); S:= CuspForms(chi, 11); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 11, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 27.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.1546458222\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 2219 x^{16} + 4286 x^{15} + 3372866 x^{14} + 7237076 x^{13} + 2694115412 x^{12} + \cdots + 64\!\cdots\!96 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{52} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 8.6
Root \(5.37603 + 9.31155i\) of defining polynomial
Character \(\chi\) \(=\) 27.8
Dual form 27.11.d.a.17.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(16.1281 + 9.31155i) q^{2} +(-338.590 - 586.455i) q^{4} +(748.776 - 432.306i) q^{5} +(-13727.6 + 23777.0i) q^{7} -31681.3i q^{8} +16101.8 q^{10} +(198936. + 114856. i) q^{11} +(184952. + 320346. i) q^{13} +(-442801. + 255651. i) q^{14} +(-51714.5 + 89572.1i) q^{16} +1.12400e6i q^{17} +1.19782e6 q^{19} +(-507056. - 292749. i) q^{20} +(2.13897e6 + 3.70481e6i) q^{22} +(-5.59191e6 + 3.22849e6i) q^{23} +(-4.50904e6 + 7.80988e6i) q^{25} +6.88877e6i q^{26} +1.85922e7 q^{28} +(4.03415e6 + 2.32912e6i) q^{29} +(2.59975e6 + 4.50290e6i) q^{31} +(-2.97634e7 + 1.71839e7i) q^{32} +(-1.04661e7 + 1.81279e7i) q^{34} +2.37382e7i q^{35} +1.62603e7 q^{37} +(1.93186e7 + 1.11536e7i) q^{38} +(-1.36960e7 - 2.37222e7i) q^{40} +(1.34895e8 - 7.78817e7i) q^{41} +(-6.44896e6 + 1.11699e7i) q^{43} -1.55556e8i q^{44} -1.20249e8 q^{46} +(-7.70926e7 - 4.45094e7i) q^{47} +(-2.35659e8 - 4.08174e8i) q^{49} +(-1.45444e8 + 8.39722e7i) q^{50} +(1.25246e8 - 2.16932e8i) q^{52} -6.92888e8i q^{53} +1.98611e8 q^{55} +(7.53285e8 + 4.34909e8i) q^{56} +(4.33754e7 + 7.51283e7i) q^{58} +(-8.10167e8 + 4.67750e8i) q^{59} +(-1.10589e8 + 1.91546e8i) q^{61} +9.68308e7i q^{62} -5.34123e8 q^{64} +(2.76975e8 + 1.59912e8i) q^{65} +(1.27630e9 + 2.21062e9i) q^{67} +(6.59173e8 - 3.80574e8i) q^{68} +(-2.21039e8 + 3.82851e8i) q^{70} +3.93486e8i q^{71} +3.62576e8 q^{73} +(2.62247e8 + 1.51409e8i) q^{74} +(-4.05571e8 - 7.02470e8i) q^{76} +(-5.46185e9 + 3.15340e9i) q^{77} +(3.33228e7 - 5.77169e7i) q^{79} +8.94259e7i q^{80} +2.90080e9 q^{82} +(2.65058e9 + 1.53032e9i) q^{83} +(4.85910e8 + 8.41621e8i) q^{85} +(-2.08019e8 + 1.20100e8i) q^{86} +(3.63877e9 - 6.30254e9i) q^{88} -9.32017e9i q^{89} -1.01558e10 q^{91} +(3.78673e9 + 2.18627e9i) q^{92} +(-8.28904e8 - 1.43570e9i) q^{94} +(8.96902e8 - 5.17826e8i) q^{95} +(-7.85587e9 + 1.36068e10i) q^{97} -8.77741e9i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 3 q^{2} + 4095 q^{4} - 4956 q^{5} - 6120 q^{7} - 2052 q^{10} - 969 q^{11} + 140274 q^{13} + 2134578 q^{14} - 1571841 q^{16} + 2771370 q^{19} - 14542734 q^{20} - 3475521 q^{22} + 9944382 q^{23} + 14726277 q^{25}+ \cdots - 14510723337 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 16.1281 + 9.31155i 0.504003 + 0.290986i 0.730365 0.683057i \(-0.239350\pi\)
−0.226362 + 0.974043i \(0.572683\pi\)
\(3\) 0 0
\(4\) −338.590 586.455i −0.330654 0.572710i
\(5\) 748.776 432.306i 0.239608 0.138338i −0.375388 0.926868i \(-0.622491\pi\)
0.614997 + 0.788530i \(0.289157\pi\)
\(6\) 0 0
\(7\) −13727.6 + 23777.0i −0.816782 + 1.41471i 0.0912598 + 0.995827i \(0.470911\pi\)
−0.908041 + 0.418880i \(0.862423\pi\)
\(8\) 31681.3i 0.966835i
\(9\) 0 0
\(10\) 16101.8 0.161018
\(11\) 198936. + 114856.i 1.23524 + 0.713164i 0.968117 0.250500i \(-0.0805949\pi\)
0.267119 + 0.963663i \(0.413928\pi\)
\(12\) 0 0
\(13\) 184952. + 320346.i 0.498130 + 0.862786i 0.999998 0.00215814i \(-0.000686959\pi\)
−0.501868 + 0.864944i \(0.667354\pi\)
\(14\) −442801. + 255651.i −0.823320 + 0.475344i
\(15\) 0 0
\(16\) −51714.5 + 89572.1i −0.0493188 + 0.0854226i
\(17\) 1.12400e6i 0.791626i 0.918331 + 0.395813i \(0.129537\pi\)
−0.918331 + 0.395813i \(0.870463\pi\)
\(18\) 0 0
\(19\) 1.19782e6 0.483754 0.241877 0.970307i \(-0.422237\pi\)
0.241877 + 0.970307i \(0.422237\pi\)
\(20\) −507056. 292749.i −0.158455 0.0914840i
\(21\) 0 0
\(22\) 2.13897e6 + 3.70481e6i 0.415041 + 0.718873i
\(23\) −5.59191e6 + 3.22849e6i −0.868802 + 0.501603i −0.866950 0.498395i \(-0.833923\pi\)
−0.00185200 + 0.999998i \(0.500590\pi\)
\(24\) 0 0
\(25\) −4.50904e6 + 7.80988e6i −0.461725 + 0.799732i
\(26\) 6.88877e6i 0.579795i
\(27\) 0 0
\(28\) 1.85922e7 1.08029
\(29\) 4.03415e6 + 2.32912e6i 0.196681 + 0.113554i 0.595106 0.803647i \(-0.297110\pi\)
−0.398426 + 0.917201i \(0.630443\pi\)
\(30\) 0 0
\(31\) 2.59975e6 + 4.50290e6i 0.0908078 + 0.157284i 0.907851 0.419292i \(-0.137722\pi\)
−0.817043 + 0.576576i \(0.804388\pi\)
\(32\) −2.97634e7 + 1.71839e7i −0.887017 + 0.512120i
\(33\) 0 0
\(34\) −1.04661e7 + 1.81279e7i −0.230352 + 0.398982i
\(35\) 2.37382e7i 0.451967i
\(36\) 0 0
\(37\) 1.62603e7 0.234488 0.117244 0.993103i \(-0.462594\pi\)
0.117244 + 0.993103i \(0.462594\pi\)
\(38\) 1.93186e7 + 1.11536e7i 0.243813 + 0.140766i
\(39\) 0 0
\(40\) −1.36960e7 2.37222e7i −0.133750 0.231662i
\(41\) 1.34895e8 7.78817e7i 1.16433 0.672227i 0.211994 0.977271i \(-0.432004\pi\)
0.952338 + 0.305044i \(0.0986710\pi\)
\(42\) 0 0
\(43\) −6.44896e6 + 1.11699e7i −0.0438680 + 0.0759815i −0.887126 0.461528i \(-0.847301\pi\)
0.843258 + 0.537509i \(0.180635\pi\)
\(44\) 1.55556e8i 0.943243i
\(45\) 0 0
\(46\) −1.20249e8 −0.583838
\(47\) −7.70926e7 4.45094e7i −0.336142 0.194072i 0.322422 0.946596i \(-0.395503\pi\)
−0.658565 + 0.752524i \(0.728836\pi\)
\(48\) 0 0
\(49\) −2.35659e8 4.08174e8i −0.834265 1.44499i
\(50\) −1.45444e8 + 8.39722e7i −0.465421 + 0.268711i
\(51\) 0 0
\(52\) 1.25246e8 2.16932e8i 0.329418 0.570568i
\(53\) 6.92888e8i 1.65685i −0.560098 0.828426i \(-0.689237\pi\)
0.560098 0.828426i \(-0.310763\pi\)
\(54\) 0 0
\(55\) 1.98611e8 0.394630
\(56\) 7.53285e8 + 4.34909e8i 1.36779 + 0.789693i
\(57\) 0 0
\(58\) 4.33754e7 + 7.51283e7i 0.0660850 + 0.114463i
\(59\) −8.10167e8 + 4.67750e8i −1.13322 + 0.654266i −0.944743 0.327812i \(-0.893689\pi\)
−0.188478 + 0.982077i \(0.560355\pi\)
\(60\) 0 0
\(61\) −1.10589e8 + 1.91546e8i −0.130938 + 0.226790i −0.924038 0.382300i \(-0.875132\pi\)
0.793101 + 0.609091i \(0.208465\pi\)
\(62\) 9.68308e7i 0.105695i
\(63\) 0 0
\(64\) −5.34123e8 −0.497441
\(65\) 2.76975e8 + 1.59912e8i 0.238712 + 0.137820i
\(66\) 0 0
\(67\) 1.27630e9 + 2.21062e9i 0.945322 + 1.63735i 0.755106 + 0.655603i \(0.227585\pi\)
0.190216 + 0.981742i \(0.439081\pi\)
\(68\) 6.59173e8 3.80574e8i 0.453372 0.261755i
\(69\) 0 0
\(70\) −2.21039e8 + 3.82851e8i −0.131516 + 0.227793i
\(71\) 3.93486e8i 0.218091i 0.994037 + 0.109045i \(0.0347794\pi\)
−0.994037 + 0.109045i \(0.965221\pi\)
\(72\) 0 0
\(73\) 3.62576e8 0.174898 0.0874491 0.996169i \(-0.472128\pi\)
0.0874491 + 0.996169i \(0.472128\pi\)
\(74\) 2.62247e8 + 1.51409e8i 0.118182 + 0.0682326i
\(75\) 0 0
\(76\) −4.05571e8 7.02470e8i −0.159955 0.277051i
\(77\) −5.46185e9 + 3.15340e9i −2.01784 + 1.16500i
\(78\) 0 0
\(79\) 3.33228e7 5.77169e7i 0.0108295 0.0187572i −0.860560 0.509349i \(-0.829886\pi\)
0.871389 + 0.490592i \(0.163219\pi\)
\(80\) 8.94259e7i 0.0272906i
\(81\) 0 0
\(82\) 2.90080e9 0.782435
\(83\) 2.65058e9 + 1.53032e9i 0.672901 + 0.388500i 0.797175 0.603748i \(-0.206327\pi\)
−0.124274 + 0.992248i \(0.539660\pi\)
\(84\) 0 0
\(85\) 4.85910e8 + 8.41621e8i 0.109512 + 0.189680i
\(86\) −2.08019e8 + 1.20100e8i −0.0442191 + 0.0255299i
\(87\) 0 0
\(88\) 3.63877e9 6.30254e9i 0.689512 1.19427i
\(89\) 9.32017e9i 1.66907i −0.550957 0.834533i \(-0.685737\pi\)
0.550957 0.834533i \(-0.314263\pi\)
\(90\) 0 0
\(91\) −1.01558e10 −1.62745
\(92\) 3.78673e9 + 2.18627e9i 0.574546 + 0.331714i
\(93\) 0 0
\(94\) −8.28904e8 1.43570e9i −0.112944 0.195626i
\(95\) 8.96902e8 5.17826e8i 0.115912 0.0669216i
\(96\) 0 0
\(97\) −7.85587e9 + 1.36068e10i −0.914819 + 1.58451i −0.107654 + 0.994188i \(0.534334\pi\)
−0.807165 + 0.590325i \(0.798999\pi\)
\(98\) 8.77741e9i 0.971037i
\(99\) 0 0
\(100\) 6.10686e9 0.610686
\(101\) 5.40787e8 + 3.12224e8i 0.0514541 + 0.0297070i 0.525506 0.850790i \(-0.323876\pi\)
−0.474052 + 0.880497i \(0.657209\pi\)
\(102\) 0 0
\(103\) −8.28905e9 1.43571e10i −0.715021 1.23845i −0.962951 0.269675i \(-0.913084\pi\)
0.247930 0.968778i \(-0.420250\pi\)
\(104\) 1.01490e10 5.85951e9i 0.834172 0.481609i
\(105\) 0 0
\(106\) 6.45187e9 1.11750e10i 0.482121 0.835058i
\(107\) 1.12101e10i 0.799266i 0.916675 + 0.399633i \(0.130862\pi\)
−0.916675 + 0.399633i \(0.869138\pi\)
\(108\) 0 0
\(109\) 1.32025e10 0.858072 0.429036 0.903287i \(-0.358853\pi\)
0.429036 + 0.903287i \(0.358853\pi\)
\(110\) 3.20322e9 + 1.84938e9i 0.198895 + 0.114832i
\(111\) 0 0
\(112\) −1.41984e9 2.45923e9i −0.0805653 0.139543i
\(113\) −1.08127e10 + 6.24269e9i −0.586868 + 0.338828i −0.763858 0.645384i \(-0.776697\pi\)
0.176990 + 0.984213i \(0.443364\pi\)
\(114\) 0 0
\(115\) −2.79139e9 + 4.83483e9i −0.138781 + 0.240376i
\(116\) 3.15446e9i 0.150188i
\(117\) 0 0
\(118\) −1.74219e10 −0.761529
\(119\) −2.67252e10 1.54298e10i −1.11992 0.646586i
\(120\) 0 0
\(121\) 1.34150e10 + 2.32354e10i 0.517206 + 0.895826i
\(122\) −3.56719e9 + 2.05952e9i −0.131986 + 0.0762020i
\(123\) 0 0
\(124\) 1.76050e9 3.04927e9i 0.0600519 0.104013i
\(125\) 1.62406e10i 0.532172i
\(126\) 0 0
\(127\) 5.68786e9 0.172159 0.0860796 0.996288i \(-0.472566\pi\)
0.0860796 + 0.996288i \(0.472566\pi\)
\(128\) 2.18633e10 + 1.26228e10i 0.636306 + 0.367371i
\(129\) 0 0
\(130\) 2.97805e9 + 5.15814e9i 0.0802077 + 0.138924i
\(131\) 1.38131e10 7.97498e9i 0.358042 0.206716i −0.310180 0.950678i \(-0.600389\pi\)
0.668221 + 0.743962i \(0.267056\pi\)
\(132\) 0 0
\(133\) −1.64433e10 + 2.84806e10i −0.395122 + 0.684371i
\(134\) 4.75374e10i 1.10030i
\(135\) 0 0
\(136\) 3.56096e10 0.765372
\(137\) −5.71950e10 3.30216e10i −1.18510 0.684219i −0.227912 0.973682i \(-0.573190\pi\)
−0.957189 + 0.289463i \(0.906523\pi\)
\(138\) 0 0
\(139\) 1.99169e10 + 3.44971e10i 0.383838 + 0.664826i 0.991607 0.129287i \(-0.0412689\pi\)
−0.607770 + 0.794113i \(0.707936\pi\)
\(140\) 1.39214e10 8.03751e9i 0.258846 0.149445i
\(141\) 0 0
\(142\) −3.66396e9 + 6.34617e9i −0.0634614 + 0.109918i
\(143\) 8.49713e10i 1.42099i
\(144\) 0 0
\(145\) 4.02756e9 0.0628351
\(146\) 5.84766e9 + 3.37615e9i 0.0881491 + 0.0508929i
\(147\) 0 0
\(148\) −5.50557e9 9.53593e9i −0.0775343 0.134293i
\(149\) 4.40235e10 2.54170e10i 0.599450 0.346093i −0.169375 0.985552i \(-0.554175\pi\)
0.768825 + 0.639459i \(0.220842\pi\)
\(150\) 0 0
\(151\) 5.35630e10 9.27738e10i 0.682308 1.18179i −0.291967 0.956428i \(-0.594310\pi\)
0.974275 0.225363i \(-0.0723568\pi\)
\(152\) 3.79486e10i 0.467711i
\(153\) 0 0
\(154\) −1.17452e11 −1.35599
\(155\) 3.89326e9 + 2.24777e9i 0.0435166 + 0.0251243i
\(156\) 0 0
\(157\) −4.18863e10 7.25491e10i −0.439110 0.760561i 0.558511 0.829497i \(-0.311373\pi\)
−0.997621 + 0.0689362i \(0.978040\pi\)
\(158\) 1.07487e9 6.20575e8i 0.0109161 0.00630244i
\(159\) 0 0
\(160\) −1.48574e10 + 2.57338e10i −0.141691 + 0.245416i
\(161\) 1.77278e11i 1.63880i
\(162\) 0 0
\(163\) −2.00013e10 −0.173828 −0.0869140 0.996216i \(-0.527701\pi\)
−0.0869140 + 0.996216i \(0.527701\pi\)
\(164\) −9.13483e10 5.27399e10i −0.769983 0.444550i
\(165\) 0 0
\(166\) 2.84992e10 + 4.93621e10i 0.226096 + 0.391610i
\(167\) 1.25866e11 7.26688e10i 0.969005 0.559455i 0.0700725 0.997542i \(-0.477677\pi\)
0.898933 + 0.438086i \(0.144344\pi\)
\(168\) 0 0
\(169\) 5.14674e8 8.91441e8i 0.00373335 0.00646635i
\(170\) 1.80983e10i 0.127466i
\(171\) 0 0
\(172\) 8.73421e9 0.0580205
\(173\) 8.92146e10 + 5.15081e10i 0.575712 + 0.332388i 0.759428 0.650592i \(-0.225479\pi\)
−0.183715 + 0.982980i \(0.558812\pi\)
\(174\) 0 0
\(175\) −1.23797e11 2.14423e11i −0.754257 1.30641i
\(176\) −2.05757e10 + 1.18794e10i −0.121841 + 0.0703447i
\(177\) 0 0
\(178\) 8.67852e10 1.50316e11i 0.485675 0.841214i
\(179\) 2.00566e11i 1.09142i 0.837974 + 0.545711i \(0.183740\pi\)
−0.837974 + 0.545711i \(0.816260\pi\)
\(180\) 0 0
\(181\) 7.87993e10 0.405629 0.202815 0.979217i \(-0.434991\pi\)
0.202815 + 0.979217i \(0.434991\pi\)
\(182\) −1.63794e11 9.45666e10i −0.820241 0.473566i
\(183\) 0 0
\(184\) 1.02283e11 + 1.77159e11i 0.484967 + 0.839988i
\(185\) 1.21753e10 7.02942e9i 0.0561852 0.0324385i
\(186\) 0 0
\(187\) −1.29097e11 + 2.23603e11i −0.564559 + 0.977845i
\(188\) 6.02818e10i 0.256683i
\(189\) 0 0
\(190\) 1.92871e10 0.0778930
\(191\) 1.07255e11 + 6.19239e10i 0.421941 + 0.243608i 0.695907 0.718131i \(-0.255002\pi\)
−0.273966 + 0.961739i \(0.588336\pi\)
\(192\) 0 0
\(193\) 5.47019e10 + 9.47464e10i 0.204275 + 0.353815i 0.949902 0.312549i \(-0.101183\pi\)
−0.745626 + 0.666364i \(0.767850\pi\)
\(194\) −2.53400e11 + 1.46301e11i −0.922143 + 0.532399i
\(195\) 0 0
\(196\) −1.59584e11 + 2.76407e11i −0.551706 + 0.955583i
\(197\) 4.48179e9i 0.0151050i −0.999971 0.00755249i \(-0.997596\pi\)
0.999971 0.00755249i \(-0.00240405\pi\)
\(198\) 0 0
\(199\) 3.35032e11 1.07355 0.536774 0.843726i \(-0.319643\pi\)
0.536774 + 0.843726i \(0.319643\pi\)
\(200\) 2.47427e11 + 1.42852e11i 0.773209 + 0.446412i
\(201\) 0 0
\(202\) 5.81457e9 + 1.00711e10i 0.0172886 + 0.0299448i
\(203\) −1.10759e11 + 6.39466e10i −0.321290 + 0.185497i
\(204\) 0 0
\(205\) 6.73375e10 1.16632e11i 0.185989 0.322143i
\(206\) 3.08736e11i 0.832244i
\(207\) 0 0
\(208\) −3.82588e10 −0.0982686
\(209\) 2.38290e11 + 1.37577e11i 0.597551 + 0.344996i
\(210\) 0 0
\(211\) 1.02217e11 + 1.77046e11i 0.244406 + 0.423324i 0.961965 0.273174i \(-0.0880736\pi\)
−0.717558 + 0.696499i \(0.754740\pi\)
\(212\) −4.06348e11 + 2.34605e11i −0.948896 + 0.547845i
\(213\) 0 0
\(214\) −1.04384e11 + 1.80798e11i −0.232575 + 0.402832i
\(215\) 1.11517e10i 0.0242744i
\(216\) 0 0
\(217\) −1.42754e11 −0.296680
\(218\) 2.12931e11 + 1.22936e11i 0.432470 + 0.249687i
\(219\) 0 0
\(220\) −6.72478e10 1.16477e11i −0.130486 0.226009i
\(221\) −3.60068e11 + 2.07885e11i −0.683004 + 0.394333i
\(222\) 0 0
\(223\) 3.24564e11 5.62161e11i 0.588540 1.01938i −0.405884 0.913925i \(-0.633036\pi\)
0.994424 0.105457i \(-0.0336304\pi\)
\(224\) 9.43577e11i 1.67316i
\(225\) 0 0
\(226\) −2.32517e11 −0.394377
\(227\) −3.83282e11 2.21288e11i −0.635901 0.367138i 0.147133 0.989117i \(-0.452995\pi\)
−0.783034 + 0.621979i \(0.786329\pi\)
\(228\) 0 0
\(229\) −1.78303e11 3.08830e11i −0.283127 0.490391i 0.689026 0.724736i \(-0.258039\pi\)
−0.972153 + 0.234346i \(0.924705\pi\)
\(230\) −9.00395e10 + 5.19844e10i −0.139892 + 0.0807669i
\(231\) 0 0
\(232\) 7.37893e10 1.27807e11i 0.109788 0.190158i
\(233\) 1.50181e11i 0.218693i 0.994004 + 0.109346i \(0.0348758\pi\)
−0.994004 + 0.109346i \(0.965124\pi\)
\(234\) 0 0
\(235\) −7.69668e10 −0.107390
\(236\) 5.48629e11 + 3.16751e11i 0.749409 + 0.432671i
\(237\) 0 0
\(238\) −2.87351e11 4.97707e11i −0.376295 0.651762i
\(239\) 1.30768e12 7.54990e11i 1.67692 0.968171i 0.713315 0.700843i \(-0.247193\pi\)
0.963606 0.267327i \(-0.0861405\pi\)
\(240\) 0 0
\(241\) 6.74348e10 1.16800e11i 0.0829466 0.143668i −0.821568 0.570111i \(-0.806900\pi\)
0.904514 + 0.426443i \(0.140234\pi\)
\(242\) 4.99657e11i 0.601998i
\(243\) 0 0
\(244\) 1.49778e11 0.173180
\(245\) −3.52912e11 2.03754e11i −0.399793 0.230821i
\(246\) 0 0
\(247\) 2.21540e11 + 3.83719e11i 0.240973 + 0.417377i
\(248\) 1.42657e11 8.23633e10i 0.152067 0.0877961i
\(249\) 0 0
\(250\) −1.51225e11 + 2.61930e11i −0.154855 + 0.268216i
\(251\) 8.84847e11i 0.888178i −0.895983 0.444089i \(-0.853527\pi\)
0.895983 0.444089i \(-0.146473\pi\)
\(252\) 0 0
\(253\) −1.48324e12 −1.43090
\(254\) 9.17342e10 + 5.29628e10i 0.0867687 + 0.0500959i
\(255\) 0 0
\(256\) 5.08547e11 + 8.80828e11i 0.462520 + 0.801109i
\(257\) 1.90896e11 1.10214e11i 0.170267 0.0983037i −0.412445 0.910983i \(-0.635325\pi\)
0.582712 + 0.812679i \(0.301992\pi\)
\(258\) 0 0
\(259\) −2.23216e11 + 3.86621e11i −0.191525 + 0.331731i
\(260\) 2.16578e11i 0.182284i
\(261\) 0 0
\(262\) 2.97038e11 0.240605
\(263\) 2.11532e11 + 1.22128e11i 0.168111 + 0.0970591i 0.581695 0.813407i \(-0.302390\pi\)
−0.413584 + 0.910466i \(0.635723\pi\)
\(264\) 0 0
\(265\) −2.99540e11 5.18818e11i −0.229206 0.396996i
\(266\) −5.30398e11 + 3.06225e11i −0.398285 + 0.229950i
\(267\) 0 0
\(268\) 8.64286e11 1.49699e12i 0.625149 1.08279i
\(269\) 5.44808e11i 0.386796i 0.981120 + 0.193398i \(0.0619509\pi\)
−0.981120 + 0.193398i \(0.938049\pi\)
\(270\) 0 0
\(271\) 1.13982e12 0.779814 0.389907 0.920854i \(-0.372507\pi\)
0.389907 + 0.920854i \(0.372507\pi\)
\(272\) −1.00679e11 5.81268e10i −0.0676228 0.0390420i
\(273\) 0 0
\(274\) −6.14964e11 1.06515e12i −0.398196 0.689696i
\(275\) −1.79402e12 + 1.03578e12i −1.14068 + 0.658572i
\(276\) 0 0
\(277\) −3.40863e11 + 5.90391e11i −0.209016 + 0.362027i −0.951405 0.307942i \(-0.900360\pi\)
0.742388 + 0.669970i \(0.233693\pi\)
\(278\) 7.41829e11i 0.446766i
\(279\) 0 0
\(280\) 7.52055e11 0.436978
\(281\) −1.70955e12 9.87007e11i −0.975774 0.563363i −0.0747823 0.997200i \(-0.523826\pi\)
−0.900992 + 0.433837i \(0.857160\pi\)
\(282\) 0 0
\(283\) 1.31791e12 + 2.28269e12i 0.726028 + 1.25752i 0.958550 + 0.284926i \(0.0919690\pi\)
−0.232522 + 0.972591i \(0.574698\pi\)
\(284\) 2.30762e11 1.33230e11i 0.124903 0.0721127i
\(285\) 0 0
\(286\) −7.91214e11 + 1.37042e12i −0.413489 + 0.716184i
\(287\) 4.27653e12i 2.19625i
\(288\) 0 0
\(289\) 7.52627e11 0.373328
\(290\) 6.49569e10 + 3.75029e10i 0.0316690 + 0.0182841i
\(291\) 0 0
\(292\) −1.22765e11 2.12635e11i −0.0578308 0.100166i
\(293\) 1.94796e12 1.12465e12i 0.902072 0.520811i 0.0242000 0.999707i \(-0.492296\pi\)
0.877872 + 0.478896i \(0.158963\pi\)
\(294\) 0 0
\(295\) −4.04423e11 + 7.00480e11i −0.181019 + 0.313535i
\(296\) 5.15147e11i 0.226711i
\(297\) 0 0
\(298\) 9.46686e11 0.402833
\(299\) −2.06847e12 1.19423e12i −0.865552 0.499727i
\(300\) 0 0
\(301\) −1.77058e11 3.06674e11i −0.0716611 0.124121i
\(302\) 1.72774e12 9.97509e11i 0.687770 0.397084i
\(303\) 0 0
\(304\) −6.19448e10 + 1.07292e11i −0.0238582 + 0.0413236i
\(305\) 1.91234e11i 0.0724545i
\(306\) 0 0
\(307\) −1.73071e12 −0.634646 −0.317323 0.948318i \(-0.602784\pi\)
−0.317323 + 0.948318i \(0.602784\pi\)
\(308\) 3.69865e12 + 2.13542e12i 1.33441 + 0.770423i
\(309\) 0 0
\(310\) 4.18605e10 + 7.25046e10i 0.0146216 + 0.0253254i
\(311\) 5.77332e11 3.33323e11i 0.198437 0.114568i −0.397489 0.917607i \(-0.630118\pi\)
0.595926 + 0.803039i \(0.296785\pi\)
\(312\) 0 0
\(313\) −1.00102e12 + 1.73382e12i −0.333212 + 0.577141i −0.983140 0.182856i \(-0.941466\pi\)
0.649927 + 0.759996i \(0.274799\pi\)
\(314\) 1.56010e12i 0.511100i
\(315\) 0 0
\(316\) −4.51311e10 −0.0143232
\(317\) −4.20000e12 2.42487e12i −1.31206 0.757518i −0.329622 0.944113i \(-0.606921\pi\)
−0.982437 + 0.186595i \(0.940255\pi\)
\(318\) 0 0
\(319\) 5.35025e11 + 9.26690e11i 0.161965 + 0.280531i
\(320\) −3.99939e11 + 2.30905e11i −0.119191 + 0.0688150i
\(321\) 0 0
\(322\) 1.65074e12 2.85916e12i 0.476868 0.825960i
\(323\) 1.34635e12i 0.382953i
\(324\) 0 0
\(325\) −3.33582e12 −0.919996
\(326\) −3.22582e11 1.86243e11i −0.0876098 0.0505815i
\(327\) 0 0
\(328\) −2.46739e12 4.27365e12i −0.649933 1.12572i
\(329\) 2.11660e12 1.22202e12i 0.549110 0.317029i
\(330\) 0 0
\(331\) 1.75905e12 3.04677e12i 0.442730 0.766830i −0.555161 0.831743i \(-0.687343\pi\)
0.997891 + 0.0649124i \(0.0206768\pi\)
\(332\) 2.07260e12i 0.513836i
\(333\) 0 0
\(334\) 2.70664e12 0.651175
\(335\) 1.91133e12 + 1.10351e12i 0.453014 + 0.261548i
\(336\) 0 0
\(337\) −2.64525e12 4.58171e12i −0.608580 1.05409i −0.991475 0.130300i \(-0.958406\pi\)
0.382894 0.923792i \(-0.374927\pi\)
\(338\) 1.66014e10 9.58482e9i 0.00376323 0.00217270i
\(339\) 0 0
\(340\) 3.29049e11 5.69929e11i 0.0724211 0.125437i
\(341\) 1.19438e12i 0.259043i
\(342\) 0 0
\(343\) 5.18474e12 1.09209
\(344\) 3.53877e11 + 2.04311e11i 0.0734616 + 0.0424131i
\(345\) 0 0
\(346\) 9.59241e11 + 1.66145e12i 0.193440 + 0.335048i
\(347\) 3.72266e12 2.14928e12i 0.739956 0.427214i −0.0820973 0.996624i \(-0.526162\pi\)
0.822053 + 0.569411i \(0.192828\pi\)
\(348\) 0 0
\(349\) −1.73279e12 + 3.00129e12i −0.334672 + 0.579669i −0.983422 0.181333i \(-0.941959\pi\)
0.648750 + 0.761002i \(0.275292\pi\)
\(350\) 4.61097e12i 0.877914i
\(351\) 0 0
\(352\) −7.89467e12 −1.46090
\(353\) −6.52014e12 3.76441e12i −1.18955 0.686789i −0.231348 0.972871i \(-0.574314\pi\)
−0.958205 + 0.286083i \(0.907647\pi\)
\(354\) 0 0
\(355\) 1.70106e11 + 2.94633e11i 0.0301702 + 0.0522564i
\(356\) −5.46586e12 + 3.15572e12i −0.955891 + 0.551884i
\(357\) 0 0
\(358\) −1.86758e12 + 3.23475e12i −0.317588 + 0.550079i
\(359\) 2.83045e11i 0.0474660i −0.999718 0.0237330i \(-0.992445\pi\)
0.999718 0.0237330i \(-0.00755517\pi\)
\(360\) 0 0
\(361\) −4.69628e12 −0.765982
\(362\) 1.27088e12 + 7.33744e11i 0.204438 + 0.118032i
\(363\) 0 0
\(364\) 3.43866e12 + 5.95594e12i 0.538124 + 0.932059i
\(365\) 2.71488e11 1.56744e11i 0.0419070 0.0241950i
\(366\) 0 0
\(367\) 5.25168e12 9.09618e12i 0.788802 1.36625i −0.137899 0.990446i \(-0.544035\pi\)
0.926701 0.375799i \(-0.122632\pi\)
\(368\) 6.67838e11i 0.0989538i
\(369\) 0 0
\(370\) 2.61819e11 0.0377566
\(371\) 1.64748e13 + 9.51173e12i 2.34396 + 1.35329i
\(372\) 0 0
\(373\) 6.13664e12 + 1.06290e13i 0.849936 + 1.47213i 0.881265 + 0.472623i \(0.156693\pi\)
−0.0313289 + 0.999509i \(0.509974\pi\)
\(374\) −4.16419e12 + 2.40419e12i −0.569079 + 0.328558i
\(375\) 0 0
\(376\) −1.41011e12 + 2.44239e12i −0.187636 + 0.324994i
\(377\) 1.72310e12i 0.226258i
\(378\) 0 0
\(379\) 3.56139e12 0.455431 0.227716 0.973728i \(-0.426874\pi\)
0.227716 + 0.973728i \(0.426874\pi\)
\(380\) −6.07364e11 3.50662e11i −0.0766533 0.0442558i
\(381\) 0 0
\(382\) 1.15321e12 + 1.99743e12i 0.141773 + 0.245558i
\(383\) −1.03654e13 + 5.98444e12i −1.25774 + 0.726156i −0.972634 0.232341i \(-0.925361\pi\)
−0.285104 + 0.958497i \(0.592028\pi\)
\(384\) 0 0
\(385\) −2.72647e12 + 4.72238e12i −0.322327 + 0.558287i
\(386\) 2.03744e12i 0.237765i
\(387\) 0 0
\(388\) 1.06397e13 1.20996
\(389\) −9.89240e11 5.71138e11i −0.111059 0.0641199i 0.443442 0.896303i \(-0.353757\pi\)
−0.554501 + 0.832183i \(0.687091\pi\)
\(390\) 0 0
\(391\) −3.62881e12 6.28528e12i −0.397082 0.687766i
\(392\) −1.29315e13 + 7.46598e12i −1.39707 + 0.806596i
\(393\) 0 0
\(394\) 4.17324e10 7.22826e10i 0.00439534 0.00761295i
\(395\) 5.76227e10i 0.00599250i
\(396\) 0 0
\(397\) 1.46229e12 0.148280 0.0741399 0.997248i \(-0.476379\pi\)
0.0741399 + 0.997248i \(0.476379\pi\)
\(398\) 5.40343e12 + 3.11967e12i 0.541070 + 0.312387i
\(399\) 0 0
\(400\) −4.66365e11 8.07767e11i −0.0455434 0.0788835i
\(401\) 5.79844e12 3.34773e12i 0.559229 0.322871i −0.193607 0.981079i \(-0.562019\pi\)
0.752836 + 0.658208i \(0.228685\pi\)
\(402\) 0 0
\(403\) −9.61658e11 + 1.66564e12i −0.0904681 + 0.156695i
\(404\) 4.22863e11i 0.0392910i
\(405\) 0 0
\(406\) −2.38177e12 −0.215908
\(407\) 3.23476e12 + 1.86759e12i 0.289648 + 0.167228i
\(408\) 0 0
\(409\) −5.86198e12 1.01532e13i −0.512186 0.887132i −0.999900 0.0141287i \(-0.995503\pi\)
0.487714 0.873003i \(-0.337831\pi\)
\(410\) 2.17205e12 1.25403e12i 0.187478 0.108240i
\(411\) 0 0
\(412\) −5.61318e12 + 9.72231e12i −0.472849 + 0.818999i
\(413\) 2.56845e13i 2.13757i
\(414\) 0 0
\(415\) 2.64626e12 0.214977
\(416\) −1.10096e13 6.35639e12i −0.883700 0.510204i
\(417\) 0 0
\(418\) 2.56211e12 + 4.43771e12i 0.200778 + 0.347758i
\(419\) 1.39582e13 8.05876e12i 1.08083 0.624019i 0.149712 0.988730i \(-0.452165\pi\)
0.931121 + 0.364710i \(0.118832\pi\)
\(420\) 0 0
\(421\) 7.98485e12 1.38302e13i 0.603749 1.04572i −0.388499 0.921449i \(-0.627006\pi\)
0.992248 0.124275i \(-0.0396605\pi\)
\(422\) 3.80721e12i 0.284475i
\(423\) 0 0
\(424\) −2.19516e13 −1.60190
\(425\) −8.77827e12 5.06814e12i −0.633088 0.365514i
\(426\) 0 0
\(427\) −3.03626e12 5.25896e12i −0.213895 0.370477i
\(428\) 6.57423e12 3.79563e12i 0.457748 0.264281i
\(429\) 0 0
\(430\) −1.03840e11 + 1.79855e11i −0.00706351 + 0.0122344i
\(431\) 2.10561e13i 1.41576i 0.706331 + 0.707882i \(0.250349\pi\)
−0.706331 + 0.707882i \(0.749651\pi\)
\(432\) 0 0
\(433\) 8.40350e12 0.552104 0.276052 0.961143i \(-0.410974\pi\)
0.276052 + 0.961143i \(0.410974\pi\)
\(434\) −2.30234e12 1.32926e12i −0.149528 0.0863299i
\(435\) 0 0
\(436\) −4.47023e12 7.74267e12i −0.283725 0.491426i
\(437\) −6.69812e12 + 3.86716e12i −0.420287 + 0.242653i
\(438\) 0 0
\(439\) 4.48024e10 7.76000e10i 0.00274776 0.00475926i −0.864648 0.502378i \(-0.832459\pi\)
0.867396 + 0.497618i \(0.165792\pi\)
\(440\) 6.29226e12i 0.381543i
\(441\) 0 0
\(442\) −7.74294e12 −0.458981
\(443\) 1.68713e13 + 9.74064e12i 0.988848 + 0.570912i 0.904930 0.425561i \(-0.139923\pi\)
0.0839184 + 0.996473i \(0.473257\pi\)
\(444\) 0 0
\(445\) −4.02916e12 6.97872e12i −0.230895 0.399922i
\(446\) 1.04692e13 6.04439e12i 0.593251 0.342514i
\(447\) 0 0
\(448\) 7.33226e12 1.26998e13i 0.406301 0.703734i
\(449\) 1.92827e13i 1.05666i −0.849038 0.528332i \(-0.822818\pi\)
0.849038 0.528332i \(-0.177182\pi\)
\(450\) 0 0
\(451\) 3.57807e13 1.91763
\(452\) 7.32212e12 + 4.22743e12i 0.388101 + 0.224070i
\(453\) 0 0
\(454\) −4.12107e12 7.13791e12i −0.213664 0.370076i
\(455\) −7.60444e12 + 4.39043e12i −0.389951 + 0.225138i
\(456\) 0 0
\(457\) −9.86363e12 + 1.70843e13i −0.494830 + 0.857071i −0.999982 0.00595966i \(-0.998103\pi\)
0.505152 + 0.863030i \(0.331436\pi\)
\(458\) 6.64112e12i 0.329544i
\(459\) 0 0
\(460\) 3.78055e12 0.183555
\(461\) −2.57387e12 1.48602e12i −0.123618 0.0713709i 0.436916 0.899502i \(-0.356071\pi\)
−0.560534 + 0.828131i \(0.689404\pi\)
\(462\) 0 0
\(463\) 4.55799e12 + 7.89467e12i 0.214224 + 0.371047i 0.953032 0.302869i \(-0.0979444\pi\)
−0.738808 + 0.673916i \(0.764611\pi\)
\(464\) −4.17247e11 + 2.40898e11i −0.0194001 + 0.0112006i
\(465\) 0 0
\(466\) −1.39842e12 + 2.42213e12i −0.0636366 + 0.110222i
\(467\) 1.72405e13i 0.776186i 0.921620 + 0.388093i \(0.126866\pi\)
−0.921620 + 0.388093i \(0.873134\pi\)
\(468\) 0 0
\(469\) −7.00825e13 −3.08849
\(470\) −1.24133e12 7.16680e11i −0.0541249 0.0312490i
\(471\) 0 0
\(472\) 1.48189e13 + 2.56671e13i 0.632567 + 1.09564i
\(473\) −2.56586e12 + 1.48140e12i −0.108375 + 0.0625701i
\(474\) 0 0
\(475\) −5.40103e12 + 9.35486e12i −0.223362 + 0.386874i
\(476\) 2.08975e13i 0.855185i
\(477\) 0 0
\(478\) 2.81205e13 1.12690
\(479\) −3.64893e13 2.10671e13i −1.44707 0.835464i −0.448761 0.893652i \(-0.648134\pi\)
−0.998306 + 0.0581880i \(0.981468\pi\)
\(480\) 0 0
\(481\) 3.00738e12 + 5.20893e12i 0.116805 + 0.202313i
\(482\) 2.17519e12 1.25585e12i 0.0836106 0.0482726i
\(483\) 0 0
\(484\) 9.08436e12 1.57346e13i 0.342032 0.592418i
\(485\) 1.35845e13i 0.506217i
\(486\) 0 0
\(487\) 2.83759e13 1.03587 0.517934 0.855420i \(-0.326701\pi\)
0.517934 + 0.855420i \(0.326701\pi\)
\(488\) 6.06843e12 + 3.50361e12i 0.219269 + 0.126595i
\(489\) 0 0
\(490\) −3.79453e12 6.57231e12i −0.134331 0.232669i
\(491\) 2.51160e13 1.45007e13i 0.880123 0.508139i 0.00942378 0.999956i \(-0.497000\pi\)
0.870699 + 0.491817i \(0.163667\pi\)
\(492\) 0 0
\(493\) −2.61792e12 + 4.53436e12i −0.0898920 + 0.155698i
\(494\) 8.25153e12i 0.280479i
\(495\) 0 0
\(496\) −5.37779e11 −0.0179141
\(497\) −9.35591e12 5.40164e12i −0.308535 0.178133i
\(498\) 0 0
\(499\) 1.91727e13 + 3.32081e13i 0.619698 + 1.07335i 0.989541 + 0.144254i \(0.0460783\pi\)
−0.369843 + 0.929094i \(0.620588\pi\)
\(500\) 9.52439e12 5.49891e12i 0.304780 0.175965i
\(501\) 0 0
\(502\) 8.23930e12 1.42709e13i 0.258447 0.447644i
\(503\) 5.89393e13i 1.83048i 0.402907 + 0.915241i \(0.368000\pi\)
−0.402907 + 0.915241i \(0.632000\pi\)
\(504\) 0 0
\(505\) 5.39905e11 0.0164384
\(506\) −2.39219e13 1.38113e13i −0.721178 0.416372i
\(507\) 0 0
\(508\) −1.92585e12 3.33567e12i −0.0569252 0.0985973i
\(509\) −2.68712e13 + 1.55141e13i −0.786498 + 0.454085i −0.838728 0.544550i \(-0.816700\pi\)
0.0522302 + 0.998635i \(0.483367\pi\)
\(510\) 0 0
\(511\) −4.97732e12 + 8.62097e12i −0.142854 + 0.247430i
\(512\) 6.91002e12i 0.196395i
\(513\) 0 0
\(514\) 4.10504e12 0.114420
\(515\) −1.24133e13 7.16681e12i −0.342650 0.197829i
\(516\) 0 0
\(517\) −1.02243e13 1.77091e13i −0.276810 0.479449i
\(518\) −7.20008e12 + 4.15697e12i −0.193058 + 0.111462i
\(519\) 0 0
\(520\) 5.06621e12 8.77493e12i 0.133250 0.230795i
\(521\) 2.33648e13i 0.608659i 0.952567 + 0.304329i \(0.0984323\pi\)
−0.952567 + 0.304329i \(0.901568\pi\)
\(522\) 0 0
\(523\) −4.29833e13 −1.09848 −0.549238 0.835666i \(-0.685082\pi\)
−0.549238 + 0.835666i \(0.685082\pi\)
\(524\) −9.35393e12 5.40050e12i −0.236776 0.136703i
\(525\) 0 0
\(526\) 2.27440e12 + 3.93938e12i 0.0564857 + 0.0978361i
\(527\) −5.06124e12 + 2.92211e12i −0.124510 + 0.0718858i
\(528\) 0 0
\(529\) 1.33028e11 2.30411e11i 0.00321118 0.00556192i
\(530\) 1.11567e13i 0.266782i
\(531\) 0 0
\(532\) 2.22702e13 0.522595
\(533\) 4.98983e13 + 2.88088e13i 1.15998 + 0.669713i
\(534\) 0 0
\(535\) 4.84620e12 + 8.39387e12i 0.110569 + 0.191511i
\(536\) 7.00352e13 4.04349e13i 1.58304 0.913970i
\(537\) 0 0
\(538\) −5.07301e12 + 8.78671e12i −0.112552 + 0.194946i
\(539\) 1.08267e14i 2.37987i
\(540\) 0 0
\(541\) 7.61612e12 0.164342 0.0821708 0.996618i \(-0.473815\pi\)
0.0821708 + 0.996618i \(0.473815\pi\)
\(542\) 1.83832e13 + 1.06135e13i 0.393028 + 0.226915i
\(543\) 0 0
\(544\) −1.93146e13 3.34539e13i −0.405407 0.702186i
\(545\) 9.88571e12 5.70752e12i 0.205601 0.118704i
\(546\) 0 0
\(547\) −7.05321e12 + 1.22165e13i −0.144029 + 0.249466i −0.929010 0.370054i \(-0.879339\pi\)
0.784981 + 0.619520i \(0.212673\pi\)
\(548\) 4.47231e13i 0.904959i
\(549\) 0 0
\(550\) −3.85788e13 −0.766540
\(551\) 4.83220e12 + 2.78987e12i 0.0951451 + 0.0549321i
\(552\) 0 0
\(553\) 9.14889e11 + 1.58463e12i 0.0176906 + 0.0306410i
\(554\) −1.09949e13 + 6.34792e12i −0.210690 + 0.121642i
\(555\) 0 0
\(556\) 1.34873e13 2.33607e13i 0.253835 0.439655i
\(557\) 9.54351e13i 1.78005i −0.455911 0.890025i \(-0.650687\pi\)
0.455911 0.890025i \(-0.349313\pi\)
\(558\) 0 0
\(559\) −4.77100e12 −0.0874078
\(560\) −2.12628e12 1.22761e12i −0.0386082 0.0222905i
\(561\) 0 0
\(562\) −1.83811e13 3.18371e13i −0.327862 0.567873i
\(563\) −4.54844e13 + 2.62604e13i −0.804119 + 0.464258i −0.844909 0.534909i \(-0.820346\pi\)
0.0407905 + 0.999168i \(0.487012\pi\)
\(564\) 0 0
\(565\) −5.39751e12 + 9.34876e12i −0.0937456 + 0.162372i
\(566\) 4.90871e13i 0.845056i
\(567\) 0 0
\(568\) 1.24661e13 0.210858
\(569\) −2.05866e13 1.18857e13i −0.345163 0.199280i 0.317390 0.948295i \(-0.397194\pi\)
−0.662553 + 0.749015i \(0.730527\pi\)
\(570\) 0 0
\(571\) −2.70449e13 4.68432e13i −0.445559 0.771731i 0.552532 0.833492i \(-0.313662\pi\)
−0.998091 + 0.0617606i \(0.980328\pi\)
\(572\) 4.98318e13 2.87704e13i 0.813817 0.469857i
\(573\) 0 0
\(574\) −3.98212e13 + 6.89723e13i −0.639079 + 1.10692i
\(575\) 5.82295e13i 0.926411i
\(576\) 0 0
\(577\) 3.00524e13 0.469894 0.234947 0.972008i \(-0.424508\pi\)
0.234947 + 0.972008i \(0.424508\pi\)
\(578\) 1.21384e13 + 7.00813e12i 0.188158 + 0.108633i
\(579\) 0 0
\(580\) −1.36369e12 2.36198e12i −0.0207767 0.0359863i
\(581\) −7.27726e13 + 4.20153e13i −1.09923 + 0.634639i
\(582\) 0 0
\(583\) 7.95822e13 1.37840e14i 1.18161 2.04660i
\(584\) 1.14869e13i 0.169098i
\(585\) 0 0
\(586\) 4.18891e13 0.606195
\(587\) 4.37799e13 + 2.52764e13i 0.628181 + 0.362680i 0.780047 0.625721i \(-0.215195\pi\)
−0.151867 + 0.988401i \(0.548528\pi\)
\(588\) 0 0
\(589\) 3.11404e12 + 5.39368e12i 0.0439287 + 0.0760867i
\(590\) −1.30451e13 + 7.53160e12i −0.182469 + 0.105348i
\(591\) 0 0
\(592\) −8.40893e11 + 1.45647e12i −0.0115646 + 0.0200305i
\(593\) 6.15227e13i 0.839000i 0.907755 + 0.419500i \(0.137795\pi\)
−0.907755 + 0.419500i \(0.862205\pi\)
\(594\) 0 0
\(595\) −2.66816e13 −0.357789
\(596\) −2.98118e13 1.72119e13i −0.396422 0.228874i
\(597\) 0 0
\(598\) −2.22403e13 3.85213e13i −0.290827 0.503727i
\(599\) −6.31964e13 + 3.64864e13i −0.819517 + 0.473148i −0.850250 0.526379i \(-0.823549\pi\)
0.0307329 + 0.999528i \(0.490216\pi\)
\(600\) 0 0
\(601\) −4.58625e13 + 7.94361e13i −0.584905 + 1.01308i 0.409983 + 0.912093i \(0.365535\pi\)
−0.994887 + 0.100991i \(0.967799\pi\)
\(602\) 6.59475e12i 0.0834095i
\(603\) 0 0
\(604\) −7.25436e13 −0.902432
\(605\) 2.00896e13 + 1.15988e13i 0.247853 + 0.143098i
\(606\) 0 0
\(607\) 6.11384e13 + 1.05895e14i 0.741943 + 1.28508i 0.951609 + 0.307310i \(0.0994289\pi\)
−0.209666 + 0.977773i \(0.567238\pi\)
\(608\) −3.56513e13 + 2.05833e13i −0.429099 + 0.247740i
\(609\) 0 0
\(610\) −1.78068e12 + 3.08423e12i −0.0210832 + 0.0365172i
\(611\) 3.29285e13i 0.386692i
\(612\) 0 0
\(613\) 1.34454e14 1.55336 0.776680 0.629895i \(-0.216902\pi\)
0.776680 + 0.629895i \(0.216902\pi\)
\(614\) −2.79130e13 1.61156e13i −0.319863 0.184673i
\(615\) 0 0
\(616\) 9.99036e13 + 1.73038e14i 1.12636 + 1.95092i
\(617\) 1.17472e13 6.78227e12i 0.131374 0.0758489i −0.432873 0.901455i \(-0.642500\pi\)
0.564247 + 0.825606i \(0.309167\pi\)
\(618\) 0 0
\(619\) −6.39576e13 + 1.10778e14i −0.703783 + 1.21899i 0.263346 + 0.964701i \(0.415174\pi\)
−0.967129 + 0.254286i \(0.918159\pi\)
\(620\) 3.04429e12i 0.0332298i
\(621\) 0 0
\(622\) 1.24150e13 0.133351
\(623\) 2.21606e14 + 1.27944e14i 2.36124 + 1.36326i
\(624\) 0 0
\(625\) −3.70126e13 6.41078e13i −0.388106 0.672219i
\(626\) −3.22891e13 + 1.86421e13i −0.335880 + 0.193920i
\(627\) 0 0
\(628\) −2.83645e13 + 4.91288e13i −0.290387 + 0.502965i
\(629\) 1.82765e13i 0.185627i
\(630\) 0 0
\(631\) 3.97084e12 0.0396950 0.0198475 0.999803i \(-0.493682\pi\)
0.0198475 + 0.999803i \(0.493682\pi\)
\(632\) −1.82854e12 1.05571e12i −0.0181351 0.0104703i
\(633\) 0 0
\(634\) −4.51587e13 7.82171e13i −0.440854 0.763582i
\(635\) 4.25893e12 2.45889e12i 0.0412508 0.0238161i
\(636\) 0 0
\(637\) 8.71713e13 1.50985e14i 0.831144 1.43958i
\(638\) 1.99276e13i 0.188518i
\(639\) 0 0
\(640\) 2.18276e13 0.203285
\(641\) −4.96096e13 2.86421e13i −0.458433 0.264677i 0.252952 0.967479i \(-0.418599\pi\)
−0.711385 + 0.702802i \(0.751932\pi\)
\(642\) 0 0
\(643\) 3.73138e13 + 6.46295e13i 0.339481 + 0.587998i 0.984335 0.176308i \(-0.0564153\pi\)
−0.644854 + 0.764305i \(0.723082\pi\)
\(644\) −1.03966e14 + 6.00246e13i −0.938558 + 0.541876i
\(645\) 0 0
\(646\) −1.25366e13 + 2.17140e13i −0.111434 + 0.193009i
\(647\) 7.62256e12i 0.0672325i −0.999435 0.0336163i \(-0.989298\pi\)
0.999435 0.0336163i \(-0.0107024\pi\)
\(648\) 0 0
\(649\) −2.14895e14 −1.86639
\(650\) −5.38004e13 3.10617e13i −0.463681 0.267706i
\(651\) 0 0
\(652\) 6.77223e12 + 1.17298e13i 0.0574770 + 0.0995530i
\(653\) 1.32797e14 7.66701e13i 1.11846 0.645744i 0.177453 0.984129i \(-0.443214\pi\)
0.941008 + 0.338386i \(0.109881\pi\)
\(654\) 0 0
\(655\) 6.89526e12 1.19429e13i 0.0571932 0.0990615i
\(656\) 1.61104e13i 0.132614i
\(657\) 0 0
\(658\) 4.55156e13 0.369004
\(659\) −1.38594e14 8.00171e13i −1.11511 0.643807i −0.174959 0.984576i \(-0.555979\pi\)
−0.940147 + 0.340768i \(0.889313\pi\)
\(660\) 0 0
\(661\) 2.73546e13 + 4.73796e13i 0.216782 + 0.375477i 0.953822 0.300371i \(-0.0971106\pi\)
−0.737040 + 0.675849i \(0.763777\pi\)
\(662\) 5.67403e13 3.27590e13i 0.446274 0.257656i
\(663\) 0 0
\(664\) 4.84823e13 8.39738e13i 0.375615 0.650584i
\(665\) 2.84342e13i 0.218641i
\(666\) 0 0
\(667\) −3.00781e13 −0.227835
\(668\) −8.52339e13 4.92098e13i −0.640811 0.369973i
\(669\) 0 0
\(670\) 2.05507e13 + 3.55949e13i 0.152213 + 0.263641i
\(671\) −4.40004e13 + 2.54036e13i −0.323477 + 0.186760i
\(672\) 0 0
\(673\) 1.09640e14 1.89902e14i 0.794136 1.37548i −0.129251 0.991612i \(-0.541257\pi\)
0.923387 0.383871i \(-0.125409\pi\)
\(674\) 9.85257e13i 0.708353i
\(675\) 0 0
\(676\) −6.97053e11 −0.00493779
\(677\) 9.91733e13 + 5.72577e13i 0.697351 + 0.402616i 0.806360 0.591425i \(-0.201434\pi\)
−0.109009 + 0.994041i \(0.534768\pi\)
\(678\) 0 0
\(679\) −2.15685e14 3.73578e14i −1.49442 2.58840i
\(680\) 2.66636e13 1.53942e13i 0.183389 0.105880i
\(681\) 0 0
\(682\) −1.11216e13 + 1.92631e13i −0.0753780 + 0.130558i
\(683\) 2.03223e13i 0.136732i 0.997660 + 0.0683659i \(0.0217785\pi\)
−0.997660 + 0.0683659i \(0.978221\pi\)
\(684\) 0 0
\(685\) −5.71017e13 −0.378613
\(686\) 8.36199e13 + 4.82780e13i 0.550414 + 0.317782i
\(687\) 0 0
\(688\) −6.67009e11 1.15529e12i −0.00432703 0.00749463i
\(689\) 2.21964e14 1.28151e14i 1.42951 0.825328i
\(690\) 0 0
\(691\) −1.34430e13 + 2.32840e13i −0.0853308 + 0.147797i −0.905532 0.424278i \(-0.860528\pi\)
0.820201 + 0.572075i \(0.193861\pi\)
\(692\) 6.97605e13i 0.439622i
\(693\) 0 0
\(694\) 8.00525e13 0.497253
\(695\) 2.98266e13 + 1.72204e13i 0.183941 + 0.106199i
\(696\) 0 0
\(697\) 8.75387e13 + 1.51622e14i 0.532153 + 0.921716i
\(698\) −5.58933e13 + 3.22700e13i −0.337351 + 0.194770i
\(699\) 0 0
\(700\) −8.38328e13 + 1.45203e14i −0.498797 + 0.863942i
\(701\) 8.29393e13i 0.489971i −0.969527 0.244985i \(-0.921217\pi\)
0.969527 0.244985i \(-0.0787832\pi\)
\(702\) 0 0
\(703\) 1.94770e13 0.113434
\(704\) −1.06256e14 6.13472e13i −0.614457 0.354757i
\(705\) 0 0
\(706\) −7.01050e13 1.21425e14i −0.399692 0.692286i
\(707\) −1.48475e13 + 8.57219e12i −0.0840535 + 0.0485283i
\(708\) 0 0
\(709\) −1.34045e14 + 2.32172e14i −0.748201 + 1.29592i 0.200483 + 0.979697i \(0.435749\pi\)
−0.948684 + 0.316225i \(0.897584\pi\)
\(710\) 6.33582e12i 0.0351165i
\(711\) 0 0
\(712\) −2.95275e14 −1.61371
\(713\) −2.90751e13 1.67865e13i −0.157788 0.0910989i
\(714\) 0 0
\(715\) 3.67336e13 + 6.36244e13i 0.196577 + 0.340482i
\(716\) 1.17623e14 6.79097e13i 0.625068 0.360883i
\(717\) 0 0
\(718\) 2.63559e12 4.56497e12i 0.0138120 0.0239230i
\(719\) 1.22028e14i 0.635060i −0.948248 0.317530i \(-0.897147\pi\)
0.948248 0.317530i \(-0.102853\pi\)
\(720\) 0 0
\(721\) 4.55157e14 2.33606
\(722\) −7.57421e13 4.37297e13i −0.386057 0.222890i
\(723\) 0 0
\(724\) −2.66806e13 4.62122e13i −0.134123 0.232308i
\(725\) −3.63802e13 + 2.10041e13i −0.181625 + 0.104861i
\(726\) 0 0
\(727\) 3.04999e13 5.28274e13i 0.150185 0.260128i −0.781110 0.624393i \(-0.785346\pi\)
0.931295 + 0.364265i \(0.118680\pi\)
\(728\) 3.21749e14i 1.57348i
\(729\) 0 0
\(730\) 5.83812e12 0.0281617
\(731\) −1.25550e13 7.24861e12i −0.0601490 0.0347270i
\(732\) 0 0
\(733\) 1.32031e13 + 2.28684e13i 0.0623959 + 0.108073i 0.895536 0.444989i \(-0.146793\pi\)
−0.833140 + 0.553062i \(0.813459\pi\)
\(734\) 1.69399e14 9.78026e13i 0.795117 0.459061i
\(735\) 0 0
\(736\) 1.10956e14 1.92181e14i 0.513762 0.889861i
\(737\) 5.86363e14i 2.69668i
\(738\) 0 0
\(739\) −2.40663e14 −1.09191 −0.545956 0.837814i \(-0.683834\pi\)
−0.545956 + 0.837814i \(0.683834\pi\)
\(740\) −8.24488e12 4.76018e12i −0.0371557 0.0214519i
\(741\) 0 0
\(742\) 1.77138e14 + 3.06812e14i 0.787575 + 1.36412i
\(743\) −7.30995e13 + 4.22040e13i −0.322827 + 0.186385i −0.652652 0.757658i \(-0.726344\pi\)
0.329825 + 0.944042i \(0.393010\pi\)
\(744\) 0 0
\(745\) 2.19758e13 3.80632e13i 0.0957555 0.165853i
\(746\) 2.28566e14i 0.989278i
\(747\) 0 0
\(748\) 1.74844e14 0.746696
\(749\) −2.66543e14 1.53889e14i −1.13073 0.652826i
\(750\) 0 0
\(751\) −7.70730e13 1.33494e14i −0.322628 0.558809i 0.658401 0.752667i \(-0.271233\pi\)
−0.981030 + 0.193858i \(0.937900\pi\)
\(752\) 7.97361e12 4.60356e12i 0.0331563 0.0191428i
\(753\) 0 0
\(754\) −1.60447e13 + 2.77903e13i −0.0658379 + 0.114035i
\(755\) 9.26224e13i 0.377556i
\(756\) 0 0
\(757\) 3.54470e14 1.42594 0.712969 0.701196i \(-0.247350\pi\)
0.712969 + 0.701196i \(0.247350\pi\)
\(758\) 5.74383e13 + 3.31620e13i 0.229539 + 0.132524i
\(759\) 0 0
\(760\) −1.64054e13 2.84150e13i −0.0647021 0.112067i
\(761\) −1.77896e14 + 1.02708e14i −0.697017 + 0.402423i −0.806235 0.591595i \(-0.798498\pi\)
0.109219 + 0.994018i \(0.465165\pi\)
\(762\) 0 0
\(763\) −1.81239e14 + 3.13916e14i −0.700857 + 1.21392i
\(764\) 8.38672e13i 0.322200i
\(765\) 0 0
\(766\) −2.22898e14 −0.845205
\(767\) −2.99684e14 1.73023e14i −1.12898 0.651818i
\(768\) 0 0
\(769\) 1.84614e14 + 3.19761e14i 0.686488 + 1.18903i 0.972967 + 0.230945i \(0.0741818\pi\)
−0.286479 + 0.958087i \(0.592485\pi\)
\(770\) −8.79454e13 + 5.07753e13i −0.324907 + 0.187585i
\(771\) 0 0
\(772\) 3.70430e13 6.41604e13i 0.135089 0.233981i
\(773\) 3.25884e13i 0.118077i 0.998256 + 0.0590385i \(0.0188035\pi\)
−0.998256 + 0.0590385i \(0.981197\pi\)
\(774\) 0 0
\(775\) −4.68894e13 −0.167713
\(776\) 4.31079e14 + 2.48884e14i 1.53196 + 0.884480i
\(777\) 0 0
\(778\) −1.06364e13 1.84227e13i −0.0373160 0.0646332i
\(779\) 1.61581e14 9.32886e13i 0.563251 0.325193i
\(780\) 0 0
\(781\) −4.51941e13 + 7.82785e13i −0.155535 + 0.269394i
\(782\) 1.35159e14i 0.462181i
\(783\) 0 0
\(784\) 4.87479e13 0.164580
\(785\) −6.27269e13 3.62154e13i −0.210429 0.121491i
\(786\) 0 0
\(787\) −1.68426e14 2.91723e14i −0.557874 0.966266i −0.997674 0.0681704i \(-0.978284\pi\)
0.439800 0.898096i \(-0.355049\pi\)
\(788\) −2.62837e12 + 1.51749e12i −0.00865077 + 0.00499452i
\(789\) 0 0
\(790\) 5.36556e11 9.29343e11i 0.00174373 0.00302023i
\(791\) 3.42790e14i 1.10700i
\(792\) 0 0
\(793\) −8.18149e13 −0.260896
\(794\) 2.35840e13 + 1.36162e13i 0.0747334 + 0.0431473i
\(795\) 0 0
\(796\) −1.13439e14 1.96481e14i −0.354973 0.614831i
\(797\) −1.35550e14 + 7.82597e13i −0.421509 + 0.243359i −0.695723 0.718310i \(-0.744916\pi\)
0.274214 + 0.961669i \(0.411582\pi\)
\(798\) 0 0
\(799\) 5.00284e13 8.66518e13i 0.153632 0.266099i
\(800\) 3.09931e14i 0.945834i
\(801\) 0 0
\(802\) 1.24690e14 0.375804
\(803\) 7.21295e13 + 4.16440e13i 0.216041 + 0.124731i
\(804\) 0 0
\(805\) −7.66385e13 1.32742e14i −0.226708 0.392670i
\(806\) −3.10194e13 + 1.79091e13i −0.0911923 + 0.0526499i
\(807\) 0 0
\(808\) 9.89164e12 1.71328e13i 0.0287218 0.0497476i
\(809\) 1.57640e14i 0.454909i 0.973789 + 0.227455i \(0.0730403\pi\)
−0.973789 + 0.227455i \(0.926960\pi\)
\(810\) 0 0
\(811\) −1.51421e14 −0.431600 −0.215800 0.976438i \(-0.569236\pi\)
−0.215800 + 0.976438i \(0.569236\pi\)
\(812\) 7.50036e13 + 4.33033e13i 0.212472 + 0.122671i
\(813\) 0 0
\(814\) 3.47803e13 + 6.02413e13i 0.0973221 + 0.168567i
\(815\) −1.49765e13 + 8.64667e12i −0.0416506 + 0.0240470i
\(816\) 0 0
\(817\) −7.72472e12 + 1.33796e13i −0.0212213 + 0.0367564i
\(818\) 2.18336e14i 0.596156i
\(819\) 0 0
\(820\) −9.11992e13 −0.245992
\(821\) 6.21089e14 + 3.58586e14i 1.66509 + 0.961341i 0.970226 + 0.242202i \(0.0778696\pi\)
0.694866 + 0.719139i \(0.255464\pi\)
\(822\) 0 0
\(823\) 3.42060e14 + 5.92466e14i 0.905948 + 1.56915i 0.819639 + 0.572880i \(0.194174\pi\)
0.0863087 + 0.996268i \(0.472493\pi\)
\(824\) −4.54850e14 + 2.62608e14i −1.19738 + 0.691307i
\(825\) 0 0
\(826\) 2.39162e14 4.14241e14i 0.622003 1.07734i
\(827\) 5.83847e13i 0.150929i −0.997149 0.0754643i \(-0.975956\pi\)
0.997149 0.0754643i \(-0.0240439\pi\)
\(828\) 0 0
\(829\) −3.95133e14 −1.00918 −0.504592 0.863358i \(-0.668357\pi\)
−0.504592 + 0.863358i \(0.668357\pi\)
\(830\) 4.26791e13 + 2.46408e13i 0.108349 + 0.0625553i
\(831\) 0 0
\(832\) −9.87873e13 1.71105e14i −0.247790 0.429185i
\(833\) 4.58785e14 2.64880e14i 1.14389 0.660426i
\(834\) 0 0
\(835\) 6.28303e13 1.08825e14i 0.154788 0.268100i
\(836\) 1.86329e14i 0.456298i
\(837\) 0 0
\(838\) 3.00158e14 0.726324
\(839\) −3.52948e14 2.03775e14i −0.848987 0.490163i 0.0113218 0.999936i \(-0.496396\pi\)
−0.860309 + 0.509773i \(0.829729\pi\)
\(840\) 0 0
\(841\) −1.99504e14 3.45551e14i −0.474211 0.821358i
\(842\) 2.57561e14 1.48703e14i 0.608582 0.351365i
\(843\) 0 0
\(844\) 6.92196e13 1.19892e14i 0.161628 0.279948i
\(845\) 8.89986e11i 0.00206585i
\(846\) 0 0
\(847\) −7.36625e14 −1.68978
\(848\) 6.20634e13 + 3.58323e13i 0.141533 + 0.0817139i
\(849\) 0 0
\(850\) −9.43845e13 1.63479e14i −0.212719 0.368440i
\(851\) −9.09261e13 + 5.24962e13i −0.203723 + 0.117620i
\(852\) 0 0
\(853\) 2.25846e14 3.91176e14i 0.500111 0.866218i −0.499889 0.866090i \(-0.666626\pi\)
1.00000 0.000128656i \(-4.09524e-5\pi\)
\(854\) 1.13089e14i 0.248961i
\(855\) 0 0
\(856\) 3.55151e14 0.772759
\(857\) −7.14349e13 4.12429e13i −0.154528 0.0892165i 0.420742 0.907180i \(-0.361770\pi\)
−0.575270 + 0.817964i \(0.695103\pi\)
\(858\) 0 0
\(859\) 1.72996e14 + 2.99637e14i 0.369887 + 0.640664i 0.989548 0.144207i \(-0.0460630\pi\)
−0.619660 + 0.784870i \(0.712730\pi\)
\(860\) 6.53997e12 3.77585e12i 0.0139022 0.00802644i
\(861\) 0 0
\(862\) −1.96065e14 + 3.39594e14i −0.411967 + 0.713548i
\(863\) 1.38386e14i 0.289094i −0.989498 0.144547i \(-0.953827\pi\)
0.989498 0.144547i \(-0.0461725\pi\)
\(864\) 0 0
\(865\) 8.90690e13 0.183927
\(866\) 1.35532e14 + 7.82497e13i 0.278262 + 0.160655i
\(867\) 0 0
\(868\) 4.83350e13 + 8.37187e13i 0.0980987 + 0.169912i
\(869\) 1.32582e13 7.65464e12i 0.0267539 0.0154464i
\(870\) 0 0
\(871\) −4.72110e14 + 8.17718e14i −0.941786 + 1.63122i
\(872\) 4.18272e14i 0.829614i
\(873\) 0 0
\(874\) −1.44037e14 −0.282434
\(875\) −3.86153e14 2.22945e14i −0.752868 0.434669i
\(876\) 0 0
\(877\) −3.48717e14 6.03996e14i −0.672164 1.16422i −0.977289 0.211910i \(-0.932032\pi\)
0.305125 0.952312i \(-0.401302\pi\)
\(878\) 1.44515e12 8.34359e11i 0.00276975 0.00159912i
\(879\) 0 0
\(880\) −1.02711e13 + 1.77900e13i −0.0194627 + 0.0337104i
\(881\) 5.02536e14i 0.946864i 0.880830 + 0.473432i \(0.156985\pi\)
−0.880830 + 0.473432i \(0.843015\pi\)
\(882\) 0 0
\(883\) 6.42054e14 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(884\) 2.43831e14 + 1.40776e14i 0.451676 + 0.260775i
\(885\) 0 0
\(886\) 1.81401e14 + 3.14196e14i 0.332255 + 0.575482i
\(887\) −7.15760e14 + 4.13244e14i −1.30361 + 0.752642i −0.981022 0.193896i \(-0.937888\pi\)
−0.322592 + 0.946538i \(0.604554\pi\)
\(888\) 0 0
\(889\) −7.80809e13 + 1.35240e14i −0.140616 + 0.243555i
\(890\) 1.50071e14i 0.268749i
\(891\) 0 0
\(892\) −4.39576e14 −0.778413
\(893\) −9.23434e13 5.33145e13i −0.162610 0.0938832i
\(894\) 0 0
\(895\) 8.67059e13 + 1.50179e14i 0.150985 + 0.261514i
\(896\) −6.00263e14 + 3.46562e14i −1.03945 + 0.600124i
\(897\) 0 0
\(898\) 1.79552e14 3.10993e14i 0.307474 0.532561i
\(899\) 2.42205e13i 0.0412462i
\(900\) 0 0
\(901\) 7.78804e14 1.31161
\(902\) 5.77073e14 + 3.33173e14i 0.966492 + 0.558005i
\(903\) 0 0
\(904\) 1.97776e14 + 3.42559e14i 0.327591 + 0.567405i
\(905\) 5.90030e13 3.40654e13i 0.0971922 0.0561139i
\(906\) 0 0
\(907\) 3.57293e14 6.18849e14i 0.582087 1.00820i −0.413145 0.910665i \(-0.635570\pi\)
0.995232 0.0975388i \(-0.0310970\pi\)
\(908\) 2.99704e14i 0.485582i
\(909\) 0 0
\(910\) −1.63527e14 −0.262049
\(911\) 3.72775e14 + 2.15222e14i 0.594093 + 0.343000i 0.766714 0.641988i \(-0.221890\pi\)
−0.172621 + 0.984988i \(0.555224\pi\)
\(912\) 0 0
\(913\) 3.51531e14 + 6.08870e14i 0.554128 + 0.959777i
\(914\) −3.18163e14 + 1.83691e14i −0.498791 + 0.287977i
\(915\) 0 0
\(916\) −1.20743e14 + 2.09134e14i −0.187234 + 0.324299i
\(917\) 4.37911e14i 0.675366i
\(918\) 0 0
\(919\) 4.49569e14 0.685833 0.342917 0.939366i \(-0.388585\pi\)
0.342917 + 0.939366i \(0.388585\pi\)
\(920\) 1.53173e14 + 8.84347e13i 0.232404 + 0.134179i
\(921\) 0 0
\(922\) −2.76744e13 4.79334e13i −0.0415359 0.0719422i
\(923\) −1.26052e14 + 7.27761e13i −0.188166 + 0.108638i
\(924\) 0 0
\(925\) −7.33183e13 + 1.26991e14i −0.108269 + 0.187527i
\(926\) 1.69768e14i 0.249345i
\(927\) 0 0
\(928\) −1.60093e14 −0.232612
\(929\) 6.11112e13 + 3.52826e13i 0.0883166 + 0.0509896i 0.543508 0.839404i \(-0.317096\pi\)
−0.455191 + 0.890394i \(0.650429\pi\)
\(930\) 0 0
\(931\) −2.82278e14 4.88920e14i −0.403579 0.699020i
\(932\) 8.80743e13 5.08497e13i 0.125248 0.0723118i
\(933\) 0 0
\(934\) −1.60536e14 + 2.78056e14i −0.225859 + 0.391200i
\(935\) 2.23238e14i 0.312400i
\(936\) 0 0
\(937\) 1.12906e14 0.156322 0.0781609 0.996941i \(-0.475095\pi\)
0.0781609 + 0.996941i \(0.475095\pi\)
\(938\) −1.13030e15 6.52577e14i −1.55660 0.898706i
\(939\) 0 0
\(940\) 2.60602e13 + 4.51376e13i 0.0355090 + 0.0615033i
\(941\) 6.25375e14 3.61060e14i 0.847602 0.489363i −0.0122389 0.999925i \(-0.503896\pi\)
0.859841 + 0.510562i \(0.170563\pi\)
\(942\) 0 0
\(943\) −5.02881e14 + 8.71015e14i −0.674383 + 1.16807i
\(944\) 9.67578e13i 0.129070i
\(945\) 0 0
\(946\) −5.51766e13 −0.0728281
\(947\) 3.10028e14 + 1.78995e14i 0.407054 + 0.235013i 0.689523 0.724264i \(-0.257820\pi\)
−0.282469 + 0.959276i \(0.591154\pi\)
\(948\) 0 0
\(949\) 6.70593e13 + 1.16150e14i 0.0871220 + 0.150900i
\(950\) −1.74217e14 + 1.00584e14i −0.225150 + 0.129990i
\(951\) 0 0
\(952\) −4.88836e14 + 8.46689e14i −0.625142 + 1.08278i
\(953\) 1.90863e14i 0.242805i −0.992603 0.121402i \(-0.961261\pi\)
0.992603 0.121402i \(-0.0387392\pi\)
\(954\) 0 0
\(955\) 1.07080e14 0.134801
\(956\) −8.85536e14 5.11264e14i −1.10896 0.640260i
\(957\) 0 0
\(958\) −3.92335e14 6.79545e14i −0.486217 0.842152i
\(959\) 1.57031e15 9.06617e14i 1.93594 1.11771i
\(960\) 0 0
\(961\) 3.96297e14 6.86406e14i 0.483508 0.837460i
\(962\) 1.12013e14i 0.135955i
\(963\) 0 0
\(964\) −9.13310e13 −0.109707
\(965\) 8.19189e13 + 4.72959e13i 0.0978920 + 0.0565180i
\(966\) 0 0
\(967\) −1.71705e14 2.97401e14i −0.203072 0.351731i 0.746445 0.665447i \(-0.231759\pi\)
−0.949517 + 0.313717i \(0.898426\pi\)
\(968\) 7.36127e14 4.25003e14i 0.866116 0.500052i
\(969\) 0 0
\(970\) −1.26493e14 + 2.19093e14i −0.147302 + 0.255135i
\(971\) 5.00616e14i 0.579975i −0.957030 0.289987i \(-0.906349\pi\)
0.957030 0.289987i \(-0.0936511\pi\)
\(972\) 0 0
\(973\) −1.09365e15 −1.25405
\(974\) 4.57649e14 + 2.64224e14i 0.522080 + 0.301423i
\(975\) 0 0
\(976\) −1.14381e13 1.98114e13i −0.0129154 0.0223700i
\(977\) −2.87392e14 + 1.65926e14i −0.322851 + 0.186398i −0.652662 0.757649i \(-0.726348\pi\)
0.329812 + 0.944047i \(0.393015\pi\)
\(978\) 0 0
\(979\) 1.07048e15 1.85412e15i 1.19032 2.06169i
\(980\) 2.75956e14i 0.305288i
\(981\) 0 0
\(982\) 5.40097e14 0.591445
\(983\) −6.01068e13 3.47027e13i −0.0654871 0.0378090i 0.466899 0.884311i \(-0.345371\pi\)
−0.532386 + 0.846502i \(0.678705\pi\)
\(984\) 0 0
\(985\) −1.93750e12 3.35585e12i −0.00208959 0.00361928i
\(986\) −8.44439e13 + 4.87537e13i −0.0906116 + 0.0523146i
\(987\) 0 0
\(988\) 1.50022e14 2.59847e14i 0.159357 0.276015i
\(989\) 8.32816e13i 0.0880172i
\(990\) 0 0
\(991\) −6.94461e14 −0.726573 −0.363287 0.931677i \(-0.618345\pi\)
−0.363287 + 0.931677i \(0.618345\pi\)
\(992\) −1.54755e14 8.93476e13i −0.161096 0.0930089i
\(993\) 0 0
\(994\) −1.00595e14 1.74236e14i −0.103668 0.179559i
\(995\) 2.50864e14 1.44836e14i 0.257231 0.148512i
\(996\) 0 0
\(997\) 5.20134e14 9.00898e14i 0.528006 0.914534i −0.471461 0.881887i \(-0.656273\pi\)
0.999467 0.0326467i \(-0.0103936\pi\)
\(998\) 7.14110e14i 0.721294i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.11.d.a.8.6 18
3.2 odd 2 9.11.d.a.2.4 18
9.2 odd 6 81.11.b.a.80.12 18
9.4 even 3 9.11.d.a.5.4 yes 18
9.5 odd 6 inner 27.11.d.a.17.6 18
9.7 even 3 81.11.b.a.80.7 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.11.d.a.2.4 18 3.2 odd 2
9.11.d.a.5.4 yes 18 9.4 even 3
27.11.d.a.8.6 18 1.1 even 1 trivial
27.11.d.a.17.6 18 9.5 odd 6 inner
81.11.b.a.80.7 18 9.7 even 3
81.11.b.a.80.12 18 9.2 odd 6