Properties

Label 27.11
Level 27
Weight 11
Dimension 205
Nonzero newspaces 3
Newform subspaces 6
Sturm bound 594
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 27 = 3^{3} \)
Weight: \( k \) = \( 11 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 6 \)
Sturm bound: \(594\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(\Gamma_1(27))\).

Total New Old
Modular forms 285 221 64
Cusp forms 255 205 50
Eisenstein series 30 16 14

Trace form

\( 205 q - 3 q^{2} - 6 q^{3} - 1445 q^{4} - 9921 q^{5} + 18234 q^{6} - 2251 q^{7} - 9 q^{8} + 119124 q^{9} + 118203 q^{10} - 1947 q^{11} - 1015107 q^{12} + 1085009 q^{13} + 4269147 q^{14} - 2548539 q^{15}+ \cdots - 72892391589 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(\Gamma_1(27))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
27.11.b \(\chi_{27}(26, \cdot)\) 27.11.b.a 1 1
27.11.b.b 2
27.11.b.c 4
27.11.b.d 6
27.11.d \(\chi_{27}(8, \cdot)\) 27.11.d.a 18 2
27.11.f \(\chi_{27}(2, \cdot)\) 27.11.f.a 174 6

Decomposition of \(S_{11}^{\mathrm{old}}(\Gamma_1(27))\) into lower level spaces

\( S_{11}^{\mathrm{old}}(\Gamma_1(27)) \cong \) \(S_{11}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)