Properties

Label 27.11.d
Level $27$
Weight $11$
Character orbit 27.d
Rep. character $\chi_{27}(8,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $18$
Newform subspaces $1$
Sturm bound $33$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 27.d (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(33\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(27, [\chi])\).

Total New Old
Modular forms 66 22 44
Cusp forms 54 18 36
Eisenstein series 12 4 8

Trace form

\( 18 q + 3 q^{2} + 4095 q^{4} - 4956 q^{5} - 6120 q^{7} - 2052 q^{10} - 969 q^{11} + 140274 q^{13} + 2134578 q^{14} - 1571841 q^{16} + 2771370 q^{19} - 14542734 q^{20} - 3475521 q^{22} + 9944382 q^{23} + 14726277 q^{25}+ \cdots - 14510723337 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(27, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
27.11.d.a 27.d 9.d $18$ $17.155$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 9.11.d.a \(3\) \(0\) \(-4956\) \(-6120\) $\mathrm{SU}(2)[C_{6}]$ \(q+\beta _{2}q^{2}+(454-454\beta _{1}+2\beta _{2}+2\beta _{3}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{11}^{\mathrm{old}}(27, [\chi])\) into lower level spaces

\( S_{11}^{\mathrm{old}}(27, [\chi]) \simeq \) \(S_{11}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)