Defining parameters
Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 11 \) |
Character orbit: | \([\chi]\) | \(=\) | 27.d (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(33\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{11}(27, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 66 | 22 | 44 |
Cusp forms | 54 | 18 | 36 |
Eisenstein series | 12 | 4 | 8 |
Trace form
Decomposition of \(S_{11}^{\mathrm{new}}(27, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
27.11.d.a | $18$ | $17.155$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(3\) | \(0\) | \(-4956\) | \(-6120\) | \(q+\beta _{2}q^{2}+(454-454\beta _{1}+2\beta _{2}+2\beta _{3}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{11}^{\mathrm{old}}(27, [\chi])\) into lower level spaces
\( S_{11}^{\mathrm{old}}(27, [\chi]) \simeq \) \(S_{11}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)