Properties

Label 27.11.d.a.17.1
Level $27$
Weight $11$
Character 27.17
Analytic conductor $17.155$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,11,Mod(8,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.8"); S:= CuspForms(chi, 11); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 11, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 27.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.1546458222\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 2219 x^{16} + 4286 x^{15} + 3372866 x^{14} + 7237076 x^{13} + 2694115412 x^{12} + \cdots + 64\!\cdots\!96 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{52} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.1
Root \(-15.7177 + 27.2239i\) of defining polynomial
Character \(\chi\) \(=\) 27.17
Dual form 27.11.d.a.8.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-47.1532 + 27.2239i) q^{2} +(970.286 - 1680.58i) q^{4} +(-3579.43 - 2066.59i) q^{5} +(-11845.8 - 20517.5i) q^{7} +49905.4i q^{8} +225043. q^{10} +(83013.5 - 47927.9i) q^{11} +(63316.4 - 109667. i) q^{13} +(1.11713e6 + 644977. i) q^{14} +(-365049. - 632283. i) q^{16} -630218. i q^{17} -3.67135e6 q^{19} +(-6.94615e6 + 4.01036e6i) q^{20} +(-2.60957e6 + 4.51991e6i) q^{22} +(-1.42416e6 - 822238. i) q^{23} +(3.65876e6 + 6.33715e6i) q^{25} +6.89489e6i q^{26} -4.59751e7 q^{28} +(-1.02842e7 + 5.93756e6i) q^{29} +(1.52371e7 - 2.63915e7i) q^{31} +(-9.83013e6 - 5.67543e6i) q^{32} +(1.71570e7 + 2.97168e7i) q^{34} +9.79213e7i q^{35} -9.14191e6 q^{37} +(1.73116e8 - 9.99487e7i) q^{38} +(1.03134e8 - 1.78633e8i) q^{40} +(-3.57733e6 - 2.06537e6i) q^{41} +(9.99200e7 + 1.73066e8i) q^{43} -1.86015e8i q^{44} +8.95383e7 q^{46} +(-3.12963e8 + 1.80689e8i) q^{47} +(-1.39407e8 + 2.41460e8i) q^{49} +(-3.45044e8 - 1.99211e8i) q^{50} +(-1.22870e8 - 2.12817e8i) q^{52} -4.00628e8i q^{53} -3.96188e8 q^{55} +(1.02393e9 - 5.91168e8i) q^{56} +(3.23288e8 - 5.59951e8i) q^{58} +(4.53388e8 + 2.61764e8i) q^{59} +(6.50111e8 + 1.12602e9i) q^{61} +1.65926e9i q^{62} +1.36565e9 q^{64} +(-4.53274e8 + 2.61698e8i) q^{65} +(-1.08644e8 + 1.88178e8i) q^{67} +(-1.05914e9 - 6.11492e8i) q^{68} +(-2.66580e9 - 4.61731e9i) q^{70} +2.30689e9i q^{71} -2.32280e8 q^{73} +(4.31071e8 - 2.48879e8i) q^{74} +(-3.56226e9 + 6.17002e9i) q^{76} +(-1.96672e9 - 1.13548e9i) q^{77} +(-1.60607e8 - 2.78180e8i) q^{79} +3.01762e9i q^{80} +2.24910e8 q^{82} +(5.60771e9 - 3.23761e9i) q^{83} +(-1.30240e9 + 2.25583e9i) q^{85} +(-9.42310e9 - 5.44043e9i) q^{86} +(2.39186e9 + 4.14282e9i) q^{88} +2.86904e9i q^{89} -3.00013e9 q^{91} +(-2.76368e9 + 1.59561e9i) q^{92} +(9.83813e9 - 1.70401e10i) q^{94} +(1.31414e10 + 7.58717e9i) q^{95} +(-3.81258e8 - 6.60359e8i) q^{97} -1.51808e10i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 3 q^{2} + 4095 q^{4} - 4956 q^{5} - 6120 q^{7} - 2052 q^{10} - 969 q^{11} + 140274 q^{13} + 2134578 q^{14} - 1571841 q^{16} + 2771370 q^{19} - 14542734 q^{20} - 3475521 q^{22} + 9944382 q^{23} + 14726277 q^{25}+ \cdots - 14510723337 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −47.1532 + 27.2239i −1.47354 + 0.850748i −0.999556 0.0297860i \(-0.990517\pi\)
−0.473983 + 0.880534i \(0.657184\pi\)
\(3\) 0 0
\(4\) 970.286 1680.58i 0.947545 1.64120i
\(5\) −3579.43 2066.59i −1.14542 0.661308i −0.197652 0.980272i \(-0.563332\pi\)
−0.947767 + 0.318964i \(0.896665\pi\)
\(6\) 0 0
\(7\) −11845.8 20517.5i −0.704812 1.22077i −0.966759 0.255688i \(-0.917698\pi\)
0.261948 0.965082i \(-0.415635\pi\)
\(8\) 49905.4i 1.52299i
\(9\) 0 0
\(10\) 225043. 2.25043
\(11\) 83013.5 47927.9i 0.515448 0.297594i −0.219622 0.975585i \(-0.570482\pi\)
0.735070 + 0.677991i \(0.237149\pi\)
\(12\) 0 0
\(13\) 63316.4 109667.i 0.170529 0.295366i −0.768076 0.640359i \(-0.778786\pi\)
0.938605 + 0.344993i \(0.112119\pi\)
\(14\) 1.11713e6 + 644977.i 2.07714 + 1.19923i
\(15\) 0 0
\(16\) −365049. 632283.i −0.348138 0.602992i
\(17\) 630218.i 0.443860i −0.975063 0.221930i \(-0.928764\pi\)
0.975063 0.221930i \(-0.0712357\pi\)
\(18\) 0 0
\(19\) −3.67135e6 −1.48272 −0.741358 0.671110i \(-0.765818\pi\)
−0.741358 + 0.671110i \(0.765818\pi\)
\(20\) −6.94615e6 + 4.01036e6i −2.17067 + 1.25324i
\(21\) 0 0
\(22\) −2.60957e6 + 4.51991e6i −0.506356 + 0.877034i
\(23\) −1.42416e6 822238.i −0.221268 0.127749i 0.385269 0.922804i \(-0.374109\pi\)
−0.606537 + 0.795055i \(0.707442\pi\)
\(24\) 0 0
\(25\) 3.65876e6 + 6.33715e6i 0.374657 + 0.648924i
\(26\) 6.89489e6i 0.580310i
\(27\) 0 0
\(28\) −4.59751e7 −2.67136
\(29\) −1.02842e7 + 5.93756e6i −0.501393 + 0.289480i −0.729289 0.684206i \(-0.760149\pi\)
0.227895 + 0.973686i \(0.426816\pi\)
\(30\) 0 0
\(31\) 1.52371e7 2.63915e7i 0.532225 0.921840i −0.467067 0.884222i \(-0.654689\pi\)
0.999292 0.0376187i \(-0.0119772\pi\)
\(32\) −9.83013e6 5.67543e6i −0.292961 0.169141i
\(33\) 0 0
\(34\) 1.71570e7 + 2.97168e7i 0.377613 + 0.654046i
\(35\) 9.79213e7i 1.86439i
\(36\) 0 0
\(37\) −9.14191e6 −0.131834 −0.0659172 0.997825i \(-0.520997\pi\)
−0.0659172 + 0.997825i \(0.520997\pi\)
\(38\) 1.73116e8 9.99487e7i 2.18484 1.26142i
\(39\) 0 0
\(40\) 1.03134e8 1.78633e8i 1.00717 1.74446i
\(41\) −3.57733e6 2.06537e6i −0.0308773 0.0178270i 0.484482 0.874801i \(-0.339008\pi\)
−0.515359 + 0.856974i \(0.672341\pi\)
\(42\) 0 0
\(43\) 9.99200e7 + 1.73066e8i 0.679689 + 1.17726i 0.975075 + 0.221877i \(0.0712184\pi\)
−0.295386 + 0.955378i \(0.595448\pi\)
\(44\) 1.86015e8i 1.12794i
\(45\) 0 0
\(46\) 8.95383e7 0.434730
\(47\) −3.12963e8 + 1.80689e8i −1.36459 + 0.787848i −0.990231 0.139435i \(-0.955471\pi\)
−0.374362 + 0.927283i \(0.622138\pi\)
\(48\) 0 0
\(49\) −1.39407e8 + 2.41460e8i −0.493519 + 0.854800i
\(50\) −3.45044e8 1.99211e8i −1.10414 0.637477i
\(51\) 0 0
\(52\) −1.22870e8 2.12817e8i −0.323169 0.559744i
\(53\) 4.00628e8i 0.957993i −0.877817 0.478997i \(-0.841001\pi\)
0.877817 0.478997i \(-0.158999\pi\)
\(54\) 0 0
\(55\) −3.96188e8 −0.787206
\(56\) 1.02393e9 5.91168e8i 1.85922 1.07342i
\(57\) 0 0
\(58\) 3.23288e8 5.59951e8i 0.492549 0.853119i
\(59\) 4.53388e8 + 2.61764e8i 0.634176 + 0.366142i 0.782368 0.622817i \(-0.214012\pi\)
−0.148192 + 0.988959i \(0.547345\pi\)
\(60\) 0 0
\(61\) 6.50111e8 + 1.12602e9i 0.769730 + 1.33321i 0.937709 + 0.347420i \(0.112942\pi\)
−0.167980 + 0.985790i \(0.553724\pi\)
\(62\) 1.65926e9i 1.81116i
\(63\) 0 0
\(64\) 1.36565e9 1.27186
\(65\) −4.53274e8 + 2.61698e8i −0.390655 + 0.225545i
\(66\) 0 0
\(67\) −1.08644e8 + 1.88178e8i −0.0804698 + 0.139378i −0.903452 0.428690i \(-0.858975\pi\)
0.822982 + 0.568067i \(0.192309\pi\)
\(68\) −1.05914e9 6.11492e8i −0.728462 0.420578i
\(69\) 0 0
\(70\) −2.66580e9 4.61731e9i −1.58613 2.74725i
\(71\) 2.30689e9i 1.27860i 0.768956 + 0.639301i \(0.220776\pi\)
−0.768956 + 0.639301i \(0.779224\pi\)
\(72\) 0 0
\(73\) −2.32280e8 −0.112046 −0.0560231 0.998429i \(-0.517842\pi\)
−0.0560231 + 0.998429i \(0.517842\pi\)
\(74\) 4.31071e8 2.48879e8i 0.194263 0.112158i
\(75\) 0 0
\(76\) −3.56226e9 + 6.17002e9i −1.40494 + 2.43343i
\(77\) −1.96672e9 1.13548e9i −0.726588 0.419496i
\(78\) 0 0
\(79\) −1.60607e8 2.78180e8i −0.0521951 0.0904045i 0.838747 0.544521i \(-0.183288\pi\)
−0.890942 + 0.454116i \(0.849955\pi\)
\(80\) 3.01762e9i 0.920905i
\(81\) 0 0
\(82\) 2.24910e8 0.0606653
\(83\) 5.60771e9 3.23761e9i 1.42362 0.821930i 0.427017 0.904243i \(-0.359564\pi\)
0.996606 + 0.0823139i \(0.0262310\pi\)
\(84\) 0 0
\(85\) −1.30240e9 + 2.25583e9i −0.293528 + 0.508406i
\(86\) −9.42310e9 5.44043e9i −2.00310 1.15649i
\(87\) 0 0
\(88\) 2.39186e9 + 4.14282e9i 0.453234 + 0.785024i
\(89\) 2.86904e9i 0.513792i 0.966439 + 0.256896i \(0.0826997\pi\)
−0.966439 + 0.256896i \(0.917300\pi\)
\(90\) 0 0
\(91\) −3.00013e9 −0.480765
\(92\) −2.76368e9 + 1.59561e9i −0.419323 + 0.242096i
\(93\) 0 0
\(94\) 9.83813e9 1.70401e10i 1.34052 2.32185i
\(95\) 1.31414e10 + 7.58717e9i 1.69833 + 0.980532i
\(96\) 0 0
\(97\) −3.81258e8 6.60359e8i −0.0443977 0.0768991i 0.842973 0.537957i \(-0.180804\pi\)
−0.887370 + 0.461057i \(0.847470\pi\)
\(98\) 1.51808e10i 1.67944i
\(99\) 0 0
\(100\) 1.42002e10 1.42002
\(101\) 8.80726e8 5.08488e8i 0.0837981 0.0483809i −0.457515 0.889202i \(-0.651261\pi\)
0.541314 + 0.840821i \(0.317927\pi\)
\(102\) 0 0
\(103\) 7.75977e9 1.34403e10i 0.669364 1.15937i −0.308718 0.951154i \(-0.599900\pi\)
0.978082 0.208219i \(-0.0667668\pi\)
\(104\) 5.47299e9 + 3.15983e9i 0.449840 + 0.259715i
\(105\) 0 0
\(106\) 1.09067e10 + 1.88909e10i 0.815011 + 1.41164i
\(107\) 3.98588e9i 0.284188i −0.989853 0.142094i \(-0.954617\pi\)
0.989853 0.142094i \(-0.0453835\pi\)
\(108\) 0 0
\(109\) −1.40479e10 −0.913020 −0.456510 0.889718i \(-0.650901\pi\)
−0.456510 + 0.889718i \(0.650901\pi\)
\(110\) 1.86816e10 1.07858e10i 1.15998 0.669714i
\(111\) 0 0
\(112\) −8.64857e9 + 1.49798e10i −0.490743 + 0.849992i
\(113\) −3.35190e9 1.93522e9i −0.181928 0.105036i 0.406270 0.913753i \(-0.366829\pi\)
−0.588198 + 0.808717i \(0.700162\pi\)
\(114\) 0 0
\(115\) 3.39845e9 + 5.88630e9i 0.168963 + 0.292653i
\(116\) 2.30445e10i 1.09718i
\(117\) 0 0
\(118\) −2.85049e10 −1.24598
\(119\) −1.29305e10 + 7.46542e9i −0.541851 + 0.312838i
\(120\) 0 0
\(121\) −8.37455e9 + 1.45052e10i −0.322875 + 0.559236i
\(122\) −6.13097e10 3.53972e10i −2.26845 1.30969i
\(123\) 0 0
\(124\) −2.95688e10 5.12146e10i −1.00861 1.74697i
\(125\) 1.01185e10i 0.331563i
\(126\) 0 0
\(127\) −1.87211e10 −0.566647 −0.283324 0.959024i \(-0.591437\pi\)
−0.283324 + 0.959024i \(0.591437\pi\)
\(128\) −5.43288e10 + 3.13667e10i −1.58118 + 0.912892i
\(129\) 0 0
\(130\) 1.42489e10 2.46798e10i 0.383764 0.664699i
\(131\) 4.13770e10 + 2.38890e10i 1.07251 + 0.619215i 0.928867 0.370414i \(-0.120784\pi\)
0.143645 + 0.989629i \(0.454118\pi\)
\(132\) 0 0
\(133\) 4.34900e10 + 7.53269e10i 1.04504 + 1.81005i
\(134\) 1.18309e10i 0.273838i
\(135\) 0 0
\(136\) 3.14513e10 0.675996
\(137\) 5.58077e9 3.22206e9i 0.115636 0.0667622i −0.441067 0.897474i \(-0.645400\pi\)
0.556702 + 0.830712i \(0.312066\pi\)
\(138\) 0 0
\(139\) −3.41907e10 + 5.92201e10i −0.658923 + 1.14129i 0.321972 + 0.946749i \(0.395654\pi\)
−0.980895 + 0.194539i \(0.937679\pi\)
\(140\) 1.64565e11 + 9.50116e10i 3.05983 + 1.76659i
\(141\) 0 0
\(142\) −6.28027e10 1.08777e11i −1.08777 1.88407i
\(143\) 1.21385e10i 0.202994i
\(144\) 0 0
\(145\) 4.90820e10 0.765741
\(146\) 1.09528e10 6.32358e9i 0.165105 0.0953232i
\(147\) 0 0
\(148\) −8.87027e9 + 1.53638e10i −0.124919 + 0.216366i
\(149\) −5.74744e10 3.31828e10i −0.782606 0.451838i 0.0547473 0.998500i \(-0.482565\pi\)
−0.837353 + 0.546663i \(0.815898\pi\)
\(150\) 0 0
\(151\) −1.52809e10 2.64672e10i −0.194654 0.337151i 0.752133 0.659011i \(-0.229025\pi\)
−0.946787 + 0.321861i \(0.895692\pi\)
\(152\) 1.83220e11i 2.25816i
\(153\) 0 0
\(154\) 1.23649e11 1.42754
\(155\) −1.09081e11 + 6.29778e10i −1.21924 + 0.703929i
\(156\) 0 0
\(157\) 8.41303e10 1.45718e11i 0.881971 1.52762i 0.0328251 0.999461i \(-0.489550\pi\)
0.849146 0.528158i \(-0.177117\pi\)
\(158\) 1.51463e10 + 8.74472e9i 0.153823 + 0.0888097i
\(159\) 0 0
\(160\) 2.34575e10 + 4.06296e10i 0.223709 + 0.387475i
\(161\) 3.89602e10i 0.360157i
\(162\) 0 0
\(163\) −2.06594e11 −1.79548 −0.897739 0.440529i \(-0.854791\pi\)
−0.897739 + 0.440529i \(0.854791\pi\)
\(164\) −6.94207e9 + 4.00801e9i −0.0585153 + 0.0337838i
\(165\) 0 0
\(166\) −1.76281e11 + 3.05328e11i −1.39851 + 2.42229i
\(167\) −7.47591e10 4.31622e10i −0.575548 0.332293i 0.183814 0.982961i \(-0.441156\pi\)
−0.759362 + 0.650668i \(0.774489\pi\)
\(168\) 0 0
\(169\) 6.09113e10 + 1.05501e11i 0.441839 + 0.765288i
\(170\) 1.41826e11i 0.998875i
\(171\) 0 0
\(172\) 3.87804e11 2.57614
\(173\) 1.22557e11 7.07580e10i 0.790872 0.456610i −0.0493978 0.998779i \(-0.515730\pi\)
0.840269 + 0.542169i \(0.182397\pi\)
\(174\) 0 0
\(175\) 8.66815e10 1.50137e11i 0.528125 0.914739i
\(176\) −6.06079e10 3.49920e10i −0.358894 0.207208i
\(177\) 0 0
\(178\) −7.81067e10 1.35285e11i −0.437107 0.757092i
\(179\) 1.42065e10i 0.0773073i 0.999253 + 0.0386537i \(0.0123069\pi\)
−0.999253 + 0.0386537i \(0.987693\pi\)
\(180\) 0 0
\(181\) −4.39401e10 −0.226187 −0.113094 0.993584i \(-0.536076\pi\)
−0.113094 + 0.993584i \(0.536076\pi\)
\(182\) 1.41466e11 8.16752e10i 0.708425 0.409010i
\(183\) 0 0
\(184\) 4.10341e10 7.10732e10i 0.194561 0.336990i
\(185\) 3.27229e10 + 1.88926e10i 0.151006 + 0.0871831i
\(186\) 0 0
\(187\) −3.02050e10 5.23166e10i −0.132090 0.228787i
\(188\) 7.01280e11i 2.98609i
\(189\) 0 0
\(190\) −8.26211e11 −3.33674
\(191\) 1.07489e11 6.20589e10i 0.422861 0.244139i −0.273439 0.961889i \(-0.588161\pi\)
0.696301 + 0.717750i \(0.254828\pi\)
\(192\) 0 0
\(193\) 2.19924e11 3.80919e11i 0.821270 1.42248i −0.0834668 0.996511i \(-0.526599\pi\)
0.904737 0.425971i \(-0.140067\pi\)
\(194\) 3.59551e10 + 2.07587e10i 0.130844 + 0.0755426i
\(195\) 0 0
\(196\) 2.70529e11 + 4.68570e11i 0.935263 + 1.61992i
\(197\) 4.41873e11i 1.48925i −0.667485 0.744624i \(-0.732629\pi\)
0.667485 0.744624i \(-0.267371\pi\)
\(198\) 0 0
\(199\) 2.28125e11 0.730984 0.365492 0.930814i \(-0.380901\pi\)
0.365492 + 0.930814i \(0.380901\pi\)
\(200\) −3.16258e11 + 1.82592e11i −0.988306 + 0.570599i
\(201\) 0 0
\(202\) −2.76861e10 + 4.79537e10i −0.0823198 + 0.142582i
\(203\) 2.43648e11 + 1.40670e11i 0.706776 + 0.408057i
\(204\) 0 0
\(205\) 8.53655e9 + 1.47857e10i 0.0235783 + 0.0408389i
\(206\) 8.45006e11i 2.27784i
\(207\) 0 0
\(208\) −9.24543e10 −0.237471
\(209\) −3.04772e11 + 1.75960e11i −0.764264 + 0.441248i
\(210\) 0 0
\(211\) 4.34706e10 7.52933e10i 0.103940 0.180030i −0.809365 0.587307i \(-0.800188\pi\)
0.913305 + 0.407277i \(0.133522\pi\)
\(212\) −6.73290e11 3.88724e11i −1.57225 0.907742i
\(213\) 0 0
\(214\) 1.08511e11 + 1.87947e11i 0.241772 + 0.418762i
\(215\) 8.25973e11i 1.79793i
\(216\) 0 0
\(217\) −7.21983e11 −1.50047
\(218\) 6.62406e11 3.82440e11i 1.34537 0.776750i
\(219\) 0 0
\(220\) −3.84416e11 + 6.65828e11i −0.745913 + 1.29196i
\(221\) −6.91143e10 3.99032e10i −0.131101 0.0756913i
\(222\) 0 0
\(223\) −3.77470e11 6.53797e11i −0.684476 1.18555i −0.973601 0.228255i \(-0.926698\pi\)
0.289126 0.957291i \(-0.406635\pi\)
\(224\) 2.68919e11i 0.476850i
\(225\) 0 0
\(226\) 2.10738e11 0.357437
\(227\) −4.05103e11 + 2.33886e11i −0.672103 + 0.388039i −0.796873 0.604147i \(-0.793514\pi\)
0.124770 + 0.992186i \(0.460181\pi\)
\(228\) 0 0
\(229\) −3.05467e11 + 5.29084e11i −0.485050 + 0.840131i −0.999852 0.0171777i \(-0.994532\pi\)
0.514803 + 0.857309i \(0.327865\pi\)
\(230\) −3.20496e11 1.85039e11i −0.497948 0.287490i
\(231\) 0 0
\(232\) −2.96316e11 5.13235e11i −0.440875 0.763618i
\(233\) 5.80815e11i 0.845782i 0.906181 + 0.422891i \(0.138985\pi\)
−0.906181 + 0.422891i \(0.861015\pi\)
\(234\) 0 0
\(235\) 1.49364e12 2.08404
\(236\) 8.79832e11 5.07971e11i 1.20182 0.693871i
\(237\) 0 0
\(238\) 4.06476e11 7.04038e11i 0.532293 0.921958i
\(239\) −3.13716e11 1.81124e11i −0.402298 0.232267i 0.285177 0.958475i \(-0.407948\pi\)
−0.687475 + 0.726208i \(0.741281\pi\)
\(240\) 0 0
\(241\) 2.55995e11 + 4.43397e11i 0.314881 + 0.545390i 0.979412 0.201870i \(-0.0647019\pi\)
−0.664531 + 0.747261i \(0.731369\pi\)
\(242\) 9.11953e11i 1.09874i
\(243\) 0 0
\(244\) 2.52317e12 2.91741
\(245\) 9.97996e11 5.76193e11i 1.13057 0.652736i
\(246\) 0 0
\(247\) −2.32457e11 + 4.02627e11i −0.252847 + 0.437943i
\(248\) 1.31708e12 + 7.60416e11i 1.40396 + 0.810574i
\(249\) 0 0
\(250\) −2.75465e11 4.77120e11i −0.282076 0.488570i
\(251\) 1.92469e11i 0.193193i 0.995324 + 0.0965967i \(0.0307957\pi\)
−0.995324 + 0.0965967i \(0.969204\pi\)
\(252\) 0 0
\(253\) −1.57632e11 −0.152070
\(254\) 8.82761e11 5.09662e11i 0.834977 0.482074i
\(255\) 0 0
\(256\) 1.00864e12 1.74702e12i 0.917352 1.58890i
\(257\) 7.33365e11 + 4.23408e11i 0.654116 + 0.377654i 0.790031 0.613067i \(-0.210064\pi\)
−0.135916 + 0.990720i \(0.543398\pi\)
\(258\) 0 0
\(259\) 1.08293e11 + 1.87569e11i 0.0929184 + 0.160939i
\(260\) 1.01569e12i 0.854856i
\(261\) 0 0
\(262\) −2.60141e12 −2.10718
\(263\) −1.86744e12 + 1.07817e12i −1.48412 + 0.856855i −0.999837 0.0180587i \(-0.994251\pi\)
−0.484279 + 0.874914i \(0.660918\pi\)
\(264\) 0 0
\(265\) −8.27934e11 + 1.43402e12i −0.633529 + 1.09730i
\(266\) −4.10139e12 2.36794e12i −3.07980 1.77812i
\(267\) 0 0
\(268\) 2.10832e11 + 3.65172e11i 0.152498 + 0.264134i
\(269\) 1.26825e12i 0.900414i 0.892924 + 0.450207i \(0.148650\pi\)
−0.892924 + 0.450207i \(0.851350\pi\)
\(270\) 0 0
\(271\) 4.98119e11 0.340790 0.170395 0.985376i \(-0.445496\pi\)
0.170395 + 0.985376i \(0.445496\pi\)
\(272\) −3.98476e11 + 2.30060e11i −0.267644 + 0.154525i
\(273\) 0 0
\(274\) −1.75434e11 + 3.03861e11i −0.113596 + 0.196753i
\(275\) 6.07452e11 + 3.50713e11i 0.386232 + 0.222991i
\(276\) 0 0
\(277\) −2.40303e11 4.16217e11i −0.147353 0.255223i 0.782895 0.622154i \(-0.213742\pi\)
−0.930248 + 0.366930i \(0.880409\pi\)
\(278\) 3.72323e12i 2.24231i
\(279\) 0 0
\(280\) −4.88680e12 −2.83945
\(281\) −1.86716e12 + 1.07800e12i −1.06574 + 0.615303i −0.927013 0.375028i \(-0.877633\pi\)
−0.138722 + 0.990331i \(0.544300\pi\)
\(282\) 0 0
\(283\) −1.49624e12 + 2.59157e12i −0.824270 + 1.42768i 0.0782053 + 0.996937i \(0.475081\pi\)
−0.902476 + 0.430741i \(0.858252\pi\)
\(284\) 3.87693e12 + 2.23834e12i 2.09844 + 1.21153i
\(285\) 0 0
\(286\) 3.30457e11 + 5.72369e11i 0.172697 + 0.299120i
\(287\) 9.78638e10i 0.0502588i
\(288\) 0 0
\(289\) 1.61882e12 0.802988
\(290\) −2.31437e12 + 1.33620e12i −1.12835 + 0.651453i
\(291\) 0 0
\(292\) −2.25378e11 + 3.90366e11i −0.106169 + 0.183890i
\(293\) 3.17381e12 + 1.83240e12i 1.46975 + 0.848559i 0.999424 0.0339356i \(-0.0108041\pi\)
0.470323 + 0.882494i \(0.344137\pi\)
\(294\) 0 0
\(295\) −1.08191e12 1.87393e12i −0.484265 0.838771i
\(296\) 4.56231e11i 0.200783i
\(297\) 0 0
\(298\) 3.61347e12 1.53760
\(299\) −1.80345e11 + 1.04122e11i −0.0754655 + 0.0435700i
\(300\) 0 0
\(301\) 2.36726e12 4.10021e12i 0.958105 1.65949i
\(302\) 1.44109e12 + 8.32011e11i 0.573661 + 0.331203i
\(303\) 0 0
\(304\) 1.34022e12 + 2.32133e12i 0.516189 + 0.894066i
\(305\) 5.37404e12i 2.03611i
\(306\) 0 0
\(307\) −4.35003e12 −1.59515 −0.797573 0.603222i \(-0.793883\pi\)
−0.797573 + 0.603222i \(0.793883\pi\)
\(308\) −3.81656e12 + 2.20349e12i −1.37695 + 0.794982i
\(309\) 0 0
\(310\) 3.42901e12 5.93921e12i 1.19773 2.07453i
\(311\) −2.62884e12 1.51776e12i −0.903571 0.521677i −0.0252139 0.999682i \(-0.508027\pi\)
−0.878357 + 0.478005i \(0.841360\pi\)
\(312\) 0 0
\(313\) 2.57463e12 + 4.45939e12i 0.857024 + 1.48441i 0.874755 + 0.484566i \(0.161022\pi\)
−0.0177310 + 0.999843i \(0.505644\pi\)
\(314\) 9.16144e12i 3.00134i
\(315\) 0 0
\(316\) −6.23339e11 −0.197829
\(317\) 4.56688e12 2.63669e12i 1.42667 0.823688i 0.429814 0.902918i \(-0.358579\pi\)
0.996856 + 0.0792293i \(0.0252459\pi\)
\(318\) 0 0
\(319\) −5.69149e11 + 9.85795e11i −0.172295 + 0.298424i
\(320\) −4.88826e12 2.82224e12i −1.45681 0.841092i
\(321\) 0 0
\(322\) −1.06065e12 1.83710e12i −0.306403 0.530705i
\(323\) 2.31375e12i 0.658119i
\(324\) 0 0
\(325\) 9.26637e11 0.255560
\(326\) 9.74158e12 5.62431e12i 2.64571 1.52750i
\(327\) 0 0
\(328\) 1.03073e11 1.78528e11i 0.0271504 0.0470259i
\(329\) 7.41457e12 + 4.28080e12i 1.92356 + 1.11057i
\(330\) 0 0
\(331\) −1.49992e12 2.59793e12i −0.377509 0.653865i 0.613190 0.789935i \(-0.289886\pi\)
−0.990699 + 0.136070i \(0.956553\pi\)
\(332\) 1.25656e13i 3.11526i
\(333\) 0 0
\(334\) 4.70018e12 1.13079
\(335\) 7.77771e11 4.49046e11i 0.184343 0.106431i
\(336\) 0 0
\(337\) −3.27911e12 + 5.67958e12i −0.754408 + 1.30667i 0.191260 + 0.981539i \(0.438743\pi\)
−0.945668 + 0.325134i \(0.894591\pi\)
\(338\) −5.74433e12 3.31649e12i −1.30214 0.751788i
\(339\) 0 0
\(340\) 2.52740e12 + 4.37759e12i 0.556263 + 0.963475i
\(341\) 2.92113e12i 0.633548i
\(342\) 0 0
\(343\) −8.67447e10 −0.0182714
\(344\) −8.63695e12 + 4.98655e12i −1.79295 + 1.03516i
\(345\) 0 0
\(346\) −3.85263e12 + 6.67294e12i −0.776920 + 1.34566i
\(347\) −5.76565e12 3.32880e12i −1.14604 0.661668i −0.198123 0.980177i \(-0.563485\pi\)
−0.947920 + 0.318509i \(0.896818\pi\)
\(348\) 0 0
\(349\) −1.83864e12 3.18462e12i −0.355116 0.615079i 0.632022 0.774951i \(-0.282225\pi\)
−0.987138 + 0.159871i \(0.948892\pi\)
\(350\) 9.43925e12i 1.79720i
\(351\) 0 0
\(352\) −1.08804e12 −0.201341
\(353\) −5.13357e12 + 2.96387e12i −0.936583 + 0.540737i −0.888888 0.458125i \(-0.848521\pi\)
−0.0476956 + 0.998862i \(0.515188\pi\)
\(354\) 0 0
\(355\) 4.76739e12 8.25737e12i 0.845550 1.46454i
\(356\) 4.82167e12 + 2.78379e12i 0.843233 + 0.486841i
\(357\) 0 0
\(358\) −3.86756e11 6.69881e11i −0.0657691 0.113915i
\(359\) 3.82402e12i 0.641281i −0.947201 0.320641i \(-0.896102\pi\)
0.947201 0.320641i \(-0.103898\pi\)
\(360\) 0 0
\(361\) 7.34776e12 1.19845
\(362\) 2.07192e12 1.19622e12i 0.333296 0.192428i
\(363\) 0 0
\(364\) −2.91098e12 + 5.04196e12i −0.455546 + 0.789029i
\(365\) 8.31431e11 + 4.80027e11i 0.128340 + 0.0740971i
\(366\) 0 0
\(367\) −4.12826e12 7.15036e12i −0.620065 1.07398i −0.989473 0.144717i \(-0.953773\pi\)
0.369408 0.929267i \(-0.379560\pi\)
\(368\) 1.20063e12i 0.177897i
\(369\) 0 0
\(370\) −2.05732e12 −0.296683
\(371\) −8.21988e12 + 4.74575e12i −1.16949 + 0.675205i
\(372\) 0 0
\(373\) −4.03408e11 + 6.98723e11i −0.0558728 + 0.0967745i −0.892609 0.450832i \(-0.851127\pi\)
0.836736 + 0.547606i \(0.184461\pi\)
\(374\) 2.84853e12 + 1.64460e12i 0.389280 + 0.224751i
\(375\) 0 0
\(376\) −9.01736e12 1.56185e13i −1.19989 2.07826i
\(377\) 1.50378e12i 0.197459i
\(378\) 0 0
\(379\) 3.78438e12 0.483948 0.241974 0.970283i \(-0.422205\pi\)
0.241974 + 0.970283i \(0.422205\pi\)
\(380\) 2.55018e13 1.47234e13i 3.21849 1.85820i
\(381\) 0 0
\(382\) −3.37898e12 + 5.85256e12i −0.415402 + 0.719497i
\(383\) 1.03290e13 + 5.96345e12i 1.25333 + 0.723609i 0.971769 0.235935i \(-0.0758152\pi\)
0.281559 + 0.959544i \(0.409149\pi\)
\(384\) 0 0
\(385\) 4.69316e12 + 8.12879e12i 0.554832 + 0.960997i
\(386\) 2.39488e13i 2.79478i
\(387\) 0 0
\(388\) −1.47972e12 −0.168275
\(389\) −1.93383e10 + 1.11650e10i −0.00217106 + 0.00125346i −0.501085 0.865398i \(-0.667066\pi\)
0.498914 + 0.866651i \(0.333732\pi\)
\(390\) 0 0
\(391\) −5.18190e11 + 8.97531e11i −0.0567029 + 0.0982122i
\(392\) −1.20502e13 6.95716e12i −1.30185 0.751626i
\(393\) 0 0
\(394\) 1.20295e13 + 2.08358e13i 1.26697 + 2.19446i
\(395\) 1.32763e12i 0.138068i
\(396\) 0 0
\(397\) −1.18603e12 −0.120266 −0.0601329 0.998190i \(-0.519152\pi\)
−0.0601329 + 0.998190i \(0.519152\pi\)
\(398\) −1.07568e13 + 6.21047e12i −1.07713 + 0.621884i
\(399\) 0 0
\(400\) 2.67125e12 4.62674e12i 0.260864 0.451830i
\(401\) −1.39390e13 8.04771e12i −1.34435 0.776159i −0.356904 0.934141i \(-0.616168\pi\)
−0.987442 + 0.157983i \(0.949501\pi\)
\(402\) 0 0
\(403\) −1.92952e12 3.34203e12i −0.181520 0.314402i
\(404\) 1.97351e12i 0.183372i
\(405\) 0 0
\(406\) −1.53184e13 −1.38862
\(407\) −7.58902e11 + 4.38152e11i −0.0679538 + 0.0392331i
\(408\) 0 0
\(409\) −3.93802e12 + 6.82086e12i −0.344082 + 0.595967i −0.985187 0.171486i \(-0.945143\pi\)
0.641105 + 0.767453i \(0.278476\pi\)
\(410\) −8.05052e11 4.64797e11i −0.0694872 0.0401184i
\(411\) 0 0
\(412\) −1.50584e13 2.60819e13i −1.26851 2.19712i
\(413\) 1.24032e13i 1.03224i
\(414\) 0 0
\(415\) −2.67633e13 −2.17419
\(416\) −1.24482e12 + 7.18695e11i −0.0999169 + 0.0576870i
\(417\) 0 0
\(418\) 9.58065e12 1.65942e13i 0.750782 1.30039i
\(419\) −1.53912e13 8.88611e12i −1.19180 0.688085i −0.233083 0.972457i \(-0.574882\pi\)
−0.958714 + 0.284372i \(0.908215\pi\)
\(420\) 0 0
\(421\) 1.10659e13 + 1.91668e13i 0.836715 + 1.44923i 0.892626 + 0.450798i \(0.148860\pi\)
−0.0559110 + 0.998436i \(0.517806\pi\)
\(422\) 4.73377e12i 0.353708i
\(423\) 0 0
\(424\) 1.99935e13 1.45902
\(425\) 3.99379e12 2.30581e12i 0.288032 0.166295i
\(426\) 0 0
\(427\) 1.54021e13 2.66773e13i 1.08503 1.87933i
\(428\) −6.69861e12 3.86744e12i −0.466408 0.269281i
\(429\) 0 0
\(430\) 2.24863e13 + 3.89473e13i 1.52959 + 2.64933i
\(431\) 9.55686e12i 0.642582i 0.946980 + 0.321291i \(0.104117\pi\)
−0.946980 + 0.321291i \(0.895883\pi\)
\(432\) 0 0
\(433\) 9.29619e12 0.610753 0.305376 0.952232i \(-0.401218\pi\)
0.305376 + 0.952232i \(0.401218\pi\)
\(434\) 3.40438e13 1.96552e13i 2.21101 1.27652i
\(435\) 0 0
\(436\) −1.36305e13 + 2.36088e13i −0.865127 + 1.49844i
\(437\) 5.22859e12 + 3.01873e12i 0.328078 + 0.189416i
\(438\) 0 0
\(439\) 5.58491e12 + 9.67335e12i 0.342526 + 0.593273i 0.984901 0.173118i \(-0.0553842\pi\)
−0.642375 + 0.766390i \(0.722051\pi\)
\(440\) 1.97719e13i 1.19891i
\(441\) 0 0
\(442\) 4.34528e12 0.257577
\(443\) −1.02124e13 + 5.89614e12i −0.598563 + 0.345580i −0.768476 0.639879i \(-0.778985\pi\)
0.169913 + 0.985459i \(0.445651\pi\)
\(444\) 0 0
\(445\) 5.92913e12 1.02696e13i 0.339774 0.588507i
\(446\) 3.55979e13 + 2.05524e13i 2.01720 + 1.16463i
\(447\) 0 0
\(448\) −1.61772e13 2.80197e13i −0.896422 1.55265i
\(449\) 4.65881e12i 0.255295i 0.991820 + 0.127648i \(0.0407427\pi\)
−0.991820 + 0.127648i \(0.959257\pi\)
\(450\) 0 0
\(451\) −3.95956e11 −0.0212209
\(452\) −6.50461e12 + 3.75544e12i −0.344770 + 0.199053i
\(453\) 0 0
\(454\) 1.27346e13 2.20570e13i 0.660247 1.14358i
\(455\) 1.07388e13 + 6.20002e12i 0.550677 + 0.317933i
\(456\) 0 0
\(457\) −7.12120e11 1.23343e12i −0.0357250 0.0618775i 0.847610 0.530620i \(-0.178041\pi\)
−0.883335 + 0.468742i \(0.844707\pi\)
\(458\) 3.32640e13i 1.65062i
\(459\) 0 0
\(460\) 1.31899e13 0.640401
\(461\) 2.14243e13 1.23693e13i 1.02897 0.594075i 0.112279 0.993677i \(-0.464185\pi\)
0.916689 + 0.399602i \(0.130852\pi\)
\(462\) 0 0
\(463\) −6.25322e12 + 1.08309e13i −0.293899 + 0.509049i −0.974728 0.223394i \(-0.928286\pi\)
0.680829 + 0.732443i \(0.261620\pi\)
\(464\) 7.50844e12 + 4.33500e12i 0.349108 + 0.201558i
\(465\) 0 0
\(466\) −1.58121e13 2.73873e13i −0.719547 1.24629i
\(467\) 1.09634e13i 0.493585i −0.969068 0.246792i \(-0.920623\pi\)
0.969068 0.246792i \(-0.0793766\pi\)
\(468\) 0 0
\(469\) 5.14790e12 0.226864
\(470\) −7.04299e13 + 4.06627e13i −3.07092 + 1.77299i
\(471\) 0 0
\(472\) −1.30634e13 + 2.26265e13i −0.557631 + 0.965845i
\(473\) 1.65894e13 + 9.57790e12i 0.700689 + 0.404543i
\(474\) 0 0
\(475\) −1.34326e13 2.32659e13i −0.555509 0.962170i
\(476\) 2.89744e13i 1.18571i
\(477\) 0 0
\(478\) 1.97237e13 0.790402
\(479\) −1.92106e11 + 1.10912e11i −0.00761837 + 0.00439847i −0.503804 0.863818i \(-0.668067\pi\)
0.496186 + 0.868216i \(0.334733\pi\)
\(480\) 0 0
\(481\) −5.78833e11 + 1.00257e12i −0.0224816 + 0.0389393i
\(482\) −2.41420e13 1.39384e13i −0.927980 0.535769i
\(483\) 0 0
\(484\) 1.62514e13 + 2.81483e13i 0.611878 + 1.05980i
\(485\) 3.15162e12i 0.117442i
\(486\) 0 0
\(487\) −3.58355e13 −1.30818 −0.654091 0.756416i \(-0.726949\pi\)
−0.654091 + 0.756416i \(0.726949\pi\)
\(488\) −5.61947e13 + 3.24440e13i −2.03047 + 1.17229i
\(489\) 0 0
\(490\) −3.13725e13 + 5.43388e13i −1.11063 + 1.92366i
\(491\) −2.41929e13 1.39678e13i −0.847776 0.489464i 0.0121238 0.999927i \(-0.496141\pi\)
−0.859900 + 0.510463i \(0.829474\pi\)
\(492\) 0 0
\(493\) 3.74196e12 + 6.48126e12i 0.128489 + 0.222549i
\(494\) 2.53136e13i 0.860436i
\(495\) 0 0
\(496\) −2.22492e13 −0.741150
\(497\) 4.73316e13 2.73269e13i 1.56088 0.901174i
\(498\) 0 0
\(499\) 1.14646e13 1.98572e13i 0.370558 0.641825i −0.619094 0.785317i \(-0.712500\pi\)
0.989651 + 0.143493i \(0.0458333\pi\)
\(500\) 1.70050e13 + 9.81783e12i 0.544159 + 0.314170i
\(501\) 0 0
\(502\) −5.23976e12 9.07554e12i −0.164359 0.284678i
\(503\) 8.51470e12i 0.264441i −0.991220 0.132221i \(-0.957789\pi\)
0.991220 0.132221i \(-0.0422108\pi\)
\(504\) 0 0
\(505\) −4.20334e12 −0.127979
\(506\) 7.43288e12 4.29138e12i 0.224081 0.129373i
\(507\) 0 0
\(508\) −1.81648e13 + 3.14624e13i −0.536924 + 0.929979i
\(509\) 3.04001e13 + 1.75515e13i 0.889786 + 0.513718i 0.873873 0.486155i \(-0.161601\pi\)
0.0159136 + 0.999873i \(0.494934\pi\)
\(510\) 0 0
\(511\) 2.75153e12 + 4.76580e12i 0.0789715 + 0.136783i
\(512\) 4.55975e13i 1.29596i
\(513\) 0 0
\(514\) −4.61074e13 −1.28515
\(515\) −5.55512e13 + 3.20725e13i −1.53341 + 0.885312i
\(516\) 0 0
\(517\) −1.73201e13 + 2.99992e13i −0.468918 + 0.812190i
\(518\) −1.02127e13 5.89632e12i −0.273838 0.158100i
\(519\) 0 0
\(520\) −1.30601e13 2.26208e13i −0.343503 0.594965i
\(521\) 3.27964e13i 0.854353i 0.904168 + 0.427176i \(0.140492\pi\)
−0.904168 + 0.427176i \(0.859508\pi\)
\(522\) 0 0
\(523\) 4.33302e12 0.110734 0.0553672 0.998466i \(-0.482367\pi\)
0.0553672 + 0.998466i \(0.482367\pi\)
\(524\) 8.02950e13 4.63583e13i 2.03251 1.17347i
\(525\) 0 0
\(526\) 5.87039e13 1.01678e14i 1.45794 2.52522i
\(527\) −1.66324e13 9.60273e12i −0.409169 0.236234i
\(528\) 0 0
\(529\) −1.93611e13 3.35344e13i −0.467360 0.809492i
\(530\) 9.01585e13i 2.15589i
\(531\) 0 0
\(532\) 1.68791e14 3.96087
\(533\) −4.53007e11 + 2.61544e11i −0.0105310 + 0.00608007i
\(534\) 0 0
\(535\) −8.23717e12 + 1.42672e13i −0.187936 + 0.325514i
\(536\) −9.39107e12 5.42194e12i −0.212271 0.122555i
\(537\) 0 0
\(538\) −3.45267e13 5.98019e13i −0.766026 1.32680i
\(539\) 2.67259e13i 0.587474i
\(540\) 0 0
\(541\) 3.20898e13 0.692437 0.346218 0.938154i \(-0.387466\pi\)
0.346218 + 0.938154i \(0.387466\pi\)
\(542\) −2.34879e13 + 1.35608e13i −0.502167 + 0.289926i
\(543\) 0 0
\(544\) −3.57676e12 + 6.19513e12i −0.0750750 + 0.130034i
\(545\) 5.02837e13 + 2.90313e13i 1.04579 + 0.603787i
\(546\) 0 0
\(547\) 4.47678e13 + 7.75400e13i 0.914174 + 1.58340i 0.808107 + 0.589036i \(0.200493\pi\)
0.106067 + 0.994359i \(0.466174\pi\)
\(548\) 1.25053e13i 0.253041i
\(549\) 0 0
\(550\) −3.81911e13 −0.758838
\(551\) 3.77568e13 2.17989e13i 0.743424 0.429216i
\(552\) 0 0
\(553\) −3.80503e12 + 6.59051e12i −0.0735754 + 0.127436i
\(554\) 2.26621e13 + 1.30840e13i 0.434262 + 0.250721i
\(555\) 0 0
\(556\) 6.63496e13 + 1.14921e14i 1.24872 + 2.16284i
\(557\) 9.22814e13i 1.72123i 0.509259 + 0.860613i \(0.329920\pi\)
−0.509259 + 0.860613i \(0.670080\pi\)
\(558\) 0 0
\(559\) 2.53063e13 0.463628
\(560\) 6.19140e13 3.57460e13i 1.12421 0.649065i
\(561\) 0 0
\(562\) 5.86951e13 1.01663e14i 1.04694 1.81335i
\(563\) −2.60722e13 1.50528e13i −0.460931 0.266119i 0.251505 0.967856i \(-0.419075\pi\)
−0.712436 + 0.701737i \(0.752408\pi\)
\(564\) 0 0
\(565\) 7.99861e12 + 1.38540e13i 0.138922 + 0.240621i
\(566\) 1.62934e14i 2.80499i
\(567\) 0 0
\(568\) −1.15126e14 −1.94730
\(569\) −3.50726e13 + 2.02491e13i −0.588039 + 0.339504i −0.764322 0.644835i \(-0.776926\pi\)
0.176283 + 0.984340i \(0.443593\pi\)
\(570\) 0 0
\(571\) −2.43613e13 + 4.21950e13i −0.401346 + 0.695152i −0.993889 0.110387i \(-0.964791\pi\)
0.592542 + 0.805539i \(0.298124\pi\)
\(572\) −2.03997e13 1.17778e13i −0.333153 0.192346i
\(573\) 0 0
\(574\) −2.66424e12 4.61459e12i −0.0427576 0.0740583i
\(575\) 1.20335e13i 0.191448i
\(576\) 0 0
\(577\) −7.65234e12 −0.119651 −0.0598253 0.998209i \(-0.519054\pi\)
−0.0598253 + 0.998209i \(0.519054\pi\)
\(578\) −7.63326e13 + 4.40706e13i −1.18323 + 0.683140i
\(579\) 0 0
\(580\) 4.76235e13 8.24864e13i 0.725574 1.25673i
\(581\) −1.32855e14 7.67041e13i −2.00677 1.15861i
\(582\) 0 0
\(583\) −1.92013e13 3.32576e13i −0.285093 0.493796i
\(584\) 1.15920e13i 0.170646i
\(585\) 0 0
\(586\) −1.99540e14 −2.88764
\(587\) 3.75502e13 2.16796e13i 0.538792 0.311072i −0.205797 0.978595i \(-0.565979\pi\)
0.744589 + 0.667523i \(0.232645\pi\)
\(588\) 0 0
\(589\) −5.59409e13 + 9.68925e13i −0.789138 + 1.36683i
\(590\) 1.02032e14 + 5.89080e13i 1.42717 + 0.823975i
\(591\) 0 0
\(592\) 3.33724e12 + 5.78028e12i 0.0458965 + 0.0794951i
\(593\) 5.18573e13i 0.707190i −0.935399 0.353595i \(-0.884959\pi\)
0.935399 0.353595i \(-0.115041\pi\)
\(594\) 0 0
\(595\) 6.17118e13 0.827529
\(596\) −1.11533e14 + 6.43937e13i −1.48311 + 0.856273i
\(597\) 0 0
\(598\) 5.66924e12 9.81941e12i 0.0741342 0.128404i
\(599\) −7.14641e13 4.12598e13i −0.926731 0.535048i −0.0409548 0.999161i \(-0.513040\pi\)
−0.885776 + 0.464113i \(0.846373\pi\)
\(600\) 0 0
\(601\) −3.53774e13 6.12755e13i −0.451184 0.781474i 0.547276 0.836952i \(-0.315665\pi\)
−0.998460 + 0.0554786i \(0.982332\pi\)
\(602\) 2.57784e14i 3.26042i
\(603\) 0 0
\(604\) −5.93073e13 −0.737774
\(605\) 5.99523e13 3.46135e13i 0.739655 0.427040i
\(606\) 0 0
\(607\) −3.34887e13 + 5.80042e13i −0.406401 + 0.703908i −0.994483 0.104893i \(-0.966550\pi\)
0.588082 + 0.808801i \(0.299883\pi\)
\(608\) 3.60899e13 + 2.08365e13i 0.434378 + 0.250788i
\(609\) 0 0
\(610\) 1.46303e14 + 2.53404e14i 1.73222 + 3.00029i
\(611\) 4.57623e13i 0.537405i
\(612\) 0 0
\(613\) −7.18483e12 −0.0830069 −0.0415035 0.999138i \(-0.513215\pi\)
−0.0415035 + 0.999138i \(0.513215\pi\)
\(614\) 2.05118e14 1.18425e14i 2.35051 1.35707i
\(615\) 0 0
\(616\) 5.66668e13 9.81498e13i 0.638889 1.10659i
\(617\) 4.77180e13 + 2.75500e13i 0.533650 + 0.308103i 0.742501 0.669844i \(-0.233639\pi\)
−0.208852 + 0.977947i \(0.566973\pi\)
\(618\) 0 0
\(619\) −4.51475e13 7.81978e13i −0.496799 0.860481i 0.503194 0.864173i \(-0.332158\pi\)
−0.999993 + 0.00369262i \(0.998825\pi\)
\(620\) 2.44426e14i 2.66802i
\(621\) 0 0
\(622\) 1.65278e14 1.77526
\(623\) 5.88655e13 3.39860e13i 0.627221 0.362126i
\(624\) 0 0
\(625\) 5.66408e13 9.81047e13i 0.593922 1.02870i
\(626\) −2.42804e14 1.40183e14i −2.52572 1.45822i
\(627\) 0 0
\(628\) −1.63261e14 2.82776e14i −1.67141 2.89498i
\(629\) 5.76140e12i 0.0585160i
\(630\) 0 0
\(631\) 3.60070e13 0.359948 0.179974 0.983671i \(-0.442399\pi\)
0.179974 + 0.983671i \(0.442399\pi\)
\(632\) 1.38827e13 8.01516e12i 0.137685 0.0794927i
\(633\) 0 0
\(634\) −1.43562e14 + 2.48657e14i −1.40150 + 2.42747i
\(635\) 6.70110e13 + 3.86888e13i 0.649049 + 0.374728i
\(636\) 0 0
\(637\) 1.76535e13 + 3.05767e13i 0.168319 + 0.291537i
\(638\) 6.19779e13i 0.586319i
\(639\) 0 0
\(640\) 2.59288e14 2.41481
\(641\) −8.30937e13 + 4.79742e13i −0.767853 + 0.443320i −0.832108 0.554614i \(-0.812866\pi\)
0.0642554 + 0.997933i \(0.479533\pi\)
\(642\) 0 0
\(643\) 7.22501e13 1.25141e14i 0.657331 1.13853i −0.323974 0.946066i \(-0.605019\pi\)
0.981304 0.192464i \(-0.0616478\pi\)
\(644\) 6.54759e13 + 3.78025e13i 0.591088 + 0.341265i
\(645\) 0 0
\(646\) −6.29895e13 1.09101e14i −0.559894 0.969764i
\(647\) 4.20740e13i 0.371101i 0.982635 + 0.185551i \(0.0594069\pi\)
−0.982635 + 0.185551i \(0.940593\pi\)
\(648\) 0 0
\(649\) 5.01831e13 0.435847
\(650\) −4.36939e13 + 2.52267e13i −0.376577 + 0.217417i
\(651\) 0 0
\(652\) −2.00455e14 + 3.47199e14i −1.70130 + 2.94673i
\(653\) −8.00162e13 4.61973e13i −0.673925 0.389091i 0.123637 0.992328i \(-0.460544\pi\)
−0.797562 + 0.603237i \(0.793877\pi\)
\(654\) 0 0
\(655\) −9.87374e13 1.71018e14i −0.818984 1.41852i
\(656\) 3.01585e12i 0.0248251i
\(657\) 0 0
\(658\) −4.66161e14 −3.77926
\(659\) 1.80488e13 1.04205e13i 0.145218 0.0838418i −0.425630 0.904897i \(-0.639948\pi\)
0.570849 + 0.821055i \(0.306614\pi\)
\(660\) 0 0
\(661\) 7.32811e13 1.26927e14i 0.580744 1.00588i −0.414647 0.909982i \(-0.636095\pi\)
0.995391 0.0958959i \(-0.0305716\pi\)
\(662\) 1.41452e14 + 8.16673e13i 1.11255 + 0.642330i
\(663\) 0 0
\(664\) 1.61574e14 + 2.79855e14i 1.25179 + 2.16817i
\(665\) 3.59503e14i 2.76436i
\(666\) 0 0
\(667\) 1.95284e13 0.147923
\(668\) −1.45075e14 + 8.37593e13i −1.09072 + 0.629725i
\(669\) 0 0
\(670\) −2.44496e13 + 4.23480e13i −0.181091 + 0.313660i
\(671\) 1.07936e14 + 6.23168e13i 0.793512 + 0.458134i
\(672\) 0 0
\(673\) 4.77127e11 + 8.26408e11i 0.00345588 + 0.00598576i 0.867748 0.497004i \(-0.165567\pi\)
−0.864292 + 0.502990i \(0.832233\pi\)
\(674\) 3.57081e14i 2.56725i
\(675\) 0 0
\(676\) 2.36406e14 1.67465
\(677\) −1.52267e14 + 8.79112e13i −1.07068 + 0.618160i −0.928368 0.371662i \(-0.878788\pi\)
−0.142316 + 0.989821i \(0.545455\pi\)
\(678\) 0 0
\(679\) −9.03260e12 + 1.56449e13i −0.0625841 + 0.108399i
\(680\) −1.12578e14 6.49969e13i −0.774299 0.447041i
\(681\) 0 0
\(682\) 7.95248e13 + 1.37741e14i 0.538990 + 0.933558i
\(683\) 1.76129e14i 1.18503i 0.805560 + 0.592514i \(0.201864\pi\)
−0.805560 + 0.592514i \(0.798136\pi\)
\(684\) 0 0
\(685\) −2.66347e13 −0.176601
\(686\) 4.09029e12 2.36153e12i 0.0269236 0.0155444i
\(687\) 0 0
\(688\) 7.29513e13 1.26355e14i 0.473250 0.819694i
\(689\) −4.39358e13 2.53663e13i −0.282958 0.163366i
\(690\) 0 0
\(691\) 7.21593e13 + 1.24984e14i 0.458039 + 0.793346i 0.998857 0.0477930i \(-0.0152188\pi\)
−0.540819 + 0.841139i \(0.681885\pi\)
\(692\) 2.74622e14i 1.73063i
\(693\) 0 0
\(694\) 3.62492e14 2.25165
\(695\) 2.44767e14 1.41316e14i 1.50949 0.871502i
\(696\) 0 0
\(697\) −1.30164e12 + 2.25450e12i −0.00791272 + 0.0137052i
\(698\) 1.73396e14 + 1.00110e14i 1.04656 + 0.604229i
\(699\) 0 0
\(700\) −1.68212e14 2.91351e14i −1.00084 1.73351i
\(701\) 3.35226e13i 0.198038i 0.995086 + 0.0990189i \(0.0315704\pi\)
−0.995086 + 0.0990189i \(0.968430\pi\)
\(702\) 0 0
\(703\) 3.35632e13 0.195473
\(704\) 1.13367e14 6.54527e13i 0.655579 0.378498i
\(705\) 0 0
\(706\) 1.61376e14 2.79512e14i 0.920061 1.59359i
\(707\) −2.08658e13 1.20469e13i −0.118124 0.0681988i
\(708\) 0 0
\(709\) −3.23633e13 5.60549e13i −0.180643 0.312883i 0.761457 0.648216i \(-0.224485\pi\)
−0.942100 + 0.335333i \(0.891151\pi\)
\(710\) 5.19149e14i 2.87740i
\(711\) 0 0
\(712\) −1.43181e14 −0.782500
\(713\) −4.34002e13 + 2.50571e13i −0.235529 + 0.135983i
\(714\) 0 0
\(715\) −2.50852e13 + 4.34489e13i −0.134242 + 0.232514i
\(716\) 2.38752e13 + 1.37843e13i 0.126876 + 0.0732522i
\(717\) 0 0
\(718\) 1.04105e14 + 1.80315e14i 0.545569 + 0.944953i
\(719\) 1.06995e14i 0.556823i −0.960462 0.278411i \(-0.910192\pi\)
0.960462 0.278411i \(-0.0898079\pi\)
\(720\) 0 0
\(721\) −3.67682e14 −1.88710
\(722\) −3.46471e14 + 2.00035e14i −1.76596 + 1.01958i
\(723\) 0 0
\(724\) −4.26345e13 + 7.38451e13i −0.214323 + 0.371218i
\(725\) −7.52544e13 4.34482e13i −0.375701 0.216911i
\(726\) 0 0
\(727\) 2.72924e13 + 4.72719e13i 0.134391 + 0.232772i 0.925365 0.379078i \(-0.123759\pi\)
−0.790974 + 0.611850i \(0.790426\pi\)
\(728\) 1.49722e14i 0.732201i
\(729\) 0 0
\(730\) −5.22729e13 −0.252152
\(731\) 1.09070e14 6.29714e13i 0.522537 0.301687i
\(732\) 0 0
\(733\) 9.81100e13 1.69931e14i 0.463653 0.803071i −0.535486 0.844544i \(-0.679872\pi\)
0.999140 + 0.0414728i \(0.0132050\pi\)
\(734\) 3.89322e14 + 2.24775e14i 1.82738 + 1.05504i
\(735\) 0 0
\(736\) 9.33311e12 + 1.61654e13i 0.0432153 + 0.0748510i
\(737\) 2.08284e13i 0.0957894i
\(738\) 0 0
\(739\) 7.34223e13 0.333124 0.166562 0.986031i \(-0.446733\pi\)
0.166562 + 0.986031i \(0.446733\pi\)
\(740\) 6.35011e13 3.66624e13i 0.286169 0.165220i
\(741\) 0 0
\(742\) 2.58396e14 4.47555e14i 1.14886 1.98988i
\(743\) −2.26877e14 1.30988e14i −1.00195 0.578477i −0.0931261 0.995654i \(-0.529686\pi\)
−0.908825 + 0.417178i \(0.863019\pi\)
\(744\) 0 0
\(745\) 1.37151e14 + 2.37552e14i 0.597608 + 1.03509i
\(746\) 4.39294e13i 0.190135i
\(747\) 0 0
\(748\) −1.17230e14 −0.500646
\(749\) −8.17802e13 + 4.72158e13i −0.346928 + 0.200299i
\(750\) 0 0
\(751\) −1.58058e14 + 2.73764e14i −0.661631 + 1.14598i 0.318556 + 0.947904i \(0.396802\pi\)
−0.980187 + 0.198075i \(0.936531\pi\)
\(752\) 2.28493e14 + 1.31921e14i 0.950132 + 0.548559i
\(753\) 0 0
\(754\) −4.09388e13 7.09081e13i −0.167988 0.290964i
\(755\) 1.26317e14i 0.514905i
\(756\) 0 0
\(757\) −2.05979e14 −0.828597 −0.414299 0.910141i \(-0.635973\pi\)
−0.414299 + 0.910141i \(0.635973\pi\)
\(758\) −1.78446e14 + 1.03026e14i −0.713116 + 0.411718i
\(759\) 0 0
\(760\) −3.78641e14 + 6.55825e14i −1.49334 + 2.58654i
\(761\) 1.93859e14 + 1.11924e14i 0.759560 + 0.438532i 0.829138 0.559044i \(-0.188832\pi\)
−0.0695775 + 0.997577i \(0.522165\pi\)
\(762\) 0 0
\(763\) 1.66409e14 + 2.88228e14i 0.643507 + 1.11459i
\(764\) 2.40860e14i 0.925331i
\(765\) 0 0
\(766\) −6.49395e14 −2.46244
\(767\) 5.74138e13 3.31478e13i 0.216291 0.124876i
\(768\) 0 0
\(769\) 2.42658e13 4.20295e13i 0.0902323 0.156287i −0.817377 0.576104i \(-0.804572\pi\)
0.907609 + 0.419817i \(0.137906\pi\)
\(770\) −4.42595e14 2.55532e14i −1.63513 0.944044i
\(771\) 0 0
\(772\) −4.26778e14 7.39202e14i −1.55638 2.69573i
\(773\) 3.77649e14i 1.36833i 0.729327 + 0.684165i \(0.239833\pi\)
−0.729327 + 0.684165i \(0.760167\pi\)
\(774\) 0 0
\(775\) 2.22996e14 0.797606
\(776\) 3.29555e13 1.90269e13i 0.117117 0.0676174i
\(777\) 0 0
\(778\) 6.07911e11 1.05293e12i 0.00213276 0.00369405i
\(779\) 1.31336e13 + 7.58271e12i 0.0457823 + 0.0264324i
\(780\) 0 0
\(781\) 1.10564e14 + 1.91503e14i 0.380505 + 0.659053i
\(782\) 5.64287e13i 0.192959i
\(783\) 0 0
\(784\) 2.03561e14 0.687250
\(785\) −6.02278e14 + 3.47725e14i −2.02045 + 1.16651i
\(786\) 0 0
\(787\) −1.04370e14 + 1.80774e14i −0.345701 + 0.598772i −0.985481 0.169787i \(-0.945692\pi\)
0.639780 + 0.768558i \(0.279025\pi\)
\(788\) −7.42606e14 4.28744e14i −2.44415 1.41113i
\(789\) 0 0
\(790\) −3.61435e13 6.26023e13i −0.117461 0.203449i
\(791\) 9.16968e13i 0.296123i
\(792\) 0 0
\(793\) 1.64651e14 0.525046
\(794\) 5.59250e13 3.22883e13i 0.177216 0.102316i
\(795\) 0 0
\(796\) 2.21347e14 3.83384e14i 0.692640 1.19969i
\(797\) 1.01491e14 + 5.85958e13i 0.315599 + 0.182211i 0.649429 0.760422i \(-0.275008\pi\)
−0.333830 + 0.942633i \(0.608341\pi\)
\(798\) 0 0
\(799\) 1.13874e14 + 1.97235e14i 0.349695 + 0.605689i
\(800\) 8.30600e13i 0.253479i
\(801\) 0 0
\(802\) 8.76361e14 2.64126
\(803\) −1.92824e13 + 1.11327e13i −0.0577541 + 0.0333443i
\(804\) 0 0
\(805\) 8.05146e13 1.39455e14i 0.238175 0.412530i
\(806\) 1.81966e14 + 1.05058e14i 0.534954 + 0.308856i
\(807\) 0 0
\(808\) 2.53763e13 + 4.39530e13i 0.0736836 + 0.127624i
\(809\) 2.02903e13i 0.0585526i −0.999571 0.0292763i \(-0.990680\pi\)
0.999571 0.0292763i \(-0.00932027\pi\)
\(810\) 0 0
\(811\) −6.69394e14 −1.90800 −0.953999 0.299810i \(-0.903077\pi\)
−0.953999 + 0.299810i \(0.903077\pi\)
\(812\) 4.72816e14 2.72980e14i 1.33940 0.773305i
\(813\) 0 0
\(814\) 2.38565e13 4.13206e13i 0.0667550 0.115623i
\(815\) 7.39490e14 + 4.26945e14i 2.05657 + 1.18736i
\(816\) 0 0
\(817\) −3.66841e14 6.35388e14i −1.00779 1.74554i
\(818\) 4.28834e14i 1.17091i
\(819\) 0 0
\(820\) 3.31316e13 0.0893661
\(821\) 1.74892e14 1.00974e14i 0.468872 0.270703i −0.246896 0.969042i \(-0.579410\pi\)
0.715767 + 0.698339i \(0.246077\pi\)
\(822\) 0 0
\(823\) 2.29140e13 3.96883e13i 0.0606879 0.105115i −0.834085 0.551636i \(-0.814004\pi\)
0.894773 + 0.446521i \(0.147337\pi\)
\(824\) 6.70744e14 + 3.87254e14i 1.76572 + 1.01944i
\(825\) 0 0
\(826\) 3.37663e14 + 5.84850e14i 0.878179 + 1.52105i
\(827\) 6.19611e14i 1.60174i −0.598840 0.800869i \(-0.704371\pi\)
0.598840 0.800869i \(-0.295629\pi\)
\(828\) 0 0
\(829\) 2.59623e14 0.663088 0.331544 0.943440i \(-0.392430\pi\)
0.331544 + 0.943440i \(0.392430\pi\)
\(830\) 1.26197e15 7.28601e14i 3.20376 1.84969i
\(831\) 0 0
\(832\) 8.64680e13 1.49767e14i 0.216890 0.375664i
\(833\) 1.52172e14 + 8.78568e13i 0.379412 + 0.219054i
\(834\) 0 0
\(835\) 1.78397e14 + 3.08992e14i 0.439496 + 0.761229i
\(836\) 6.82926e14i 1.67241i
\(837\) 0 0
\(838\) 9.67660e14 2.34155
\(839\) −9.22315e13 + 5.32499e13i −0.221855 + 0.128088i −0.606809 0.794848i \(-0.707551\pi\)
0.384954 + 0.922936i \(0.374217\pi\)
\(840\) 0 0
\(841\) −1.39844e14 + 2.42218e14i −0.332403 + 0.575739i
\(842\) −1.04359e15 6.02517e14i −2.46587 1.42367i
\(843\) 0 0
\(844\) −8.43578e13 1.46112e14i −0.196976 0.341172i
\(845\) 5.03514e14i 1.16877i
\(846\) 0 0
\(847\) 3.96812e14 0.910265
\(848\) −2.53311e14 + 1.46249e14i −0.577662 + 0.333514i
\(849\) 0 0
\(850\) −1.25547e14 + 2.17453e14i −0.282951 + 0.490085i
\(851\) 1.30195e13 + 7.51683e12i 0.0291707 + 0.0168417i
\(852\) 0 0
\(853\) −4.28236e14 7.41727e14i −0.948284 1.64248i −0.749038 0.662527i \(-0.769484\pi\)
−0.199246 0.979950i \(-0.563849\pi\)
\(854\) 1.67723e15i 3.69235i
\(855\) 0 0
\(856\) 1.98917e14 0.432815
\(857\) −2.60383e14 + 1.50332e14i −0.563260 + 0.325198i −0.754453 0.656354i \(-0.772098\pi\)
0.191193 + 0.981552i \(0.438764\pi\)
\(858\) 0 0
\(859\) 2.28946e14 3.96546e14i 0.489517 0.847868i −0.510411 0.859931i \(-0.670507\pi\)
0.999927 + 0.0120631i \(0.00383990\pi\)
\(860\) −1.38812e15 8.01430e14i −2.95076 1.70362i
\(861\) 0 0
\(862\) −2.60175e14 4.50637e14i −0.546676 0.946870i
\(863\) 1.19624e14i 0.249899i 0.992163 + 0.124949i \(0.0398768\pi\)
−0.992163 + 0.124949i \(0.960123\pi\)
\(864\) 0 0
\(865\) −5.84911e14 −1.20784
\(866\) −4.38345e14 + 2.53079e14i −0.899968 + 0.519597i
\(867\) 0 0
\(868\) −7.00530e14 + 1.21335e15i −1.42177 + 2.46257i
\(869\) −2.66651e13 1.53951e13i −0.0538077 0.0310659i
\(870\) 0 0
\(871\) 1.37579e13 + 2.38294e13i 0.0274450 + 0.0475360i
\(872\) 7.01068e14i 1.39052i
\(873\) 0 0
\(874\) −3.28726e14 −0.644581
\(875\) 2.07606e14 1.19861e14i 0.404762 0.233689i
\(876\) 0 0
\(877\) −1.77392e14 + 3.07252e14i −0.341929 + 0.592239i −0.984791 0.173743i \(-0.944414\pi\)
0.642862 + 0.765982i \(0.277747\pi\)
\(878\) −5.26693e14 3.04087e14i −1.00945 0.582807i
\(879\) 0 0
\(880\) 1.44628e14 + 2.50503e14i 0.274056 + 0.474679i
\(881\) 1.31615e14i 0.247985i 0.992283 + 0.123992i \(0.0395698\pi\)
−0.992283 + 0.123992i \(0.960430\pi\)
\(882\) 0 0
\(883\) 2.50669e14 0.466978 0.233489 0.972359i \(-0.424986\pi\)
0.233489 + 0.972359i \(0.424986\pi\)
\(884\) −1.34121e14 + 7.74349e13i −0.248448 + 0.143442i
\(885\) 0 0
\(886\) 3.21032e14 5.56044e14i 0.588004 1.01845i
\(887\) −4.59076e14 2.65047e14i −0.836115 0.482731i 0.0198267 0.999803i \(-0.493689\pi\)
−0.855942 + 0.517072i \(0.827022\pi\)
\(888\) 0 0
\(889\) 2.21766e14 + 3.84110e14i 0.399380 + 0.691746i
\(890\) 6.45657e14i 1.15625i
\(891\) 0 0
\(892\) −1.46501e15 −2.59429
\(893\) 1.14900e15 6.63373e14i 2.02330 1.16816i
\(894\) 0 0
\(895\) 2.93589e13 5.08511e13i 0.0511240 0.0885493i
\(896\) 1.28713e15 + 7.43126e14i 2.22886 + 1.28683i
\(897\) 0 0
\(898\) −1.26831e14 2.19678e14i −0.217192 0.376188i
\(899\) 3.61886e14i 0.616273i
\(900\) 0 0
\(901\) −2.52483e14 −0.425215
\(902\) 1.86706e13 1.07795e13i 0.0312698 0.0180536i
\(903\) 0 0
\(904\) 9.65781e13 1.67278e14i 0.159969 0.277075i
\(905\) 1.57281e14 + 9.08061e13i 0.259079 + 0.149579i
\(906\) 0 0
\(907\) 8.14287e13 + 1.41039e14i 0.132660 + 0.229775i 0.924701 0.380694i \(-0.124315\pi\)
−0.792041 + 0.610468i \(0.790981\pi\)
\(908\) 9.07746e14i 1.47074i
\(909\) 0 0
\(910\) −6.75156e14 −1.08193
\(911\) −5.43664e14 + 3.13884e14i −0.866440 + 0.500239i −0.866164 0.499761i \(-0.833421\pi\)
−0.000276280 1.00000i \(0.500088\pi\)
\(912\) 0 0
\(913\) 3.10344e14 5.37531e14i 0.489203 0.847325i
\(914\) 6.71576e13 + 3.87734e13i 0.105284 + 0.0607860i
\(915\) 0 0
\(916\) 5.92780e14 + 1.02673e15i 0.919213 + 1.59212i
\(917\) 1.13193e15i 1.74572i
\(918\) 0 0
\(919\) 4.50497e14 0.687249 0.343625 0.939107i \(-0.388345\pi\)
0.343625 + 0.939107i \(0.388345\pi\)
\(920\) −2.93758e14 + 1.69601e14i −0.445708 + 0.257330i
\(921\) 0 0
\(922\) −6.73484e14 + 1.16651e15i −1.01082 + 1.75079i
\(923\) 2.52990e14 + 1.46064e14i 0.377655 + 0.218039i
\(924\) 0 0
\(925\) −3.34480e13 5.79337e13i −0.0493926 0.0855505i
\(926\) 6.80949e14i 1.00014i
\(927\) 0 0
\(928\) 1.34793e14 0.195851
\(929\) −1.03635e15 + 5.98335e14i −1.49771 + 0.864701i −0.999997 0.00264344i \(-0.999159\pi\)
−0.497709 + 0.867344i \(0.665825\pi\)
\(930\) 0 0
\(931\) 5.11812e14 8.86484e14i 0.731749 1.26743i
\(932\) 9.76109e14 + 5.63557e14i 1.38809 + 0.801416i
\(933\) 0 0
\(934\) 2.98468e14 + 5.16961e14i 0.419917 + 0.727317i
\(935\) 2.49685e14i 0.349410i
\(936\) 0 0
\(937\) −2.50981e14 −0.347491 −0.173746 0.984791i \(-0.555587\pi\)
−0.173746 + 0.984791i \(0.555587\pi\)
\(938\) −2.42740e14 + 1.40146e14i −0.334293 + 0.193004i
\(939\) 0 0
\(940\) 1.44926e15 2.51019e15i 1.97472 3.42032i
\(941\) −4.10529e14 2.37019e14i −0.556410 0.321244i 0.195293 0.980745i \(-0.437434\pi\)
−0.751703 + 0.659501i \(0.770768\pi\)
\(942\) 0 0
\(943\) 3.39646e12 + 5.88284e12i 0.00455478 + 0.00788912i
\(944\) 3.82226e14i 0.509871i
\(945\) 0 0
\(946\) −1.04299e15 −1.37666
\(947\) 9.99584e14 5.77110e14i 1.31241 0.757720i 0.329915 0.944011i \(-0.392980\pi\)
0.982495 + 0.186290i \(0.0596465\pi\)
\(948\) 0 0
\(949\) −1.47071e13 + 2.54735e13i −0.0191072 + 0.0330946i
\(950\) 1.26678e15 + 7.31375e14i 1.63713 + 0.945197i
\(951\) 0 0
\(952\) −3.72565e14 6.45301e14i −0.476450 0.825235i
\(953\) 6.84549e14i 0.870844i 0.900227 + 0.435422i \(0.143401\pi\)
−0.900227 + 0.435422i \(0.856599\pi\)
\(954\) 0 0
\(955\) −5.13001e14 −0.645805
\(956\) −6.08789e14 + 3.51485e14i −0.762390 + 0.440166i
\(957\) 0 0
\(958\) 6.03893e12 1.04597e13i 0.00748398 0.0129626i
\(959\) −1.32217e14 7.63355e13i −0.163003 0.0941096i
\(960\) 0 0
\(961\) −5.45271e13 9.44437e13i −0.0665266 0.115227i
\(962\) 6.30325e13i 0.0765048i
\(963\) 0 0
\(964\) 9.93555e14 1.19346
\(965\) −1.57441e15 + 9.08984e14i −1.88140 + 1.08622i
\(966\) 0 0
\(967\) −6.95779e14 + 1.20512e15i −0.822884 + 1.42528i 0.0806413 + 0.996743i \(0.474303\pi\)
−0.903526 + 0.428534i \(0.859030\pi\)
\(968\) −7.23885e14 4.17935e14i −0.851713 0.491736i
\(969\) 0 0
\(970\) −8.57994e13 1.48609e14i −0.0999138 0.173056i
\(971\) 1.59646e15i 1.84953i −0.380540 0.924765i \(-0.624262\pi\)
0.380540 0.924765i \(-0.375738\pi\)
\(972\) 0 0
\(973\) 1.62006e15 1.85767
\(974\) 1.68976e15 9.75583e14i 1.92766 1.11293i
\(975\) 0 0
\(976\) 4.74644e14 8.22108e14i 0.535944 0.928282i
\(977\) 1.74684e13 + 1.00854e13i 0.0196237 + 0.0113298i 0.509780 0.860305i \(-0.329727\pi\)
−0.490156 + 0.871635i \(0.663060\pi\)
\(978\) 0 0
\(979\) 1.37507e14 + 2.38169e14i 0.152901 + 0.264833i
\(980\) 2.23629e15i 2.47399i
\(981\) 0 0
\(982\) 1.52103e15 1.66564
\(983\) 3.93894e14 2.27415e14i 0.429152 0.247771i −0.269833 0.962907i \(-0.586969\pi\)
0.698985 + 0.715136i \(0.253635\pi\)
\(984\) 0 0
\(985\) −9.13170e14 + 1.58166e15i −0.984851 + 1.70581i
\(986\) −3.52891e14 2.03742e14i −0.378666 0.218623i
\(987\) 0 0
\(988\) 4.51099e14 + 7.81326e14i 0.479167 + 0.829942i
\(989\) 3.28632e14i 0.347319i
\(990\) 0 0
\(991\) 2.07903e14 0.217517 0.108758 0.994068i \(-0.465313\pi\)
0.108758 + 0.994068i \(0.465313\pi\)
\(992\) −2.99566e14 + 1.72955e14i −0.311842 + 0.180042i
\(993\) 0 0
\(994\) −1.48789e15 + 2.57711e15i −1.53334 + 2.65583i
\(995\) −8.16560e14 4.71441e14i −0.837283 0.483406i
\(996\) 0 0
\(997\) −6.59438e14 1.14218e15i −0.669419 1.15947i −0.978067 0.208291i \(-0.933210\pi\)
0.308648 0.951176i \(-0.400124\pi\)
\(998\) 1.24844e15i 1.26100i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.11.d.a.17.1 18
3.2 odd 2 9.11.d.a.5.9 yes 18
9.2 odd 6 inner 27.11.d.a.8.1 18
9.4 even 3 81.11.b.a.80.2 18
9.5 odd 6 81.11.b.a.80.17 18
9.7 even 3 9.11.d.a.2.9 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.11.d.a.2.9 18 9.7 even 3
9.11.d.a.5.9 yes 18 3.2 odd 2
27.11.d.a.8.1 18 9.2 odd 6 inner
27.11.d.a.17.1 18 1.1 even 1 trivial
81.11.b.a.80.2 18 9.4 even 3
81.11.b.a.80.17 18 9.5 odd 6