Properties

Label 269.4.b.a.268.9
Level $269$
Weight $4$
Character 269.268
Analytic conductor $15.872$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [269,4,Mod(268,269)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("269.268"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(269, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 269.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.8715137915\)
Analytic rank: \(0\)
Dimension: \(66\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 268.9
Character \(\chi\) \(=\) 269.268
Dual form 269.4.b.a.268.58

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.45843i q^{2} +0.747483i q^{3} -11.8776 q^{4} -16.4504 q^{5} +3.33261 q^{6} +20.0331i q^{7} +17.2882i q^{8} +26.4413 q^{9} +73.3432i q^{10} +19.7959 q^{11} -8.87834i q^{12} +53.8132 q^{13} +89.3161 q^{14} -12.2964i q^{15} -17.9428 q^{16} +79.4618i q^{17} -117.887i q^{18} -108.218i q^{19} +195.392 q^{20} -14.9744 q^{21} -88.2586i q^{22} -140.315 q^{23} -12.9226 q^{24} +145.617 q^{25} -239.922i q^{26} +39.9465i q^{27} -237.946i q^{28} +32.4595i q^{29} -54.8228 q^{30} -174.877i q^{31} +218.302i q^{32} +14.7971i q^{33} +354.275 q^{34} -329.553i q^{35} -314.060 q^{36} +391.562 q^{37} -482.483 q^{38} +40.2244i q^{39} -284.398i q^{40} +234.544 q^{41} +66.7623i q^{42} +458.267 q^{43} -235.128 q^{44} -434.971 q^{45} +625.585i q^{46} +522.533 q^{47} -13.4120i q^{48} -58.3240 q^{49} -649.224i q^{50} -59.3964 q^{51} -639.173 q^{52} -235.184 q^{53} +178.099 q^{54} -325.651 q^{55} -346.336 q^{56} +80.8912 q^{57} +144.718 q^{58} +714.231i q^{59} +146.053i q^{60} +541.701 q^{61} -779.675 q^{62} +529.700i q^{63} +829.745 q^{64} -885.250 q^{65} +65.9718 q^{66} -410.309 q^{67} -943.819i q^{68} -104.883i q^{69} -1469.29 q^{70} -1040.22i q^{71} +457.122i q^{72} -284.957 q^{73} -1745.75i q^{74} +108.846i q^{75} +1285.37i q^{76} +396.572i q^{77} +179.338 q^{78} +1066.64 q^{79} +295.168 q^{80} +684.055 q^{81} -1045.70i q^{82} +1201.98i q^{83} +177.860 q^{84} -1307.18i q^{85} -2043.15i q^{86} -24.2629 q^{87} +342.235i q^{88} -884.858 q^{89} +1939.29i q^{90} +1078.04i q^{91} +1666.61 q^{92} +130.717 q^{93} -2329.68i q^{94} +1780.23i q^{95} -163.177 q^{96} -738.008 q^{97} +260.034i q^{98} +523.428 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q - 258 q^{4} - 34 q^{5} + 48 q^{6} - 564 q^{9} + 22 q^{11} + 118 q^{13} + 60 q^{14} + 1030 q^{16} + 144 q^{20} - 64 q^{21} - 80 q^{23} - 778 q^{24} + 1676 q^{25} - 1146 q^{30} + 308 q^{34} + 2030 q^{36}+ \cdots - 3982 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/269\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.45843i 1.57629i −0.615487 0.788147i \(-0.711041\pi\)
0.615487 0.788147i \(-0.288959\pi\)
\(3\) 0.747483i 0.143853i 0.997410 + 0.0719266i \(0.0229147\pi\)
−0.997410 + 0.0719266i \(0.977085\pi\)
\(4\) −11.8776 −1.48470
\(5\) −16.4504 −1.47137 −0.735686 0.677323i \(-0.763140\pi\)
−0.735686 + 0.677323i \(0.763140\pi\)
\(6\) 3.33261 0.226755
\(7\) 20.0331i 1.08168i 0.841124 + 0.540842i \(0.181894\pi\)
−0.841124 + 0.540842i \(0.818106\pi\)
\(8\) 17.2882i 0.764037i
\(9\) 26.4413 0.979306
\(10\) 73.3432i 2.31932i
\(11\) 19.7959 0.542607 0.271304 0.962494i \(-0.412545\pi\)
0.271304 + 0.962494i \(0.412545\pi\)
\(12\) 8.87834i 0.213580i
\(13\) 53.8132 1.14808 0.574042 0.818826i \(-0.305375\pi\)
0.574042 + 0.818826i \(0.305375\pi\)
\(14\) 89.3161 1.70505
\(15\) 12.2964i 0.211662i
\(16\) −17.9428 −0.280357
\(17\) 79.4618i 1.13367i 0.823833 + 0.566833i \(0.191832\pi\)
−0.823833 + 0.566833i \(0.808168\pi\)
\(18\) 117.887i 1.54368i
\(19\) 108.218i 1.30668i −0.757065 0.653340i \(-0.773367\pi\)
0.757065 0.653340i \(-0.226633\pi\)
\(20\) 195.392 2.18455
\(21\) −14.9744 −0.155604
\(22\) 88.2586i 0.855309i
\(23\) −140.315 −1.27207 −0.636037 0.771659i \(-0.719427\pi\)
−0.636037 + 0.771659i \(0.719427\pi\)
\(24\) −12.9226 −0.109909
\(25\) 145.617 1.16494
\(26\) 239.922i 1.80972i
\(27\) 39.9465i 0.284730i
\(28\) 237.946i 1.60598i
\(29\) 32.4595i 0.207847i 0.994585 + 0.103924i \(0.0331398\pi\)
−0.994585 + 0.103924i \(0.966860\pi\)
\(30\) −54.8228 −0.333641
\(31\) 174.877i 1.01319i −0.862185 0.506593i \(-0.830905\pi\)
0.862185 0.506593i \(-0.169095\pi\)
\(32\) 218.302i 1.20596i
\(33\) 14.7971i 0.0780558i
\(34\) 354.275 1.78699
\(35\) 329.553i 1.59156i
\(36\) −314.060 −1.45398
\(37\) 391.562 1.73980 0.869898 0.493232i \(-0.164185\pi\)
0.869898 + 0.493232i \(0.164185\pi\)
\(38\) −482.483 −2.05971
\(39\) 40.2244i 0.165156i
\(40\) 284.398i 1.12418i
\(41\) 234.544 0.893404 0.446702 0.894683i \(-0.352598\pi\)
0.446702 + 0.894683i \(0.352598\pi\)
\(42\) 66.7623i 0.245277i
\(43\) 458.267 1.62523 0.812616 0.582799i \(-0.198043\pi\)
0.812616 + 0.582799i \(0.198043\pi\)
\(44\) −235.128 −0.805611
\(45\) −434.971 −1.44092
\(46\) 625.585i 2.00516i
\(47\) 522.533 1.62169 0.810844 0.585263i \(-0.199009\pi\)
0.810844 + 0.585263i \(0.199009\pi\)
\(48\) 13.4120i 0.0403303i
\(49\) −58.3240 −0.170041
\(50\) 649.224i 1.83628i
\(51\) −59.3964 −0.163082
\(52\) −639.173 −1.70457
\(53\) −235.184 −0.609528 −0.304764 0.952428i \(-0.598578\pi\)
−0.304764 + 0.952428i \(0.598578\pi\)
\(54\) 178.099 0.448818
\(55\) −325.651 −0.798377
\(56\) −346.336 −0.826447
\(57\) 80.8912 0.187970
\(58\) 144.718 0.327629
\(59\) 714.231i 1.57602i 0.615665 + 0.788008i \(0.288888\pi\)
−0.615665 + 0.788008i \(0.711112\pi\)
\(60\) 146.053i 0.314255i
\(61\) 541.701 1.13701 0.568506 0.822679i \(-0.307522\pi\)
0.568506 + 0.822679i \(0.307522\pi\)
\(62\) −779.675 −1.59708
\(63\) 529.700i 1.05930i
\(64\) 829.745 1.62059
\(65\) −885.250 −1.68926
\(66\) 65.9718 0.123039
\(67\) −410.309 −0.748167 −0.374083 0.927395i \(-0.622043\pi\)
−0.374083 + 0.927395i \(0.622043\pi\)
\(68\) 943.819i 1.68316i
\(69\) 104.883i 0.182992i
\(70\) −1469.29 −2.50877
\(71\) 1040.22i 1.73875i −0.494151 0.869376i \(-0.664521\pi\)
0.494151 0.869376i \(-0.335479\pi\)
\(72\) 457.122i 0.748226i
\(73\) −284.957 −0.456873 −0.228436 0.973559i \(-0.573361\pi\)
−0.228436 + 0.973559i \(0.573361\pi\)
\(74\) 1745.75i 2.74243i
\(75\) 108.846i 0.167580i
\(76\) 1285.37i 1.94003i
\(77\) 396.572i 0.586930i
\(78\) 179.338 0.260334
\(79\) 1066.64 1.51906 0.759531 0.650472i \(-0.225429\pi\)
0.759531 + 0.650472i \(0.225429\pi\)
\(80\) 295.168 0.412509
\(81\) 684.055 0.938347
\(82\) 1045.70i 1.40827i
\(83\) 1201.98i 1.58957i 0.606890 + 0.794786i \(0.292417\pi\)
−0.606890 + 0.794786i \(0.707583\pi\)
\(84\) 177.860 0.231026
\(85\) 1307.18i 1.66805i
\(86\) 2043.15i 2.56185i
\(87\) −24.2629 −0.0298995
\(88\) 342.235i 0.414572i
\(89\) −884.858 −1.05387 −0.526937 0.849904i \(-0.676660\pi\)
−0.526937 + 0.849904i \(0.676660\pi\)
\(90\) 1939.29i 2.27132i
\(91\) 1078.04i 1.24186i
\(92\) 1666.61 1.88865
\(93\) 130.717 0.145750
\(94\) 2329.68i 2.55626i
\(95\) 1780.23i 1.92261i
\(96\) −163.177 −0.173482
\(97\) −738.008 −0.772509 −0.386254 0.922392i \(-0.626231\pi\)
−0.386254 + 0.922392i \(0.626231\pi\)
\(98\) 260.034i 0.268034i
\(99\) 523.428 0.531379
\(100\) −1729.59 −1.72959
\(101\) 818.116i 0.805996i 0.915201 + 0.402998i \(0.132032\pi\)
−0.915201 + 0.402998i \(0.867968\pi\)
\(102\) 264.815i 0.257065i
\(103\) 159.594 0.152672 0.0763361 0.997082i \(-0.475678\pi\)
0.0763361 + 0.997082i \(0.475678\pi\)
\(104\) 930.332i 0.877179i
\(105\) 246.335 0.228951
\(106\) 1048.55i 0.960796i
\(107\) 561.611i 0.507411i −0.967281 0.253706i \(-0.918351\pi\)
0.967281 0.253706i \(-0.0816494\pi\)
\(108\) 474.470i 0.422739i
\(109\) 1021.01i 0.897206i −0.893731 0.448603i \(-0.851922\pi\)
0.893731 0.448603i \(-0.148078\pi\)
\(110\) 1451.89i 1.25848i
\(111\) 292.686i 0.250275i
\(112\) 359.450i 0.303258i
\(113\) 2232.65i 1.85867i 0.369236 + 0.929336i \(0.379619\pi\)
−0.369236 + 0.929336i \(0.620381\pi\)
\(114\) 360.648i 0.296296i
\(115\) 2308.24 1.87169
\(116\) 385.542i 0.308592i
\(117\) 1422.89 1.12433
\(118\) 3184.35 2.48427
\(119\) −1591.86 −1.22627
\(120\) 212.583 0.161717
\(121\) −939.124 −0.705577
\(122\) 2415.14i 1.79227i
\(123\) 175.318i 0.128519i
\(124\) 2077.12i 1.50428i
\(125\) −339.159 −0.242682
\(126\) 2361.63 1.66977
\(127\) 324.230 0.226541 0.113271 0.993564i \(-0.463867\pi\)
0.113271 + 0.993564i \(0.463867\pi\)
\(128\) 1952.94i 1.34857i
\(129\) 342.547i 0.233795i
\(130\) 3946.83i 2.66277i
\(131\) 655.006 0.436856 0.218428 0.975853i \(-0.429907\pi\)
0.218428 + 0.975853i \(0.429907\pi\)
\(132\) 175.754i 0.115890i
\(133\) 2167.94 1.41341
\(134\) 1829.33i 1.17933i
\(135\) 657.137i 0.418943i
\(136\) −1373.75 −0.866163
\(137\) 1003.06i 0.625527i 0.949831 + 0.312763i \(0.101255\pi\)
−0.949831 + 0.312763i \(0.898745\pi\)
\(138\) −467.614 −0.288449
\(139\) 1487.82i 0.907880i 0.891032 + 0.453940i \(0.149982\pi\)
−0.891032 + 0.453940i \(0.850018\pi\)
\(140\) 3914.31i 2.36300i
\(141\) 390.585i 0.233285i
\(142\) −4637.75 −2.74079
\(143\) 1065.28 0.622958
\(144\) −474.432 −0.274555
\(145\) 533.973i 0.305821i
\(146\) 1270.46i 0.720166i
\(147\) 43.5962i 0.0244609i
\(148\) −4650.83 −2.58308
\(149\) −1381.96 −0.759830 −0.379915 0.925021i \(-0.624047\pi\)
−0.379915 + 0.925021i \(0.624047\pi\)
\(150\) 485.284 0.264155
\(151\) 632.461 0.340854 0.170427 0.985370i \(-0.445485\pi\)
0.170427 + 0.985370i \(0.445485\pi\)
\(152\) 1870.89 0.998352
\(153\) 2101.07i 1.11021i
\(154\) 1768.09 0.925174
\(155\) 2876.80i 1.49077i
\(156\) 477.771i 0.245207i
\(157\) 555.403i 0.282331i 0.989986 + 0.141166i \(0.0450850\pi\)
−0.989986 + 0.141166i \(0.954915\pi\)
\(158\) 4755.52i 2.39449i
\(159\) 175.796i 0.0876826i
\(160\) 3591.17i 1.77442i
\(161\) 2810.94i 1.37598i
\(162\) 3049.81i 1.47911i
\(163\) 211.438i 0.101602i 0.998709 + 0.0508009i \(0.0161774\pi\)
−0.998709 + 0.0508009i \(0.983823\pi\)
\(164\) −2785.83 −1.32644
\(165\) 243.419i 0.114849i
\(166\) 5358.95 2.50563
\(167\) 3219.33i 1.49173i −0.666096 0.745866i \(-0.732036\pi\)
0.666096 0.745866i \(-0.267964\pi\)
\(168\) 258.880i 0.118887i
\(169\) 698.857 0.318096
\(170\) −5827.99 −2.62933
\(171\) 2861.42i 1.27964i
\(172\) −5443.12 −2.41299
\(173\) 1481.90 0.651253 0.325626 0.945498i \(-0.394425\pi\)
0.325626 + 0.945498i \(0.394425\pi\)
\(174\) 108.175i 0.0471305i
\(175\) 2917.16i 1.26009i
\(176\) −355.194 −0.152124
\(177\) −533.876 −0.226715
\(178\) 3945.08i 1.66122i
\(179\) 684.319i 0.285745i 0.989741 + 0.142873i \(0.0456339\pi\)
−0.989741 + 0.142873i \(0.954366\pi\)
\(180\) 5166.42 2.13935
\(181\) 2806.64i 1.15258i −0.817247 0.576288i \(-0.804501\pi\)
0.817247 0.576288i \(-0.195499\pi\)
\(182\) 4806.38 1.95754
\(183\) 404.913i 0.163563i
\(184\) 2425.79i 0.971912i
\(185\) −6441.37 −2.55989
\(186\) 582.794i 0.229745i
\(187\) 1573.02i 0.615136i
\(188\) −6206.46 −2.40773
\(189\) −800.250 −0.307988
\(190\) 7937.06 3.03060
\(191\) −2094.78 −0.793575 −0.396787 0.917911i \(-0.629875\pi\)
−0.396787 + 0.917911i \(0.629875\pi\)
\(192\) 620.220i 0.233128i
\(193\) 3695.29i 1.37820i −0.724667 0.689100i \(-0.758006\pi\)
0.724667 0.689100i \(-0.241994\pi\)
\(194\) 3290.36i 1.21770i
\(195\) 661.710i 0.243005i
\(196\) 692.751 0.252460
\(197\) 2454.57i 0.887720i −0.896096 0.443860i \(-0.853609\pi\)
0.896096 0.443860i \(-0.146391\pi\)
\(198\) 2333.67i 0.837609i
\(199\) 1001.24 0.356663 0.178331 0.983970i \(-0.442930\pi\)
0.178331 + 0.983970i \(0.442930\pi\)
\(200\) 2517.45i 0.890054i
\(201\) 306.699i 0.107626i
\(202\) 3647.52 1.27049
\(203\) −650.263 −0.224825
\(204\) 705.489 0.242128
\(205\) −3858.35 −1.31453
\(206\) 711.539i 0.240656i
\(207\) −3710.11 −1.24575
\(208\) −965.561 −0.321873
\(209\) 2142.27i 0.709014i
\(210\) 1098.27i 0.360894i
\(211\) −2893.77 −0.944149 −0.472074 0.881559i \(-0.656495\pi\)
−0.472074 + 0.881559i \(0.656495\pi\)
\(212\) 2793.43 0.904969
\(213\) 777.547 0.250125
\(214\) −2503.91 −0.799829
\(215\) −7538.69 −2.39132
\(216\) −690.602 −0.217544
\(217\) 3503.31 1.09595
\(218\) −4552.13 −1.41426
\(219\) 213.001i 0.0657226i
\(220\) 3867.96 1.18535
\(221\) 4276.09i 1.30154i
\(222\) 1304.92 0.394508
\(223\) 4328.16i 1.29971i 0.760058 + 0.649855i \(0.225170\pi\)
−0.760058 + 0.649855i \(0.774830\pi\)
\(224\) −4373.27 −1.30447
\(225\) 3850.30 1.14083
\(226\) 9954.11 2.92981
\(227\) 4113.13i 1.20263i −0.799011 0.601317i \(-0.794643\pi\)
0.799011 0.601317i \(-0.205357\pi\)
\(228\) −960.796 −0.279080
\(229\) 2704.96i 0.780563i 0.920696 + 0.390282i \(0.127622\pi\)
−0.920696 + 0.390282i \(0.872378\pi\)
\(230\) 10291.2i 2.95034i
\(231\) −296.431 −0.0844317
\(232\) −561.166 −0.158803
\(233\) 1882.39 0.529269 0.264635 0.964349i \(-0.414749\pi\)
0.264635 + 0.964349i \(0.414749\pi\)
\(234\) 6343.85i 1.77227i
\(235\) −8595.90 −2.38611
\(236\) 8483.38i 2.33992i
\(237\) 797.292i 0.218522i
\(238\) 7097.23i 1.93296i
\(239\) 2075.90 0.561835 0.280918 0.959732i \(-0.409361\pi\)
0.280918 + 0.959732i \(0.409361\pi\)
\(240\) 220.633i 0.0593408i
\(241\) 7100.72i 1.89792i 0.315404 + 0.948958i \(0.397860\pi\)
−0.315404 + 0.948958i \(0.602140\pi\)
\(242\) 4187.02i 1.11220i
\(243\) 1589.87i 0.419714i
\(244\) −6434.13 −1.68813
\(245\) 959.455 0.250193
\(246\) 781.642 0.202584
\(247\) 5823.55i 1.50018i
\(248\) 3023.30 0.774111
\(249\) −898.460 −0.228665
\(250\) 1512.12i 0.382539i
\(251\) 424.166i 0.106666i 0.998577 + 0.0533330i \(0.0169845\pi\)
−0.998577 + 0.0533330i \(0.983016\pi\)
\(252\) 6291.58i 1.57275i
\(253\) −2777.66 −0.690236
\(254\) 1445.56i 0.357096i
\(255\) 977.097 0.239954
\(256\) −2069.11 −0.505153
\(257\) 1365.07i 0.331326i −0.986182 0.165663i \(-0.947024\pi\)
0.986182 0.165663i \(-0.0529764\pi\)
\(258\) 1527.22 0.368530
\(259\) 7844.20i 1.88191i
\(260\) 10514.7 2.50805
\(261\) 858.270i 0.203546i
\(262\) 2920.30i 0.688614i
\(263\) 2909.24 0.682096 0.341048 0.940046i \(-0.389218\pi\)
0.341048 + 0.940046i \(0.389218\pi\)
\(264\) −255.815 −0.0596375
\(265\) 3868.88 0.896843
\(266\) 9665.62i 2.22796i
\(267\) 661.417i 0.151603i
\(268\) 4873.50 1.11081
\(269\) 756.176 + 4346.64i 0.171393 + 0.985203i
\(270\) −2929.80 −0.660378
\(271\) 4670.81i 1.04698i −0.852032 0.523490i \(-0.824630\pi\)
0.852032 0.523490i \(-0.175370\pi\)
\(272\) 1425.77i 0.317831i
\(273\) −805.819 −0.178646
\(274\) 4472.08 0.986015
\(275\) 2882.62 0.632103
\(276\) 1245.76i 0.271689i
\(277\) 2417.22i 0.524320i −0.965024 0.262160i \(-0.915565\pi\)
0.965024 0.262160i \(-0.0844348\pi\)
\(278\) 6633.35 1.43109
\(279\) 4623.96i 0.992219i
\(280\) 5697.37 1.21601
\(281\) 2877.15i 0.610805i 0.952223 + 0.305402i \(0.0987910\pi\)
−0.952223 + 0.305402i \(0.901209\pi\)
\(282\) 1741.40 0.367726
\(283\) 5652.21 1.18724 0.593620 0.804745i \(-0.297698\pi\)
0.593620 + 0.804745i \(0.297698\pi\)
\(284\) 12355.4i 2.58153i
\(285\) −1330.70 −0.276574
\(286\) 4749.47i 0.981966i
\(287\) 4698.63i 0.966381i
\(288\) 5772.19i 1.18101i
\(289\) −1401.19 −0.285200
\(290\) −2380.68 −0.482064
\(291\) 551.649i 0.111128i
\(292\) 3384.62 0.678321
\(293\) 4767.45 0.950571 0.475285 0.879832i \(-0.342345\pi\)
0.475285 + 0.879832i \(0.342345\pi\)
\(294\) −194.371 −0.0385576
\(295\) 11749.4i 2.31891i
\(296\) 6769.40i 1.32927i
\(297\) 790.775i 0.154496i
\(298\) 6161.38i 1.19772i
\(299\) −7550.79 −1.46045
\(300\) 1292.84i 0.248807i
\(301\) 9180.49i 1.75799i
\(302\) 2819.78i 0.537286i
\(303\) −611.528 −0.115945
\(304\) 1941.74i 0.366337i
\(305\) −8911.22 −1.67297
\(306\) 9367.49 1.75001
\(307\) 7206.97 1.33982 0.669908 0.742444i \(-0.266334\pi\)
0.669908 + 0.742444i \(0.266334\pi\)
\(308\) 4710.34i 0.871417i
\(309\) 119.294i 0.0219624i
\(310\) 12826.0 2.34990
\(311\) 474.044i 0.0864326i −0.999066 0.0432163i \(-0.986240\pi\)
0.999066 0.0432163i \(-0.0137605\pi\)
\(312\) −695.408 −0.126185
\(313\) −9439.98 −1.70473 −0.852363 0.522951i \(-0.824831\pi\)
−0.852363 + 0.522951i \(0.824831\pi\)
\(314\) 2476.23 0.445037
\(315\) 8713.80i 1.55862i
\(316\) −12669.1 −2.25536
\(317\) 8030.93i 1.42291i −0.702733 0.711454i \(-0.748037\pi\)
0.702733 0.711454i \(-0.251963\pi\)
\(318\) −783.775 −0.138214
\(319\) 642.564i 0.112779i
\(320\) −13649.7 −2.38450
\(321\) 419.795 0.0729927
\(322\) −12532.4 −2.16895
\(323\) 8599.20 1.48134
\(324\) −8124.96 −1.39317
\(325\) 7836.11 1.33744
\(326\) 942.683 0.160155
\(327\) 763.192 0.129066
\(328\) 4054.84i 0.682594i
\(329\) 10467.9i 1.75415i
\(330\) −1085.27 −0.181036
\(331\) −11177.9 −1.85618 −0.928089 0.372358i \(-0.878549\pi\)
−0.928089 + 0.372358i \(0.878549\pi\)
\(332\) 14276.7i 2.36004i
\(333\) 10353.4 1.70379
\(334\) −14353.2 −2.35141
\(335\) 6749.76 1.10083
\(336\) 268.683 0.0436246
\(337\) 1348.61i 0.217993i 0.994042 + 0.108997i \(0.0347637\pi\)
−0.994042 + 0.108997i \(0.965236\pi\)
\(338\) 3115.81i 0.501413i
\(339\) −1668.87 −0.267376
\(340\) 15526.2i 2.47655i
\(341\) 3461.83i 0.549762i
\(342\) −12757.5 −2.01709
\(343\) 5702.94i 0.897754i
\(344\) 7922.60i 1.24174i
\(345\) 1725.37i 0.269249i
\(346\) 6606.95i 1.02657i
\(347\) 3923.90 0.607049 0.303525 0.952824i \(-0.401837\pi\)
0.303525 + 0.952824i \(0.401837\pi\)
\(348\) 288.186 0.0443920
\(349\) −578.456 −0.0887222 −0.0443611 0.999016i \(-0.514125\pi\)
−0.0443611 + 0.999016i \(0.514125\pi\)
\(350\) 13005.9 1.98628
\(351\) 2149.65i 0.326893i
\(352\) 4321.49i 0.654364i
\(353\) −3773.75 −0.568999 −0.284500 0.958676i \(-0.591827\pi\)
−0.284500 + 0.958676i \(0.591827\pi\)
\(354\) 2380.25i 0.357370i
\(355\) 17112.1i 2.55835i
\(356\) 10510.0 1.56469
\(357\) 1189.89i 0.176403i
\(358\) 3050.99 0.450418
\(359\) 3579.15i 0.526185i −0.964771 0.263093i \(-0.915258\pi\)
0.964771 0.263093i \(-0.0847425\pi\)
\(360\) 7519.85i 1.10092i
\(361\) −4852.14 −0.707412
\(362\) −12513.2 −1.81680
\(363\) 701.979i 0.101500i
\(364\) 12804.6i 1.84380i
\(365\) 4687.67 0.672230
\(366\) 1805.28 0.257823
\(367\) 10255.3i 1.45864i −0.684171 0.729321i \(-0.739836\pi\)
0.684171 0.729321i \(-0.260164\pi\)
\(368\) 2517.65 0.356635
\(369\) 6201.63 0.874916
\(370\) 28718.4i 4.03514i
\(371\) 4711.46i 0.659317i
\(372\) −1552.61 −0.216396
\(373\) 7723.23i 1.07210i 0.844186 + 0.536051i \(0.180084\pi\)
−0.844186 + 0.536051i \(0.819916\pi\)
\(374\) 7013.19 0.969635
\(375\) 253.516i 0.0349106i
\(376\) 9033.65i 1.23903i
\(377\) 1746.75i 0.238626i
\(378\) 3567.86i 0.485479i
\(379\) 1335.38i 0.180987i −0.995897 0.0904934i \(-0.971156\pi\)
0.995897 0.0904934i \(-0.0288444\pi\)
\(380\) 21145.0i 2.85451i
\(381\) 242.356i 0.0325887i
\(382\) 9339.43i 1.25091i
\(383\) 6313.05i 0.842250i −0.907003 0.421125i \(-0.861635\pi\)
0.907003 0.421125i \(-0.138365\pi\)
\(384\) 1459.79 0.193997
\(385\) 6523.79i 0.863592i
\(386\) −16475.2 −2.17245
\(387\) 12117.1 1.59160
\(388\) 8765.79 1.14695
\(389\) −12377.7 −1.61330 −0.806652 0.591027i \(-0.798723\pi\)
−0.806652 + 0.591027i \(0.798723\pi\)
\(390\) −2950.19 −0.383048
\(391\) 11149.7i 1.44211i
\(392\) 1008.32i 0.129917i
\(393\) 489.606i 0.0628432i
\(394\) −10943.5 −1.39931
\(395\) −17546.6 −2.23510
\(396\) −6217.09 −0.788940
\(397\) 13116.5i 1.65818i 0.559113 + 0.829091i \(0.311142\pi\)
−0.559113 + 0.829091i \(0.688858\pi\)
\(398\) 4463.95i 0.562205i
\(399\) 1620.50i 0.203324i
\(400\) −2612.78 −0.326598
\(401\) 1509.68i 0.188004i 0.995572 + 0.0940022i \(0.0299661\pi\)
−0.995572 + 0.0940022i \(0.970034\pi\)
\(402\) −1367.40 −0.169651
\(403\) 9410.66i 1.16322i
\(404\) 9717.29i 1.19667i
\(405\) −11253.0 −1.38066
\(406\) 2899.16i 0.354391i
\(407\) 7751.32 0.944026
\(408\) 1026.86i 0.124600i
\(409\) 9736.34i 1.17709i −0.808463 0.588546i \(-0.799700\pi\)
0.808463 0.588546i \(-0.200300\pi\)
\(410\) 17202.2i 2.07209i
\(411\) −749.771 −0.0899841
\(412\) −1895.60 −0.226673
\(413\) −14308.2 −1.70475
\(414\) 16541.3i 1.96367i
\(415\) 19773.1i 2.33885i
\(416\) 11747.5i 1.38455i
\(417\) −1112.12 −0.130602
\(418\) −9551.17 −1.11761
\(419\) 1550.89 0.180826 0.0904128 0.995904i \(-0.471181\pi\)
0.0904128 + 0.995904i \(0.471181\pi\)
\(420\) −2925.88 −0.339925
\(421\) 32.8012 0.00379722 0.00189861 0.999998i \(-0.499396\pi\)
0.00189861 + 0.999998i \(0.499396\pi\)
\(422\) 12901.7i 1.48826i
\(423\) 13816.4 1.58813
\(424\) 4065.90i 0.465702i
\(425\) 11571.0i 1.32065i
\(426\) 3466.64i 0.394271i
\(427\) 10851.9i 1.22989i
\(428\) 6670.61i 0.753356i
\(429\) 796.278i 0.0896146i
\(430\) 33610.7i 3.76943i
\(431\) 5213.64i 0.582673i −0.956621 0.291336i \(-0.905900\pi\)
0.956621 0.291336i \(-0.0940999\pi\)
\(432\) 716.753i 0.0798259i
\(433\) −1156.14 −0.128315 −0.0641575 0.997940i \(-0.520436\pi\)
−0.0641575 + 0.997940i \(0.520436\pi\)
\(434\) 15619.3i 1.72753i
\(435\) 399.136 0.0439933
\(436\) 12127.2i 1.33209i
\(437\) 15184.6i 1.66219i
\(438\) −949.649 −0.103598
\(439\) 388.981 0.0422895 0.0211447 0.999776i \(-0.493269\pi\)
0.0211447 + 0.999776i \(0.493269\pi\)
\(440\) 5629.91i 0.609990i
\(441\) −1542.16 −0.166522
\(442\) 19064.7 2.05162
\(443\) 2199.62i 0.235908i 0.993019 + 0.117954i \(0.0376336\pi\)
−0.993019 + 0.117954i \(0.962366\pi\)
\(444\) 3476.42i 0.371585i
\(445\) 14556.3 1.55064
\(446\) 19296.8 2.04872
\(447\) 1032.99i 0.109304i
\(448\) 16622.3i 1.75297i
\(449\) −10483.3 −1.10187 −0.550935 0.834548i \(-0.685729\pi\)
−0.550935 + 0.834548i \(0.685729\pi\)
\(450\) 17166.3i 1.79828i
\(451\) 4643.00 0.484768
\(452\) 26518.6i 2.75958i
\(453\) 472.754i 0.0490329i
\(454\) −18338.1 −1.89570
\(455\) 17734.3i 1.82724i
\(456\) 1398.46i 0.143616i
\(457\) −4680.29 −0.479069 −0.239535 0.970888i \(-0.576995\pi\)
−0.239535 + 0.970888i \(0.576995\pi\)
\(458\) 12059.9 1.23040
\(459\) −3174.22 −0.322788
\(460\) −27416.5 −2.77891
\(461\) 8646.51i 0.873554i 0.899570 + 0.436777i \(0.143880\pi\)
−0.899570 + 0.436777i \(0.856120\pi\)
\(462\) 1321.62i 0.133089i
\(463\) 2096.75i 0.210462i 0.994448 + 0.105231i \(0.0335582\pi\)
−0.994448 + 0.105231i \(0.966442\pi\)
\(464\) 582.415i 0.0582715i
\(465\) −2150.36 −0.214453
\(466\) 8392.53i 0.834284i
\(467\) 9740.06i 0.965131i −0.875860 0.482565i \(-0.839705\pi\)
0.875860 0.482565i \(-0.160295\pi\)
\(468\) −16900.6 −1.66929
\(469\) 8219.74i 0.809280i
\(470\) 38324.3i 3.76121i
\(471\) −415.155 −0.0406143
\(472\) −12347.8 −1.20414
\(473\) 9071.78 0.881863
\(474\) 3554.67 0.344455
\(475\) 15758.4i 1.52220i
\(476\) 18907.6 1.82065
\(477\) −6218.56 −0.596915
\(478\) 9255.25i 0.885618i
\(479\) 5090.11i 0.485539i −0.970084 0.242769i \(-0.921944\pi\)
0.970084 0.242769i \(-0.0780558\pi\)
\(480\) 2684.34 0.255256
\(481\) 21071.2 1.99743
\(482\) 31658.1 2.99167
\(483\) 2101.13 0.197939
\(484\) 11154.6 1.04757
\(485\) 12140.6 1.13665
\(486\) 7088.35 0.661593
\(487\) 5839.88 0.543389 0.271694 0.962384i \(-0.412416\pi\)
0.271694 + 0.962384i \(0.412416\pi\)
\(488\) 9365.03i 0.868719i
\(489\) −158.046 −0.0146158
\(490\) 4277.67i 0.394378i
\(491\) −2212.59 −0.203366 −0.101683 0.994817i \(-0.532423\pi\)
−0.101683 + 0.994817i \(0.532423\pi\)
\(492\) 2082.36i 0.190813i
\(493\) −2579.29 −0.235630
\(494\) −25963.9 −2.36472
\(495\) −8610.62 −0.781856
\(496\) 3137.78i 0.284054i
\(497\) 20838.8 1.88078
\(498\) 4005.73i 0.360444i
\(499\) 13306.1i 1.19371i −0.802348 0.596856i \(-0.796416\pi\)
0.802348 0.596856i \(-0.203584\pi\)
\(500\) 4028.40 0.360311
\(501\) 2406.40 0.214590
\(502\) 1891.12 0.168137
\(503\) 12126.7i 1.07496i −0.843277 0.537479i \(-0.819377\pi\)
0.843277 0.537479i \(-0.180623\pi\)
\(504\) −9157.55 −0.809345
\(505\) 13458.4i 1.18592i
\(506\) 12384.0i 1.08802i
\(507\) 522.384i 0.0457591i
\(508\) −3851.08 −0.336347
\(509\) 1572.21i 0.136910i 0.997654 + 0.0684549i \(0.0218069\pi\)
−0.997654 + 0.0684549i \(0.978193\pi\)
\(510\) 4356.32i 0.378238i
\(511\) 5708.57i 0.494192i
\(512\) 6398.56i 0.552303i
\(513\) 4322.93 0.372050
\(514\) −6086.08 −0.522268
\(515\) −2625.39 −0.224638
\(516\) 4068.64i 0.347116i
\(517\) 10344.0 0.879939
\(518\) 34972.8 2.96644
\(519\) 1107.70i 0.0936849i
\(520\) 15304.4i 1.29066i
\(521\) 4338.75i 0.364845i 0.983220 + 0.182422i \(0.0583938\pi\)
−0.983220 + 0.182422i \(0.941606\pi\)
\(522\) 3826.54 0.320849
\(523\) 21042.1i 1.75929i 0.475634 + 0.879644i \(0.342219\pi\)
−0.475634 + 0.879644i \(0.657781\pi\)
\(524\) −7779.93 −0.648603
\(525\) −2180.53 −0.181268
\(526\) 12970.6i 1.07518i
\(527\) 13896.0 1.14861
\(528\) 265.502i 0.0218835i
\(529\) 7521.29 0.618171
\(530\) 17249.1i 1.41369i
\(531\) 18885.2i 1.54340i
\(532\) −25750.0 −2.09850
\(533\) 12621.5 1.02570
\(534\) −2948.88 −0.238971
\(535\) 9238.75i 0.746591i
\(536\) 7093.49i 0.571627i
\(537\) −511.517 −0.0411054
\(538\) 19379.2 3371.36i 1.55297 0.270167i
\(539\) −1154.57 −0.0922653
\(540\) 7805.23i 0.622007i
\(541\) 12490.1i 0.992586i −0.868155 0.496293i \(-0.834694\pi\)
0.868155 0.496293i \(-0.165306\pi\)
\(542\) −20824.5 −1.65035
\(543\) 2097.92 0.165802
\(544\) −17346.7 −1.36716
\(545\) 16796.1i 1.32012i
\(546\) 3592.69i 0.281599i
\(547\) −22040.9 −1.72286 −0.861428 0.507881i \(-0.830429\pi\)
−0.861428 + 0.507881i \(0.830429\pi\)
\(548\) 11914.0i 0.928723i
\(549\) 14323.3 1.11348
\(550\) 12851.9i 0.996380i
\(551\) 3512.70 0.271590
\(552\) 1813.24 0.139813
\(553\) 21368.0i 1.64314i
\(554\) −10777.0 −0.826483
\(555\) 4814.82i 0.368248i
\(556\) 17671.8i 1.34793i
\(557\) 1291.94i 0.0982790i 0.998792 + 0.0491395i \(0.0156479\pi\)
−0.998792 + 0.0491395i \(0.984352\pi\)
\(558\) −20615.6 −1.56403
\(559\) 24660.8 1.86590
\(560\) 5913.12i 0.446205i
\(561\) −1175.80 −0.0884892
\(562\) 12827.6 0.962808
\(563\) 5542.17 0.414875 0.207438 0.978248i \(-0.433488\pi\)
0.207438 + 0.978248i \(0.433488\pi\)
\(564\) 4639.23i 0.346359i
\(565\) 36728.0i 2.73480i
\(566\) 25200.0i 1.87144i
\(567\) 13703.7i 1.01500i
\(568\) 17983.5 1.32847
\(569\) 5251.84i 0.386940i −0.981106 0.193470i \(-0.938026\pi\)
0.981106 0.193470i \(-0.0619742\pi\)
\(570\) 5932.82i 0.435962i
\(571\) 10156.2i 0.744349i 0.928163 + 0.372174i \(0.121388\pi\)
−0.928163 + 0.372174i \(0.878612\pi\)
\(572\) −12653.0 −0.924909
\(573\) 1565.81i 0.114158i
\(574\) 20948.5 1.52330
\(575\) −20432.2 −1.48188
\(576\) 21939.5 1.58706
\(577\) 21691.8i 1.56507i −0.622609 0.782533i \(-0.713927\pi\)
0.622609 0.782533i \(-0.286073\pi\)
\(578\) 6247.09i 0.449558i
\(579\) 2762.16 0.198258
\(580\) 6342.33i 0.454054i
\(581\) −24079.4 −1.71941
\(582\) −2459.49 −0.175170
\(583\) −4655.67 −0.330734
\(584\) 4926.39i 0.349068i
\(585\) −23407.1 −1.65430
\(586\) 21255.3i 1.49838i
\(587\) 23401.1 1.64543 0.822715 0.568454i \(-0.192458\pi\)
0.822715 + 0.568454i \(0.192458\pi\)
\(588\) 517.820i 0.0363172i
\(589\) −18924.8 −1.32391
\(590\) −52384.0 −3.65528
\(591\) 1834.75 0.127701
\(592\) −7025.74 −0.487764
\(593\) 18192.5 1.25983 0.629913 0.776666i \(-0.283090\pi\)
0.629913 + 0.776666i \(0.283090\pi\)
\(594\) 3525.62 0.243532
\(595\) 26186.9 1.80430
\(596\) 16414.4 1.12812
\(597\) 748.409i 0.0513071i
\(598\) 33664.7i 2.30209i
\(599\) −4207.80 −0.287022 −0.143511 0.989649i \(-0.545839\pi\)
−0.143511 + 0.989649i \(0.545839\pi\)
\(600\) −1881.76 −0.128037
\(601\) 2855.62i 0.193816i 0.995293 + 0.0969079i \(0.0308952\pi\)
−0.995293 + 0.0969079i \(0.969105\pi\)
\(602\) 40930.6 2.77111
\(603\) −10849.1 −0.732684
\(604\) −7512.14 −0.506067
\(605\) 15449.0 1.03817
\(606\) 2726.46i 0.182764i
\(607\) 5016.25i 0.335426i 0.985836 + 0.167713i \(0.0536381\pi\)
−0.985836 + 0.167713i \(0.946362\pi\)
\(608\) 23624.3 1.57581
\(609\) 486.061i 0.0323418i
\(610\) 39730.1i 2.63709i
\(611\) 28119.2 1.86183
\(612\) 24955.8i 1.64833i
\(613\) 26975.8i 1.77739i 0.458496 + 0.888697i \(0.348388\pi\)
−0.458496 + 0.888697i \(0.651612\pi\)
\(614\) 32131.8i 2.11194i
\(615\) 2884.05i 0.189099i
\(616\) −6856.01 −0.448436
\(617\) −18376.7 −1.19906 −0.599530 0.800353i \(-0.704646\pi\)
−0.599530 + 0.800353i \(0.704646\pi\)
\(618\) 531.863 0.0346192
\(619\) −15077.1 −0.978995 −0.489498 0.872005i \(-0.662820\pi\)
−0.489498 + 0.872005i \(0.662820\pi\)
\(620\) 34169.5i 2.21336i
\(621\) 5605.09i 0.362197i
\(622\) −2113.49 −0.136243
\(623\) 17726.4i 1.13996i
\(624\) 721.741i 0.0463025i
\(625\) −12622.8 −0.807860
\(626\) 42087.5i 2.68715i
\(627\) 1601.31 0.101994
\(628\) 6596.88i 0.419178i
\(629\) 31114.3i 1.97235i
\(630\) −38849.9 −2.45685
\(631\) 11180.8 0.705390 0.352695 0.935738i \(-0.385265\pi\)
0.352695 + 0.935738i \(0.385265\pi\)
\(632\) 18440.2i 1.16062i
\(633\) 2163.05i 0.135819i
\(634\) −35805.4 −2.24292
\(635\) −5333.72 −0.333327
\(636\) 2088.04i 0.130183i
\(637\) −3138.60 −0.195221
\(638\) 2864.83 0.177774
\(639\) 27504.7i 1.70277i
\(640\) 32126.8i 1.98425i
\(641\) −5636.00 −0.347283 −0.173642 0.984809i \(-0.555553\pi\)
−0.173642 + 0.984809i \(0.555553\pi\)
\(642\) 1871.63i 0.115058i
\(643\) −14324.8 −0.878559 −0.439279 0.898351i \(-0.644766\pi\)
−0.439279 + 0.898351i \(0.644766\pi\)
\(644\) 33387.3i 2.04293i
\(645\) 5635.04i 0.343999i
\(646\) 38339.0i 2.33503i
\(647\) 10616.8i 0.645114i −0.946550 0.322557i \(-0.895458\pi\)
0.946550 0.322557i \(-0.104542\pi\)
\(648\) 11826.1i 0.716932i
\(649\) 14138.8i 0.855158i
\(650\) 34936.8i 2.10821i
\(651\) 2618.67i 0.157655i
\(652\) 2511.38i 0.150849i
\(653\) −28168.6 −1.68809 −0.844044 0.536274i \(-0.819831\pi\)
−0.844044 + 0.536274i \(0.819831\pi\)
\(654\) 3402.64i 0.203446i
\(655\) −10775.1 −0.642778
\(656\) −4208.38 −0.250472
\(657\) −7534.63 −0.447418
\(658\) 46670.7 2.76506
\(659\) −26569.3 −1.57055 −0.785274 0.619148i \(-0.787478\pi\)
−0.785274 + 0.619148i \(0.787478\pi\)
\(660\) 2891.24i 0.170517i
\(661\) 8667.44i 0.510022i −0.966938 0.255011i \(-0.917921\pi\)
0.966938 0.255011i \(-0.0820790\pi\)
\(662\) 49836.1i 2.92588i
\(663\) −3196.31 −0.187231
\(664\) −20780.1 −1.21449
\(665\) −35663.6 −2.07966
\(666\) 46160.0i 2.68568i
\(667\) 4554.55i 0.264397i
\(668\) 38238.0i 2.21478i
\(669\) −3235.23 −0.186967
\(670\) 30093.3i 1.73524i
\(671\) 10723.4 0.616951
\(672\) 3268.95i 0.187652i
\(673\) 12938.6i 0.741079i −0.928817 0.370540i \(-0.879173\pi\)
0.928817 0.370540i \(-0.120827\pi\)
\(674\) 6012.71 0.343621
\(675\) 5816.88i 0.331692i
\(676\) −8300.77 −0.472279
\(677\) 30000.7i 1.70313i 0.524249 + 0.851565i \(0.324346\pi\)
−0.524249 + 0.851565i \(0.675654\pi\)
\(678\) 7440.54i 0.421463i
\(679\) 14784.6i 0.835610i
\(680\) 22598.8 1.27445
\(681\) 3074.49 0.173003
\(682\) −15434.4 −0.866586
\(683\) 3237.67i 0.181385i −0.995879 0.0906925i \(-0.971092\pi\)
0.995879 0.0906925i \(-0.0289080\pi\)
\(684\) 33986.9i 1.89989i
\(685\) 16500.8i 0.920383i
\(686\) 25426.2 1.41512
\(687\) −2021.92 −0.112287
\(688\) −8222.60 −0.455645
\(689\) −12656.0 −0.699789
\(690\) 7692.46 0.424416
\(691\) 25012.5i 1.37702i 0.725228 + 0.688508i \(0.241734\pi\)
−0.725228 + 0.688508i \(0.758266\pi\)
\(692\) −17601.5 −0.966918
\(693\) 10485.9i 0.574784i
\(694\) 17494.5i 0.956889i
\(695\) 24475.3i 1.33583i
\(696\) 419.462i 0.0228443i
\(697\) 18637.3i 1.01282i
\(698\) 2579.01i 0.139852i
\(699\) 1407.06i 0.0761371i
\(700\) 34648.9i 1.87087i
\(701\) 24548.6i 1.32266i −0.750093 0.661332i \(-0.769992\pi\)
0.750093 0.661332i \(-0.230008\pi\)
\(702\) 9584.05 0.515280
\(703\) 42374.1i 2.27336i
\(704\) 16425.5 0.879346
\(705\) 6425.30i 0.343249i
\(706\) 16825.0i 0.896910i
\(707\) −16389.4 −0.871833
\(708\) 6341.18 0.336605
\(709\) 298.567i 0.0158151i −0.999969 0.00790756i \(-0.997483\pi\)
0.999969 0.00790756i \(-0.00251708\pi\)
\(710\) 76293.1 4.03272
\(711\) 28203.2 1.48763
\(712\) 15297.6i 0.805199i
\(713\) 24537.8i 1.28885i
\(714\) −5305.06 −0.278063
\(715\) −17524.3 −0.916604
\(716\) 8128.09i 0.424247i
\(717\) 1551.70i 0.0808218i
\(718\) −15957.4 −0.829423
\(719\) 21978.7i 1.14001i −0.821641 0.570005i \(-0.806941\pi\)
0.821641 0.570005i \(-0.193059\pi\)
\(720\) 7804.61 0.403973
\(721\) 3197.15i 0.165143i
\(722\) 21632.9i 1.11509i
\(723\) −5307.67 −0.273021
\(724\) 33336.3i 1.71123i
\(725\) 4726.65i 0.242129i
\(726\) −3129.73 −0.159993
\(727\) −8906.26 −0.454353 −0.227177 0.973854i \(-0.572949\pi\)
−0.227177 + 0.973854i \(0.572949\pi\)
\(728\) −18637.4 −0.948830
\(729\) 17281.1 0.877970
\(730\) 20899.7i 1.05963i
\(731\) 36414.7i 1.84247i
\(732\) 4809.41i 0.242843i
\(733\) 12614.5i 0.635646i 0.948150 + 0.317823i \(0.102952\pi\)
−0.948150 + 0.317823i \(0.897048\pi\)
\(734\) −45722.6 −2.29925
\(735\) 717.177i 0.0359911i
\(736\) 30631.1i 1.53407i
\(737\) −8122.42 −0.405961
\(738\) 27649.6i 1.37913i
\(739\) 9217.46i 0.458823i −0.973330 0.229411i \(-0.926320\pi\)
0.973330 0.229411i \(-0.0736801\pi\)
\(740\) 76508.3 3.80068
\(741\) 4353.01 0.215805
\(742\) −21005.7 −1.03928
\(743\) 21880.3 1.08037 0.540183 0.841547i \(-0.318355\pi\)
0.540183 + 0.841547i \(0.318355\pi\)
\(744\) 2259.87i 0.111358i
\(745\) 22733.9 1.11799
\(746\) 34433.5 1.68995
\(747\) 31781.9i 1.55668i
\(748\) 18683.7i 0.913295i
\(749\) 11250.8 0.548859
\(750\) −1130.28 −0.0550294
\(751\) −29522.4 −1.43447 −0.717235 0.696832i \(-0.754592\pi\)
−0.717235 + 0.696832i \(0.754592\pi\)
\(752\) −9375.73 −0.454651
\(753\) −317.057 −0.0153442
\(754\) 7787.76 0.376145
\(755\) −10404.3 −0.501523
\(756\) 9505.08 0.457271
\(757\) 25257.7i 1.21269i 0.795201 + 0.606346i \(0.207365\pi\)
−0.795201 + 0.606346i \(0.792635\pi\)
\(758\) −5953.72 −0.285289
\(759\) 2076.25i 0.0992927i
\(760\) −30777.0 −1.46895
\(761\) 6128.16i 0.291913i 0.989291 + 0.145956i \(0.0466259\pi\)
−0.989291 + 0.145956i \(0.953374\pi\)
\(762\) 1080.53 0.0513694
\(763\) 20454.1 0.970494
\(764\) 24881.0 1.17822
\(765\) 34563.6i 1.63353i
\(766\) −28146.3 −1.32763
\(767\) 38435.0i 1.80940i
\(768\) 1546.62i 0.0726679i
\(769\) 38812.4 1.82004 0.910021 0.414562i \(-0.136065\pi\)
0.910021 + 0.414562i \(0.136065\pi\)
\(770\) −29085.9 −1.36128
\(771\) 1020.37 0.0476623
\(772\) 43891.3i 2.04622i
\(773\) −9178.07 −0.427053 −0.213527 0.976937i \(-0.568495\pi\)
−0.213527 + 0.976937i \(0.568495\pi\)
\(774\) 54023.5i 2.50883i
\(775\) 25465.0i 1.18030i
\(776\) 12758.8i 0.590225i
\(777\) −5863.41 −0.270719
\(778\) 55185.2i 2.54304i
\(779\) 25381.9i 1.16739i
\(780\) 7859.55i 0.360791i
\(781\) 20592.1i 0.943459i
\(782\) −49710.1 −2.27319
\(783\) −1296.64 −0.0591803
\(784\) 1046.50 0.0476721
\(785\) 9136.63i 0.415414i
\(786\) 2182.88 0.0990594
\(787\) 29667.7 1.34376 0.671879 0.740661i \(-0.265487\pi\)
0.671879 + 0.740661i \(0.265487\pi\)
\(788\) 29154.5i 1.31800i
\(789\) 2174.61i 0.0981217i
\(790\) 78230.4i 3.52318i
\(791\) −44726.8 −2.01050
\(792\) 9049.12i 0.405993i
\(793\) 29150.7 1.30538
\(794\) 58479.1 2.61378
\(795\) 2891.92i 0.129014i
\(796\) −11892.3 −0.529539
\(797\) 9650.21i 0.428893i −0.976736 0.214447i \(-0.931205\pi\)
0.976736 0.214447i \(-0.0687948\pi\)
\(798\) 7224.89 0.320499
\(799\) 41521.5i 1.83845i
\(800\) 31788.6i 1.40487i
\(801\) −23396.8 −1.03207
\(802\) 6730.80 0.296350
\(803\) −5640.97 −0.247902
\(804\) 3642.86i 0.159793i
\(805\) 46241.2i 2.02458i
\(806\) −41956.8 −1.83358
\(807\) −3249.04 + 565.229i −0.141725 + 0.0246555i
\(808\) −14143.7 −0.615811
\(809\) 6170.70i 0.268171i −0.990970 0.134086i \(-0.957190\pi\)
0.990970 0.134086i \(-0.0428097\pi\)
\(810\) 50170.8i 2.17632i
\(811\) 27379.0 1.18546 0.592729 0.805402i \(-0.298050\pi\)
0.592729 + 0.805402i \(0.298050\pi\)
\(812\) 7723.59 0.333799
\(813\) 3491.35 0.150611
\(814\) 34558.7i 1.48806i
\(815\) 3478.25i 0.149494i
\(816\) 1065.74 0.0457211
\(817\) 49592.7i 2.12366i
\(818\) −43408.8 −1.85545
\(819\) 28504.8i 1.21617i
\(820\) 45828.0 1.95169
\(821\) −20109.0 −0.854821 −0.427410 0.904058i \(-0.640574\pi\)
−0.427410 + 0.904058i \(0.640574\pi\)
\(822\) 3342.80i 0.141841i
\(823\) −17328.3 −0.733931 −0.366965 0.930235i \(-0.619603\pi\)
−0.366965 + 0.930235i \(0.619603\pi\)
\(824\) 2759.09i 0.116647i
\(825\) 2154.71i 0.0909300i
\(826\) 63792.4i 2.68719i
\(827\) 11441.6 0.481094 0.240547 0.970637i \(-0.422673\pi\)
0.240547 + 0.970637i \(0.422673\pi\)
\(828\) 44067.3 1.84957
\(829\) 18350.4i 0.768799i 0.923167 + 0.384400i \(0.125591\pi\)
−0.923167 + 0.384400i \(0.874409\pi\)
\(830\) −88157.1 −3.68672
\(831\) 1806.83 0.0754251
\(832\) 44651.2 1.86058
\(833\) 4634.53i 0.192770i
\(834\) 4958.32i 0.205866i
\(835\) 52959.4i 2.19489i
\(836\) 25445.1i 1.05268i
\(837\) 6985.70 0.288484
\(838\) 6914.54i 0.285034i
\(839\) 7854.35i 0.323197i 0.986857 + 0.161599i \(0.0516650\pi\)
−0.986857 + 0.161599i \(0.948335\pi\)
\(840\) 4258.69i 0.174927i
\(841\) 23335.4 0.956799
\(842\) 146.242i 0.00598554i
\(843\) −2150.62 −0.0878662
\(844\) 34371.2 1.40178
\(845\) −11496.5 −0.468038
\(846\) 61599.7i 2.50336i
\(847\) 18813.5i 0.763212i
\(848\) 4219.87 0.170885
\(849\) 4224.94i 0.170788i
\(850\) 51588.5 2.08173
\(851\) −54942.1 −2.21315
\(852\) −9235.42 −0.371362
\(853\) 15100.2i 0.606119i −0.952972 0.303059i \(-0.901992\pi\)
0.952972 0.303059i \(-0.0980081\pi\)
\(854\) 48382.7 1.93867
\(855\) 47071.6i 1.88283i
\(856\) 9709.24 0.387681
\(857\) 10317.9i 0.411264i 0.978629 + 0.205632i \(0.0659249\pi\)
−0.978629 + 0.205632i \(0.934075\pi\)
\(858\) 3550.15 0.141259
\(859\) −1666.85 −0.0662073 −0.0331037 0.999452i \(-0.510539\pi\)
−0.0331037 + 0.999452i \(0.510539\pi\)
\(860\) 89541.8 3.55041
\(861\) −3512.15 −0.139017
\(862\) −23244.7 −0.918464
\(863\) 7426.25 0.292923 0.146462 0.989216i \(-0.453212\pi\)
0.146462 + 0.989216i \(0.453212\pi\)
\(864\) −8720.41 −0.343373
\(865\) −24377.9 −0.958235
\(866\) 5154.56i 0.202262i
\(867\) 1047.36i 0.0410269i
\(868\) −41611.1 −1.62716
\(869\) 21115.0 0.824253
\(870\) 1779.52i 0.0693464i
\(871\) −22080.0 −0.858958
\(872\) 17651.5 0.685499
\(873\) −19513.9 −0.756522
\(874\) 67699.6 2.62011
\(875\) 6794.39i 0.262506i
\(876\) 2529.94i 0.0975787i
\(877\) 28401.2 1.09355 0.546773 0.837281i \(-0.315856\pi\)
0.546773 + 0.837281i \(0.315856\pi\)
\(878\) 1734.25i 0.0666606i
\(879\) 3563.59i 0.136743i
\(880\) 5843.10 0.223831
\(881\) 38213.7i 1.46135i −0.682724 0.730676i \(-0.739205\pi\)
0.682724 0.730676i \(-0.260795\pi\)
\(882\) 6875.62i 0.262488i
\(883\) 1882.98i 0.0717637i 0.999356 + 0.0358819i \(0.0114240\pi\)
−0.999356 + 0.0358819i \(0.988576\pi\)
\(884\) 50789.9i 1.93241i
\(885\) 8782.49 0.333582
\(886\) 9806.88 0.371861
\(887\) −8735.76 −0.330686 −0.165343 0.986236i \(-0.552873\pi\)
−0.165343 + 0.986236i \(0.552873\pi\)
\(888\) −5060.02 −0.191220
\(889\) 6495.32i 0.245046i
\(890\) 64898.4i 2.44427i
\(891\) 13541.5 0.509154
\(892\) 51408.3i 1.92968i
\(893\) 56547.5i 2.11903i
\(894\) −4605.53 −0.172295
\(895\) 11257.3i 0.420437i
\(896\) 39123.4 1.45873
\(897\) 5644.09i 0.210090i
\(898\) 46739.3i 1.73687i
\(899\) 5676.40 0.210588
\(900\) −45732.4 −1.69379
\(901\) 18688.2i 0.691002i
\(902\) 20700.5i 0.764136i
\(903\) −6862.26 −0.252892
\(904\) −38598.4 −1.42009
\(905\) 46170.5i 1.69587i
\(906\) 2107.74 0.0772903
\(907\) −19862.0 −0.727131 −0.363565 0.931569i \(-0.618441\pi\)
−0.363565 + 0.931569i \(0.618441\pi\)
\(908\) 48854.2i 1.78556i
\(909\) 21632.0i 0.789317i
\(910\) −79067.1 −2.88027
\(911\) 5577.05i 0.202828i 0.994844 + 0.101414i \(0.0323366\pi\)
−0.994844 + 0.101414i \(0.967663\pi\)
\(912\) −1451.42 −0.0526987
\(913\) 23794.2i 0.862513i
\(914\) 20866.8i 0.755154i
\(915\) 6660.99i 0.240662i
\(916\) 32128.6i 1.15891i
\(917\) 13121.8i 0.472541i
\(918\) 14152.0i 0.508810i
\(919\) 13312.8i 0.477857i −0.971037 0.238928i \(-0.923204\pi\)
0.971037 0.238928i \(-0.0767961\pi\)
\(920\) 39905.3i 1.43004i
\(921\) 5387.09i 0.192737i
\(922\) 38549.9 1.37698
\(923\) 55977.5i 1.99623i
\(924\) 3520.90 0.125356
\(925\) 57018.1 2.02675
\(926\) 9348.20 0.331751
\(927\) 4219.86 0.149513
\(928\) −7085.99 −0.250656
\(929\) 48945.0i 1.72856i −0.503011 0.864280i \(-0.667775\pi\)
0.503011 0.864280i \(-0.332225\pi\)
\(930\) 9587.23i 0.338040i
\(931\) 6311.71i 0.222189i
\(932\) −22358.4 −0.785809
\(933\) 354.340 0.0124336
\(934\) −43425.4 −1.52133
\(935\) 25876.8i 0.905093i
\(936\) 24599.2i 0.859026i
\(937\) 1925.82i 0.0671439i −0.999436 0.0335720i \(-0.989312\pi\)
0.999436 0.0335720i \(-0.0106883\pi\)
\(938\) −36647.2 −1.27566
\(939\) 7056.22i 0.245230i
\(940\) 102099. 3.54266
\(941\) 6411.21i 0.222104i −0.993815 0.111052i \(-0.964578\pi\)
0.993815 0.111052i \(-0.0354220\pi\)
\(942\) 1850.94i 0.0640200i
\(943\) −32910.0 −1.13648
\(944\) 12815.3i 0.441847i
\(945\) 13164.5 0.453164
\(946\) 40446.0i 1.39008i
\(947\) 49838.0i 1.71015i −0.518501 0.855077i \(-0.673510\pi\)
0.518501 0.855077i \(-0.326490\pi\)
\(948\) 9469.94i 0.324440i
\(949\) −15334.4 −0.524528
\(950\) −70257.7 −2.39943
\(951\) 6002.98 0.204690
\(952\) 27520.5i 0.936915i
\(953\) 1248.12i 0.0424244i −0.999775 0.0212122i \(-0.993247\pi\)
0.999775 0.0212122i \(-0.00675256\pi\)
\(954\) 27725.1i 0.940914i
\(955\) 34460.0 1.16764
\(956\) −24656.8 −0.834160
\(957\) −480.306 −0.0162237
\(958\) −22693.9 −0.765352
\(959\) −20094.4 −0.676623
\(960\) 10202.9i 0.343018i
\(961\) −790.797 −0.0265448
\(962\) 93944.6i 3.14854i
\(963\) 14849.7i 0.496911i
\(964\) 84339.8i 2.81784i
\(965\) 60789.1i 2.02784i
\(966\) 9367.75i 0.312011i
\(967\) 1878.73i 0.0624775i −0.999512 0.0312388i \(-0.990055\pi\)
0.999512 0.0312388i \(-0.00994523\pi\)
\(968\) 16235.7i 0.539087i
\(969\) 6427.76i 0.213095i
\(970\) 54127.9i 1.79169i
\(971\) 1174.83 0.0388281 0.0194141 0.999812i \(-0.493820\pi\)
0.0194141 + 0.999812i \(0.493820\pi\)
\(972\) 18883.9i 0.623151i
\(973\) −29805.6 −0.982040
\(974\) 26036.7i 0.856541i
\(975\) 5857.36i 0.192396i
\(976\) −9719.66 −0.318769
\(977\) −18087.9 −0.592307 −0.296154 0.955140i \(-0.595704\pi\)
−0.296154 + 0.955140i \(0.595704\pi\)
\(978\) 704.640i 0.0230387i
\(979\) −17516.5 −0.571840
\(980\) −11396.1 −0.371463
\(981\) 26996.9i 0.878640i
\(982\) 9864.68i 0.320565i
\(983\) 32703.1 1.06111 0.530553 0.847652i \(-0.321984\pi\)
0.530553 + 0.847652i \(0.321984\pi\)
\(984\) −3030.92 −0.0981934
\(985\) 40378.7i 1.30617i
\(986\) 11499.6i 0.371422i
\(987\) −7824.62 −0.252341
\(988\) 69170.1i 2.22732i
\(989\) −64301.7 −2.06742
\(990\) 38389.9i 1.23243i
\(991\) 25266.5i 0.809906i 0.914337 + 0.404953i \(0.132712\pi\)
−0.914337 + 0.404953i \(0.867288\pi\)
\(992\) 38176.0 1.22186
\(993\) 8355.32i 0.267017i
\(994\) 92908.4i 2.96466i
\(995\) −16470.8 −0.524784
\(996\) 10671.6 0.339500
\(997\) −14310.5 −0.454583 −0.227291 0.973827i \(-0.572987\pi\)
−0.227291 + 0.973827i \(0.572987\pi\)
\(998\) −59324.3 −1.88164
\(999\) 15641.5i 0.495371i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 269.4.b.a.268.9 66
269.268 even 2 inner 269.4.b.a.268.58 yes 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
269.4.b.a.268.9 66 1.1 even 1 trivial
269.4.b.a.268.58 yes 66 269.268 even 2 inner