| L(s) = 1 | − 4.45i·2-s + 0.747i·3-s − 11.8·4-s − 16.4·5-s + 3.33·6-s + 20.0i·7-s + 17.2i·8-s + 26.4·9-s + 73.3i·10-s + 19.7·11-s − 8.87i·12-s + 53.8·13-s + 89.3·14-s − 12.2i·15-s − 17.9·16-s + 79.4i·17-s + ⋯ |
| L(s) = 1 | − 1.57i·2-s + 0.143i·3-s − 1.48·4-s − 1.47·5-s + 0.226·6-s + 1.08i·7-s + 0.764i·8-s + 0.979·9-s + 2.31i·10-s + 0.542·11-s − 0.213i·12-s + 1.14·13-s + 1.70·14-s − 0.211i·15-s − 0.280·16-s + 1.13i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 269 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.171 + 0.985i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 269 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.171 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.384159244\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.384159244\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 269 | \( 1 + (-756. - 4.34e3i)T \) |
| good | 2 | \( 1 + 4.45iT - 8T^{2} \) |
| 3 | \( 1 - 0.747iT - 27T^{2} \) |
| 5 | \( 1 + 16.4T + 125T^{2} \) |
| 7 | \( 1 - 20.0iT - 343T^{2} \) |
| 11 | \( 1 - 19.7T + 1.33e3T^{2} \) |
| 13 | \( 1 - 53.8T + 2.19e3T^{2} \) |
| 17 | \( 1 - 79.4iT - 4.91e3T^{2} \) |
| 19 | \( 1 + 108. iT - 6.85e3T^{2} \) |
| 23 | \( 1 + 140.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 32.4iT - 2.43e4T^{2} \) |
| 31 | \( 1 + 174. iT - 2.97e4T^{2} \) |
| 37 | \( 1 - 391.T + 5.06e4T^{2} \) |
| 41 | \( 1 - 234.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 458.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 522.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 235.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 714. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 541.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 410.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 1.04e3iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 284.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 1.06e3T + 4.93e5T^{2} \) |
| 83 | \( 1 - 1.20e3iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 884.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 738.T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27096932194834042724351002532, −10.75401751335313487066188723175, −9.455577284756767751587007811507, −8.743136498046100062050215225159, −7.64802353016456202006360539472, −6.13038642920382694452861830122, −4.21328985194815750309766540367, −3.94783182728861186260305335491, −2.45520390050506819949706652213, −0.934905016698655151829667968438,
0.815002802326285905624204778907, 3.95489491357263077066616055393, 4.28845076358571142929856166172, 5.98083465341125727419863235077, 7.02415973482067021653285139634, 7.62496230235739027922646498284, 8.228753672623031620972726573139, 9.496433040642095908452546161202, 10.76345689096477283820652840229, 11.75541247443568772419755746077