Properties

Label 269.4
Level 269
Weight 4
Dimension 8911
Nonzero newspaces 4
Sturm bound 24120
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 269 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Sturm bound: \(24120\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(269))\).

Total New Old
Modular forms 9179 9177 2
Cusp forms 8911 8911 0
Eisenstein series 268 266 2

Trace form

\( 8911 q - 134 q^{2} - 134 q^{3} - 134 q^{4} - 134 q^{5} - 134 q^{6} - 134 q^{7} - 134 q^{8} - 134 q^{9} - 134 q^{10} - 134 q^{11} - 134 q^{12} - 134 q^{13} - 134 q^{14} - 134 q^{15} - 134 q^{16} - 134 q^{17}+ \cdots - 134 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(269))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
269.4.a \(\chi_{269}(1, \cdot)\) 269.4.a.a 2 1
269.4.a.b 26
269.4.a.c 39
269.4.b \(\chi_{269}(268, \cdot)\) 269.4.b.a 66 1
269.4.d \(\chi_{269}(5, \cdot)\) n/a 4422 66
269.4.e \(\chi_{269}(4, \cdot)\) n/a 4356 66

"n/a" means that newforms for that character have not been added to the database yet