Properties

Label 2667.2.a.o.1.8
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,5,-16,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} - 13 x^{14} + 98 x^{13} + 9 x^{12} - 712 x^{11} + 565 x^{10} + 2282 x^{9} - 3082 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(0.298113\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.298113 q^{2} -1.00000 q^{3} -1.91113 q^{4} +2.54722 q^{5} -0.298113 q^{6} -1.00000 q^{7} -1.16596 q^{8} +1.00000 q^{9} +0.759360 q^{10} +6.15296 q^{11} +1.91113 q^{12} +4.68194 q^{13} -0.298113 q^{14} -2.54722 q^{15} +3.47467 q^{16} -4.41002 q^{17} +0.298113 q^{18} -5.03205 q^{19} -4.86807 q^{20} +1.00000 q^{21} +1.83427 q^{22} +9.11699 q^{23} +1.16596 q^{24} +1.48835 q^{25} +1.39575 q^{26} -1.00000 q^{27} +1.91113 q^{28} -4.28790 q^{29} -0.759360 q^{30} +0.0487464 q^{31} +3.36776 q^{32} -6.15296 q^{33} -1.31468 q^{34} -2.54722 q^{35} -1.91113 q^{36} +3.02081 q^{37} -1.50012 q^{38} -4.68194 q^{39} -2.96995 q^{40} -3.31879 q^{41} +0.298113 q^{42} +1.89550 q^{43} -11.7591 q^{44} +2.54722 q^{45} +2.71789 q^{46} -10.1769 q^{47} -3.47467 q^{48} +1.00000 q^{49} +0.443697 q^{50} +4.41002 q^{51} -8.94780 q^{52} +6.07411 q^{53} -0.298113 q^{54} +15.6730 q^{55} +1.16596 q^{56} +5.03205 q^{57} -1.27828 q^{58} -9.37602 q^{59} +4.86807 q^{60} +14.3700 q^{61} +0.0145319 q^{62} -1.00000 q^{63} -5.94537 q^{64} +11.9260 q^{65} -1.83427 q^{66} +5.59222 q^{67} +8.42813 q^{68} -9.11699 q^{69} -0.759360 q^{70} +7.54064 q^{71} -1.16596 q^{72} +5.40772 q^{73} +0.900543 q^{74} -1.48835 q^{75} +9.61689 q^{76} -6.15296 q^{77} -1.39575 q^{78} -8.18983 q^{79} +8.85077 q^{80} +1.00000 q^{81} -0.989374 q^{82} -12.5627 q^{83} -1.91113 q^{84} -11.2333 q^{85} +0.565072 q^{86} +4.28790 q^{87} -7.17408 q^{88} +17.6526 q^{89} +0.759360 q^{90} -4.68194 q^{91} -17.4237 q^{92} -0.0487464 q^{93} -3.03386 q^{94} -12.8178 q^{95} -3.36776 q^{96} -0.133391 q^{97} +0.298113 q^{98} +6.15296 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{2} - 16 q^{3} + 19 q^{4} - q^{5} - 5 q^{6} - 16 q^{7} + 6 q^{8} + 16 q^{9} - 12 q^{10} + 11 q^{11} - 19 q^{12} + 18 q^{13} - 5 q^{14} + q^{15} + 25 q^{16} - 5 q^{17} + 5 q^{18} - 11 q^{19}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.298113 0.210797 0.105399 0.994430i \(-0.466388\pi\)
0.105399 + 0.994430i \(0.466388\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.91113 −0.955564
\(5\) 2.54722 1.13915 0.569577 0.821938i \(-0.307107\pi\)
0.569577 + 0.821938i \(0.307107\pi\)
\(6\) −0.298113 −0.121704
\(7\) −1.00000 −0.377964
\(8\) −1.16596 −0.412228
\(9\) 1.00000 0.333333
\(10\) 0.759360 0.240131
\(11\) 6.15296 1.85519 0.927593 0.373592i \(-0.121874\pi\)
0.927593 + 0.373592i \(0.121874\pi\)
\(12\) 1.91113 0.551695
\(13\) 4.68194 1.29854 0.649269 0.760559i \(-0.275075\pi\)
0.649269 + 0.760559i \(0.275075\pi\)
\(14\) −0.298113 −0.0796740
\(15\) −2.54722 −0.657691
\(16\) 3.47467 0.868668
\(17\) −4.41002 −1.06959 −0.534794 0.844982i \(-0.679611\pi\)
−0.534794 + 0.844982i \(0.679611\pi\)
\(18\) 0.298113 0.0702658
\(19\) −5.03205 −1.15443 −0.577215 0.816592i \(-0.695861\pi\)
−0.577215 + 0.816592i \(0.695861\pi\)
\(20\) −4.86807 −1.08853
\(21\) 1.00000 0.218218
\(22\) 1.83427 0.391069
\(23\) 9.11699 1.90102 0.950512 0.310688i \(-0.100559\pi\)
0.950512 + 0.310688i \(0.100559\pi\)
\(24\) 1.16596 0.238000
\(25\) 1.48835 0.297670
\(26\) 1.39575 0.273728
\(27\) −1.00000 −0.192450
\(28\) 1.91113 0.361169
\(29\) −4.28790 −0.796243 −0.398121 0.917333i \(-0.630338\pi\)
−0.398121 + 0.917333i \(0.630338\pi\)
\(30\) −0.759360 −0.138639
\(31\) 0.0487464 0.00875512 0.00437756 0.999990i \(-0.498607\pi\)
0.00437756 + 0.999990i \(0.498607\pi\)
\(32\) 3.36776 0.595341
\(33\) −6.15296 −1.07109
\(34\) −1.31468 −0.225466
\(35\) −2.54722 −0.430560
\(36\) −1.91113 −0.318521
\(37\) 3.02081 0.496619 0.248309 0.968681i \(-0.420125\pi\)
0.248309 + 0.968681i \(0.420125\pi\)
\(38\) −1.50012 −0.243351
\(39\) −4.68194 −0.749711
\(40\) −2.96995 −0.469591
\(41\) −3.31879 −0.518309 −0.259154 0.965836i \(-0.583444\pi\)
−0.259154 + 0.965836i \(0.583444\pi\)
\(42\) 0.298113 0.0459998
\(43\) 1.89550 0.289061 0.144531 0.989500i \(-0.453833\pi\)
0.144531 + 0.989500i \(0.453833\pi\)
\(44\) −11.7591 −1.77275
\(45\) 2.54722 0.379718
\(46\) 2.71789 0.400731
\(47\) −10.1769 −1.48445 −0.742227 0.670149i \(-0.766230\pi\)
−0.742227 + 0.670149i \(0.766230\pi\)
\(48\) −3.47467 −0.501526
\(49\) 1.00000 0.142857
\(50\) 0.443697 0.0627482
\(51\) 4.41002 0.617527
\(52\) −8.94780 −1.24084
\(53\) 6.07411 0.834343 0.417171 0.908828i \(-0.363021\pi\)
0.417171 + 0.908828i \(0.363021\pi\)
\(54\) −0.298113 −0.0405680
\(55\) 15.6730 2.11334
\(56\) 1.16596 0.155808
\(57\) 5.03205 0.666511
\(58\) −1.27828 −0.167846
\(59\) −9.37602 −1.22065 −0.610327 0.792150i \(-0.708962\pi\)
−0.610327 + 0.792150i \(0.708962\pi\)
\(60\) 4.86807 0.628466
\(61\) 14.3700 1.83989 0.919943 0.392052i \(-0.128235\pi\)
0.919943 + 0.392052i \(0.128235\pi\)
\(62\) 0.0145319 0.00184556
\(63\) −1.00000 −0.125988
\(64\) −5.94537 −0.743171
\(65\) 11.9260 1.47923
\(66\) −1.83427 −0.225784
\(67\) 5.59222 0.683199 0.341599 0.939846i \(-0.389031\pi\)
0.341599 + 0.939846i \(0.389031\pi\)
\(68\) 8.42813 1.02206
\(69\) −9.11699 −1.09756
\(70\) −0.759360 −0.0907609
\(71\) 7.54064 0.894909 0.447455 0.894307i \(-0.352331\pi\)
0.447455 + 0.894307i \(0.352331\pi\)
\(72\) −1.16596 −0.137409
\(73\) 5.40772 0.632926 0.316463 0.948605i \(-0.397505\pi\)
0.316463 + 0.948605i \(0.397505\pi\)
\(74\) 0.900543 0.104686
\(75\) −1.48835 −0.171860
\(76\) 9.61689 1.10313
\(77\) −6.15296 −0.701195
\(78\) −1.39575 −0.158037
\(79\) −8.18983 −0.921427 −0.460714 0.887549i \(-0.652407\pi\)
−0.460714 + 0.887549i \(0.652407\pi\)
\(80\) 8.85077 0.989546
\(81\) 1.00000 0.111111
\(82\) −0.989374 −0.109258
\(83\) −12.5627 −1.37894 −0.689470 0.724314i \(-0.742157\pi\)
−0.689470 + 0.724314i \(0.742157\pi\)
\(84\) −1.91113 −0.208521
\(85\) −11.2333 −1.21842
\(86\) 0.565072 0.0609333
\(87\) 4.28790 0.459711
\(88\) −7.17408 −0.764760
\(89\) 17.6526 1.87118 0.935588 0.353093i \(-0.114870\pi\)
0.935588 + 0.353093i \(0.114870\pi\)
\(90\) 0.759360 0.0800435
\(91\) −4.68194 −0.490801
\(92\) −17.4237 −1.81655
\(93\) −0.0487464 −0.00505477
\(94\) −3.03386 −0.312919
\(95\) −12.8178 −1.31507
\(96\) −3.36776 −0.343720
\(97\) −0.133391 −0.0135438 −0.00677188 0.999977i \(-0.502156\pi\)
−0.00677188 + 0.999977i \(0.502156\pi\)
\(98\) 0.298113 0.0301139
\(99\) 6.15296 0.618395
\(100\) −2.84443 −0.284443
\(101\) 17.4204 1.73340 0.866699 0.498831i \(-0.166237\pi\)
0.866699 + 0.498831i \(0.166237\pi\)
\(102\) 1.31468 0.130173
\(103\) 5.99870 0.591069 0.295534 0.955332i \(-0.404502\pi\)
0.295534 + 0.955332i \(0.404502\pi\)
\(104\) −5.45894 −0.535293
\(105\) 2.54722 0.248584
\(106\) 1.81077 0.175877
\(107\) 16.9503 1.63865 0.819323 0.573332i \(-0.194350\pi\)
0.819323 + 0.573332i \(0.194350\pi\)
\(108\) 1.91113 0.183898
\(109\) −1.13699 −0.108904 −0.0544522 0.998516i \(-0.517341\pi\)
−0.0544522 + 0.998516i \(0.517341\pi\)
\(110\) 4.67231 0.445487
\(111\) −3.02081 −0.286723
\(112\) −3.47467 −0.328326
\(113\) −7.37766 −0.694032 −0.347016 0.937859i \(-0.612805\pi\)
−0.347016 + 0.937859i \(0.612805\pi\)
\(114\) 1.50012 0.140499
\(115\) 23.2230 2.16556
\(116\) 8.19472 0.760861
\(117\) 4.68194 0.432846
\(118\) −2.79511 −0.257311
\(119\) 4.41002 0.404266
\(120\) 2.96995 0.271118
\(121\) 26.8589 2.44172
\(122\) 4.28387 0.387843
\(123\) 3.31879 0.299246
\(124\) −0.0931607 −0.00836608
\(125\) −8.94496 −0.800061
\(126\) −0.298113 −0.0265580
\(127\) 1.00000 0.0887357
\(128\) −8.50790 −0.752000
\(129\) −1.89550 −0.166889
\(130\) 3.55528 0.311819
\(131\) −0.589991 −0.0515478 −0.0257739 0.999668i \(-0.508205\pi\)
−0.0257739 + 0.999668i \(0.508205\pi\)
\(132\) 11.7591 1.02350
\(133\) 5.03205 0.436334
\(134\) 1.66711 0.144017
\(135\) −2.54722 −0.219230
\(136\) 5.14190 0.440914
\(137\) −6.88031 −0.587824 −0.293912 0.955832i \(-0.594957\pi\)
−0.293912 + 0.955832i \(0.594957\pi\)
\(138\) −2.71789 −0.231362
\(139\) 23.2136 1.96895 0.984476 0.175521i \(-0.0561610\pi\)
0.984476 + 0.175521i \(0.0561610\pi\)
\(140\) 4.86807 0.411427
\(141\) 10.1769 0.857050
\(142\) 2.24796 0.188645
\(143\) 28.8078 2.40903
\(144\) 3.47467 0.289556
\(145\) −10.9222 −0.907042
\(146\) 1.61211 0.133419
\(147\) −1.00000 −0.0824786
\(148\) −5.77316 −0.474551
\(149\) −5.01259 −0.410647 −0.205324 0.978694i \(-0.565825\pi\)
−0.205324 + 0.978694i \(0.565825\pi\)
\(150\) −0.443697 −0.0362277
\(151\) 10.9460 0.890769 0.445384 0.895339i \(-0.353067\pi\)
0.445384 + 0.895339i \(0.353067\pi\)
\(152\) 5.86715 0.475889
\(153\) −4.41002 −0.356529
\(154\) −1.83427 −0.147810
\(155\) 0.124168 0.00997342
\(156\) 8.94780 0.716397
\(157\) 4.71794 0.376532 0.188266 0.982118i \(-0.439713\pi\)
0.188266 + 0.982118i \(0.439713\pi\)
\(158\) −2.44149 −0.194235
\(159\) −6.07411 −0.481708
\(160\) 8.57843 0.678185
\(161\) −9.11699 −0.718520
\(162\) 0.298113 0.0234219
\(163\) −2.39560 −0.187638 −0.0938188 0.995589i \(-0.529907\pi\)
−0.0938188 + 0.995589i \(0.529907\pi\)
\(164\) 6.34264 0.495277
\(165\) −15.6730 −1.22014
\(166\) −3.74511 −0.290677
\(167\) −6.18252 −0.478418 −0.239209 0.970968i \(-0.576888\pi\)
−0.239209 + 0.970968i \(0.576888\pi\)
\(168\) −1.16596 −0.0899555
\(169\) 8.92059 0.686199
\(170\) −3.34880 −0.256841
\(171\) −5.03205 −0.384810
\(172\) −3.62254 −0.276216
\(173\) −16.3023 −1.23944 −0.619719 0.784824i \(-0.712753\pi\)
−0.619719 + 0.784824i \(0.712753\pi\)
\(174\) 1.27828 0.0969059
\(175\) −1.48835 −0.112509
\(176\) 21.3795 1.61154
\(177\) 9.37602 0.704745
\(178\) 5.26248 0.394439
\(179\) 22.0264 1.64633 0.823166 0.567801i \(-0.192206\pi\)
0.823166 + 0.567801i \(0.192206\pi\)
\(180\) −4.86807 −0.362845
\(181\) 7.90350 0.587463 0.293731 0.955888i \(-0.405103\pi\)
0.293731 + 0.955888i \(0.405103\pi\)
\(182\) −1.39575 −0.103460
\(183\) −14.3700 −1.06226
\(184\) −10.6300 −0.783655
\(185\) 7.69469 0.565725
\(186\) −0.0145319 −0.00106553
\(187\) −27.1347 −1.98429
\(188\) 19.4494 1.41849
\(189\) 1.00000 0.0727393
\(190\) −3.82113 −0.277214
\(191\) −18.4005 −1.33141 −0.665707 0.746213i \(-0.731870\pi\)
−0.665707 + 0.746213i \(0.731870\pi\)
\(192\) 5.94537 0.429070
\(193\) 6.99017 0.503163 0.251582 0.967836i \(-0.419049\pi\)
0.251582 + 0.967836i \(0.419049\pi\)
\(194\) −0.0397654 −0.00285499
\(195\) −11.9260 −0.854036
\(196\) −1.91113 −0.136509
\(197\) 19.1489 1.36430 0.682152 0.731210i \(-0.261044\pi\)
0.682152 + 0.731210i \(0.261044\pi\)
\(198\) 1.83427 0.130356
\(199\) 11.7831 0.835280 0.417640 0.908613i \(-0.362857\pi\)
0.417640 + 0.908613i \(0.362857\pi\)
\(200\) −1.73535 −0.122708
\(201\) −5.59222 −0.394445
\(202\) 5.19325 0.365396
\(203\) 4.28790 0.300951
\(204\) −8.42813 −0.590087
\(205\) −8.45371 −0.590433
\(206\) 1.78829 0.124596
\(207\) 9.11699 0.633675
\(208\) 16.2682 1.12800
\(209\) −30.9620 −2.14168
\(210\) 0.759360 0.0524008
\(211\) −25.5442 −1.75854 −0.879268 0.476327i \(-0.841968\pi\)
−0.879268 + 0.476327i \(0.841968\pi\)
\(212\) −11.6084 −0.797268
\(213\) −7.54064 −0.516676
\(214\) 5.05309 0.345422
\(215\) 4.82826 0.329285
\(216\) 1.16596 0.0793333
\(217\) −0.0487464 −0.00330912
\(218\) −0.338953 −0.0229568
\(219\) −5.40772 −0.365420
\(220\) −29.9531 −2.01943
\(221\) −20.6475 −1.38890
\(222\) −0.900543 −0.0604405
\(223\) −17.0666 −1.14286 −0.571432 0.820650i \(-0.693612\pi\)
−0.571432 + 0.820650i \(0.693612\pi\)
\(224\) −3.36776 −0.225018
\(225\) 1.48835 0.0992235
\(226\) −2.19937 −0.146300
\(227\) 19.1172 1.26885 0.634427 0.772982i \(-0.281236\pi\)
0.634427 + 0.772982i \(0.281236\pi\)
\(228\) −9.61689 −0.636894
\(229\) −17.4537 −1.15337 −0.576686 0.816966i \(-0.695654\pi\)
−0.576686 + 0.816966i \(0.695654\pi\)
\(230\) 6.92308 0.456494
\(231\) 6.15296 0.404835
\(232\) 4.99950 0.328233
\(233\) 18.3373 1.20132 0.600659 0.799506i \(-0.294905\pi\)
0.600659 + 0.799506i \(0.294905\pi\)
\(234\) 1.39575 0.0912428
\(235\) −25.9229 −1.69102
\(236\) 17.9188 1.16641
\(237\) 8.18983 0.531986
\(238\) 1.31468 0.0852183
\(239\) 12.5721 0.813222 0.406611 0.913601i \(-0.366710\pi\)
0.406611 + 0.913601i \(0.366710\pi\)
\(240\) −8.85077 −0.571315
\(241\) 1.76945 0.113980 0.0569900 0.998375i \(-0.481850\pi\)
0.0569900 + 0.998375i \(0.481850\pi\)
\(242\) 8.00697 0.514708
\(243\) −1.00000 −0.0641500
\(244\) −27.4629 −1.75813
\(245\) 2.54722 0.162736
\(246\) 0.989374 0.0630802
\(247\) −23.5598 −1.49907
\(248\) −0.0568362 −0.00360910
\(249\) 12.5627 0.796132
\(250\) −2.66660 −0.168651
\(251\) −30.8131 −1.94491 −0.972453 0.233099i \(-0.925114\pi\)
−0.972453 + 0.233099i \(0.925114\pi\)
\(252\) 1.91113 0.120390
\(253\) 56.0965 3.52675
\(254\) 0.298113 0.0187052
\(255\) 11.2333 0.703458
\(256\) 9.35443 0.584652
\(257\) 13.9647 0.871092 0.435546 0.900166i \(-0.356555\pi\)
0.435546 + 0.900166i \(0.356555\pi\)
\(258\) −0.565072 −0.0351799
\(259\) −3.02081 −0.187704
\(260\) −22.7920 −1.41350
\(261\) −4.28790 −0.265414
\(262\) −0.175884 −0.0108661
\(263\) 2.37995 0.146754 0.0733770 0.997304i \(-0.476622\pi\)
0.0733770 + 0.997304i \(0.476622\pi\)
\(264\) 7.17408 0.441534
\(265\) 15.4721 0.950445
\(266\) 1.50012 0.0919781
\(267\) −17.6526 −1.08032
\(268\) −10.6875 −0.652840
\(269\) 6.90652 0.421098 0.210549 0.977583i \(-0.432475\pi\)
0.210549 + 0.977583i \(0.432475\pi\)
\(270\) −0.759360 −0.0462132
\(271\) −15.2627 −0.927141 −0.463570 0.886060i \(-0.653432\pi\)
−0.463570 + 0.886060i \(0.653432\pi\)
\(272\) −15.3234 −0.929117
\(273\) 4.68194 0.283364
\(274\) −2.05111 −0.123912
\(275\) 9.15777 0.552234
\(276\) 17.4237 1.04879
\(277\) −20.0356 −1.20382 −0.601910 0.798564i \(-0.705593\pi\)
−0.601910 + 0.798564i \(0.705593\pi\)
\(278\) 6.92027 0.415050
\(279\) 0.0487464 0.00291837
\(280\) 2.96995 0.177489
\(281\) 19.7110 1.17586 0.587929 0.808912i \(-0.299943\pi\)
0.587929 + 0.808912i \(0.299943\pi\)
\(282\) 3.03386 0.180664
\(283\) −16.3259 −0.970473 −0.485236 0.874383i \(-0.661266\pi\)
−0.485236 + 0.874383i \(0.661266\pi\)
\(284\) −14.4111 −0.855143
\(285\) 12.8178 0.759258
\(286\) 8.58797 0.507817
\(287\) 3.31879 0.195902
\(288\) 3.36776 0.198447
\(289\) 2.44832 0.144019
\(290\) −3.25606 −0.191202
\(291\) 0.133391 0.00781949
\(292\) −10.3349 −0.604802
\(293\) −7.46323 −0.436006 −0.218003 0.975948i \(-0.569954\pi\)
−0.218003 + 0.975948i \(0.569954\pi\)
\(294\) −0.298113 −0.0173863
\(295\) −23.8828 −1.39051
\(296\) −3.52214 −0.204720
\(297\) −6.15296 −0.357031
\(298\) −1.49432 −0.0865634
\(299\) 42.6852 2.46855
\(300\) 2.84443 0.164223
\(301\) −1.89550 −0.109255
\(302\) 3.26313 0.187772
\(303\) −17.4204 −1.00078
\(304\) −17.4847 −1.00282
\(305\) 36.6035 2.09591
\(306\) −1.31468 −0.0751555
\(307\) 10.3378 0.590010 0.295005 0.955496i \(-0.404679\pi\)
0.295005 + 0.955496i \(0.404679\pi\)
\(308\) 11.7591 0.670037
\(309\) −5.99870 −0.341254
\(310\) 0.0370161 0.00210237
\(311\) 18.9888 1.07676 0.538379 0.842703i \(-0.319037\pi\)
0.538379 + 0.842703i \(0.319037\pi\)
\(312\) 5.45894 0.309052
\(313\) 21.6377 1.22304 0.611519 0.791230i \(-0.290559\pi\)
0.611519 + 0.791230i \(0.290559\pi\)
\(314\) 1.40648 0.0793720
\(315\) −2.54722 −0.143520
\(316\) 15.6518 0.880483
\(317\) 5.64090 0.316824 0.158412 0.987373i \(-0.449363\pi\)
0.158412 + 0.987373i \(0.449363\pi\)
\(318\) −1.81077 −0.101543
\(319\) −26.3832 −1.47718
\(320\) −15.1442 −0.846586
\(321\) −16.9503 −0.946073
\(322\) −2.71789 −0.151462
\(323\) 22.1915 1.23477
\(324\) −1.91113 −0.106174
\(325\) 6.96838 0.386536
\(326\) −0.714158 −0.0395535
\(327\) 1.13699 0.0628760
\(328\) 3.86957 0.213661
\(329\) 10.1769 0.561071
\(330\) −4.67231 −0.257202
\(331\) −11.1486 −0.612781 −0.306391 0.951906i \(-0.599121\pi\)
−0.306391 + 0.951906i \(0.599121\pi\)
\(332\) 24.0090 1.31767
\(333\) 3.02081 0.165540
\(334\) −1.84309 −0.100849
\(335\) 14.2446 0.778268
\(336\) 3.47467 0.189559
\(337\) 26.5229 1.44480 0.722398 0.691477i \(-0.243040\pi\)
0.722398 + 0.691477i \(0.243040\pi\)
\(338\) 2.65934 0.144649
\(339\) 7.37766 0.400700
\(340\) 21.4683 1.16428
\(341\) 0.299935 0.0162424
\(342\) −1.50012 −0.0811170
\(343\) −1.00000 −0.0539949
\(344\) −2.21007 −0.119159
\(345\) −23.2230 −1.25029
\(346\) −4.85991 −0.261270
\(347\) 8.02759 0.430944 0.215472 0.976510i \(-0.430871\pi\)
0.215472 + 0.976510i \(0.430871\pi\)
\(348\) −8.19472 −0.439283
\(349\) 4.22025 0.225905 0.112952 0.993600i \(-0.463969\pi\)
0.112952 + 0.993600i \(0.463969\pi\)
\(350\) −0.443697 −0.0237166
\(351\) −4.68194 −0.249904
\(352\) 20.7217 1.10447
\(353\) 27.0656 1.44056 0.720278 0.693686i \(-0.244014\pi\)
0.720278 + 0.693686i \(0.244014\pi\)
\(354\) 2.79511 0.148558
\(355\) 19.2077 1.01944
\(356\) −33.7365 −1.78803
\(357\) −4.41002 −0.233403
\(358\) 6.56636 0.347043
\(359\) −20.6950 −1.09224 −0.546121 0.837706i \(-0.683896\pi\)
−0.546121 + 0.837706i \(0.683896\pi\)
\(360\) −2.96995 −0.156530
\(361\) 6.32150 0.332711
\(362\) 2.35613 0.123836
\(363\) −26.8589 −1.40973
\(364\) 8.94780 0.468992
\(365\) 13.7747 0.721000
\(366\) −4.28387 −0.223921
\(367\) −0.789317 −0.0412020 −0.0206010 0.999788i \(-0.506558\pi\)
−0.0206010 + 0.999788i \(0.506558\pi\)
\(368\) 31.6785 1.65136
\(369\) −3.31879 −0.172770
\(370\) 2.29388 0.119253
\(371\) −6.07411 −0.315352
\(372\) 0.0931607 0.00483016
\(373\) −6.27308 −0.324808 −0.162404 0.986724i \(-0.551925\pi\)
−0.162404 + 0.986724i \(0.551925\pi\)
\(374\) −8.08919 −0.418282
\(375\) 8.94496 0.461916
\(376\) 11.8658 0.611934
\(377\) −20.0757 −1.03395
\(378\) 0.298113 0.0153333
\(379\) −25.4550 −1.30754 −0.653768 0.756695i \(-0.726813\pi\)
−0.653768 + 0.756695i \(0.726813\pi\)
\(380\) 24.4964 1.25664
\(381\) −1.00000 −0.0512316
\(382\) −5.48542 −0.280659
\(383\) −1.91780 −0.0979952 −0.0489976 0.998799i \(-0.515603\pi\)
−0.0489976 + 0.998799i \(0.515603\pi\)
\(384\) 8.50790 0.434167
\(385\) −15.6730 −0.798768
\(386\) 2.08386 0.106066
\(387\) 1.89550 0.0963537
\(388\) 0.254926 0.0129419
\(389\) −30.4853 −1.54567 −0.772833 0.634610i \(-0.781161\pi\)
−0.772833 + 0.634610i \(0.781161\pi\)
\(390\) −3.55528 −0.180029
\(391\) −40.2062 −2.03331
\(392\) −1.16596 −0.0588897
\(393\) 0.589991 0.0297611
\(394\) 5.70853 0.287592
\(395\) −20.8613 −1.04965
\(396\) −11.7591 −0.590917
\(397\) −1.00903 −0.0506415 −0.0253208 0.999679i \(-0.508061\pi\)
−0.0253208 + 0.999679i \(0.508061\pi\)
\(398\) 3.51268 0.176075
\(399\) −5.03205 −0.251917
\(400\) 5.17153 0.258577
\(401\) 18.9677 0.947203 0.473602 0.880739i \(-0.342954\pi\)
0.473602 + 0.880739i \(0.342954\pi\)
\(402\) −1.66711 −0.0831480
\(403\) 0.228228 0.0113688
\(404\) −33.2927 −1.65637
\(405\) 2.54722 0.126573
\(406\) 1.27828 0.0634398
\(407\) 18.5869 0.921320
\(408\) −5.14190 −0.254562
\(409\) 21.3336 1.05488 0.527439 0.849593i \(-0.323152\pi\)
0.527439 + 0.849593i \(0.323152\pi\)
\(410\) −2.52016 −0.124462
\(411\) 6.88031 0.339381
\(412\) −11.4643 −0.564805
\(413\) 9.37602 0.461364
\(414\) 2.71789 0.133577
\(415\) −32.0001 −1.57083
\(416\) 15.7676 0.773072
\(417\) −23.2136 −1.13677
\(418\) −9.23015 −0.451462
\(419\) 1.91650 0.0936270 0.0468135 0.998904i \(-0.485093\pi\)
0.0468135 + 0.998904i \(0.485093\pi\)
\(420\) −4.86807 −0.237538
\(421\) −11.1631 −0.544055 −0.272028 0.962289i \(-0.587694\pi\)
−0.272028 + 0.962289i \(0.587694\pi\)
\(422\) −7.61505 −0.370695
\(423\) −10.1769 −0.494818
\(424\) −7.08215 −0.343940
\(425\) −6.56367 −0.318385
\(426\) −2.24796 −0.108914
\(427\) −14.3700 −0.695412
\(428\) −32.3942 −1.56583
\(429\) −28.8078 −1.39085
\(430\) 1.43937 0.0694124
\(431\) 25.2766 1.21753 0.608766 0.793350i \(-0.291665\pi\)
0.608766 + 0.793350i \(0.291665\pi\)
\(432\) −3.47467 −0.167175
\(433\) −24.4814 −1.17650 −0.588251 0.808678i \(-0.700183\pi\)
−0.588251 + 0.808678i \(0.700183\pi\)
\(434\) −0.0145319 −0.000697555 0
\(435\) 10.9222 0.523681
\(436\) 2.17294 0.104065
\(437\) −45.8771 −2.19460
\(438\) −1.61211 −0.0770296
\(439\) −33.1662 −1.58294 −0.791469 0.611209i \(-0.790683\pi\)
−0.791469 + 0.611209i \(0.790683\pi\)
\(440\) −18.2740 −0.871179
\(441\) 1.00000 0.0476190
\(442\) −6.15528 −0.292777
\(443\) 22.9199 1.08896 0.544478 0.838775i \(-0.316728\pi\)
0.544478 + 0.838775i \(0.316728\pi\)
\(444\) 5.77316 0.273982
\(445\) 44.9652 2.13156
\(446\) −5.08777 −0.240913
\(447\) 5.01259 0.237087
\(448\) 5.94537 0.280892
\(449\) −10.8422 −0.511676 −0.255838 0.966720i \(-0.582351\pi\)
−0.255838 + 0.966720i \(0.582351\pi\)
\(450\) 0.443697 0.0209161
\(451\) −20.4204 −0.961559
\(452\) 14.0997 0.663192
\(453\) −10.9460 −0.514286
\(454\) 5.69909 0.267471
\(455\) −11.9260 −0.559098
\(456\) −5.86715 −0.274755
\(457\) 20.5538 0.961466 0.480733 0.876867i \(-0.340371\pi\)
0.480733 + 0.876867i \(0.340371\pi\)
\(458\) −5.20317 −0.243128
\(459\) 4.41002 0.205842
\(460\) −44.3822 −2.06933
\(461\) −30.0440 −1.39929 −0.699645 0.714491i \(-0.746658\pi\)
−0.699645 + 0.714491i \(0.746658\pi\)
\(462\) 1.83427 0.0853382
\(463\) −25.9689 −1.20688 −0.603439 0.797409i \(-0.706203\pi\)
−0.603439 + 0.797409i \(0.706203\pi\)
\(464\) −14.8990 −0.691670
\(465\) −0.124168 −0.00575816
\(466\) 5.46659 0.253235
\(467\) −28.5728 −1.32219 −0.661096 0.750301i \(-0.729909\pi\)
−0.661096 + 0.750301i \(0.729909\pi\)
\(468\) −8.94780 −0.413612
\(469\) −5.59222 −0.258225
\(470\) −7.72793 −0.356463
\(471\) −4.71794 −0.217391
\(472\) 10.9320 0.503188
\(473\) 11.6629 0.536262
\(474\) 2.44149 0.112141
\(475\) −7.48946 −0.343640
\(476\) −8.42813 −0.386302
\(477\) 6.07411 0.278114
\(478\) 3.74791 0.171425
\(479\) −29.2436 −1.33618 −0.668088 0.744082i \(-0.732887\pi\)
−0.668088 + 0.744082i \(0.732887\pi\)
\(480\) −8.57843 −0.391550
\(481\) 14.1433 0.644878
\(482\) 0.527494 0.0240267
\(483\) 9.11699 0.414837
\(484\) −51.3308 −2.33322
\(485\) −0.339776 −0.0154284
\(486\) −0.298113 −0.0135227
\(487\) −18.8801 −0.855537 −0.427769 0.903888i \(-0.640700\pi\)
−0.427769 + 0.903888i \(0.640700\pi\)
\(488\) −16.7548 −0.758453
\(489\) 2.39560 0.108333
\(490\) 0.759360 0.0343044
\(491\) 24.1789 1.09118 0.545589 0.838053i \(-0.316306\pi\)
0.545589 + 0.838053i \(0.316306\pi\)
\(492\) −6.34264 −0.285948
\(493\) 18.9097 0.851652
\(494\) −7.02346 −0.316000
\(495\) 15.6730 0.704447
\(496\) 0.169378 0.00760529
\(497\) −7.54064 −0.338244
\(498\) 3.74511 0.167823
\(499\) −6.67434 −0.298784 −0.149392 0.988778i \(-0.547732\pi\)
−0.149392 + 0.988778i \(0.547732\pi\)
\(500\) 17.0950 0.764510
\(501\) 6.18252 0.276215
\(502\) −9.18578 −0.409981
\(503\) 8.56876 0.382062 0.191031 0.981584i \(-0.438817\pi\)
0.191031 + 0.981584i \(0.438817\pi\)
\(504\) 1.16596 0.0519358
\(505\) 44.3738 1.97461
\(506\) 16.7231 0.743431
\(507\) −8.92059 −0.396177
\(508\) −1.91113 −0.0847926
\(509\) 22.5337 0.998791 0.499395 0.866374i \(-0.333556\pi\)
0.499395 + 0.866374i \(0.333556\pi\)
\(510\) 3.34880 0.148287
\(511\) −5.40772 −0.239224
\(512\) 19.8045 0.875243
\(513\) 5.03205 0.222170
\(514\) 4.16305 0.183624
\(515\) 15.2800 0.673318
\(516\) 3.62254 0.159474
\(517\) −62.6181 −2.75394
\(518\) −0.900543 −0.0395676
\(519\) 16.3023 0.715590
\(520\) −13.9052 −0.609781
\(521\) −32.0705 −1.40503 −0.702516 0.711668i \(-0.747940\pi\)
−0.702516 + 0.711668i \(0.747940\pi\)
\(522\) −1.27828 −0.0559486
\(523\) −36.3672 −1.59023 −0.795113 0.606461i \(-0.792589\pi\)
−0.795113 + 0.606461i \(0.792589\pi\)
\(524\) 1.12755 0.0492572
\(525\) 1.48835 0.0649570
\(526\) 0.709493 0.0309354
\(527\) −0.214973 −0.00936437
\(528\) −21.3795 −0.930423
\(529\) 60.1195 2.61389
\(530\) 4.61243 0.200351
\(531\) −9.37602 −0.406885
\(532\) −9.61689 −0.416945
\(533\) −15.5384 −0.673043
\(534\) −5.26248 −0.227730
\(535\) 43.1762 1.86667
\(536\) −6.52029 −0.281634
\(537\) −22.0264 −0.950510
\(538\) 2.05892 0.0887664
\(539\) 6.15296 0.265027
\(540\) 4.86807 0.209489
\(541\) −35.7283 −1.53608 −0.768039 0.640403i \(-0.778767\pi\)
−0.768039 + 0.640403i \(0.778767\pi\)
\(542\) −4.54999 −0.195439
\(543\) −7.90350 −0.339172
\(544\) −14.8519 −0.636770
\(545\) −2.89618 −0.124059
\(546\) 1.39575 0.0597324
\(547\) 6.53314 0.279337 0.139668 0.990198i \(-0.455396\pi\)
0.139668 + 0.990198i \(0.455396\pi\)
\(548\) 13.1492 0.561704
\(549\) 14.3700 0.613295
\(550\) 2.73005 0.116410
\(551\) 21.5769 0.919207
\(552\) 10.6300 0.452444
\(553\) 8.18983 0.348267
\(554\) −5.97285 −0.253762
\(555\) −7.69469 −0.326621
\(556\) −44.3642 −1.88146
\(557\) 22.4418 0.950891 0.475446 0.879745i \(-0.342287\pi\)
0.475446 + 0.879745i \(0.342287\pi\)
\(558\) 0.0145319 0.000615185 0
\(559\) 8.87462 0.375356
\(560\) −8.85077 −0.374013
\(561\) 27.1347 1.14563
\(562\) 5.87609 0.247868
\(563\) 1.91786 0.0808282 0.0404141 0.999183i \(-0.487132\pi\)
0.0404141 + 0.999183i \(0.487132\pi\)
\(564\) −19.4494 −0.818966
\(565\) −18.7926 −0.790609
\(566\) −4.86695 −0.204573
\(567\) −1.00000 −0.0419961
\(568\) −8.79206 −0.368907
\(569\) −5.35626 −0.224546 −0.112273 0.993677i \(-0.535813\pi\)
−0.112273 + 0.993677i \(0.535813\pi\)
\(570\) 3.82113 0.160050
\(571\) 9.68343 0.405239 0.202619 0.979258i \(-0.435055\pi\)
0.202619 + 0.979258i \(0.435055\pi\)
\(572\) −55.0554 −2.30198
\(573\) 18.4005 0.768692
\(574\) 0.989374 0.0412957
\(575\) 13.5693 0.565879
\(576\) −5.94537 −0.247724
\(577\) −25.6603 −1.06825 −0.534127 0.845404i \(-0.679360\pi\)
−0.534127 + 0.845404i \(0.679360\pi\)
\(578\) 0.729874 0.0303588
\(579\) −6.99017 −0.290502
\(580\) 20.8738 0.866737
\(581\) 12.5627 0.521191
\(582\) 0.0397654 0.00164833
\(583\) 37.3737 1.54786
\(584\) −6.30517 −0.260910
\(585\) 11.9260 0.493078
\(586\) −2.22488 −0.0919091
\(587\) −15.0132 −0.619663 −0.309832 0.950791i \(-0.600273\pi\)
−0.309832 + 0.950791i \(0.600273\pi\)
\(588\) 1.91113 0.0788136
\(589\) −0.245294 −0.0101072
\(590\) −7.11977 −0.293116
\(591\) −19.1489 −0.787681
\(592\) 10.4963 0.431397
\(593\) 25.4740 1.04609 0.523046 0.852305i \(-0.324796\pi\)
0.523046 + 0.852305i \(0.324796\pi\)
\(594\) −1.83427 −0.0752612
\(595\) 11.2333 0.460521
\(596\) 9.57970 0.392400
\(597\) −11.7831 −0.482249
\(598\) 12.7250 0.520364
\(599\) −43.7657 −1.78822 −0.894109 0.447850i \(-0.852190\pi\)
−0.894109 + 0.447850i \(0.852190\pi\)
\(600\) 1.73535 0.0708455
\(601\) 31.5090 1.28528 0.642640 0.766168i \(-0.277839\pi\)
0.642640 + 0.766168i \(0.277839\pi\)
\(602\) −0.565072 −0.0230306
\(603\) 5.59222 0.227733
\(604\) −20.9191 −0.851187
\(605\) 68.4156 2.78149
\(606\) −5.19325 −0.210961
\(607\) 25.6191 1.03985 0.519923 0.854213i \(-0.325961\pi\)
0.519923 + 0.854213i \(0.325961\pi\)
\(608\) −16.9467 −0.687280
\(609\) −4.28790 −0.173754
\(610\) 10.9120 0.441813
\(611\) −47.6477 −1.92762
\(612\) 8.42813 0.340687
\(613\) 14.1667 0.572188 0.286094 0.958201i \(-0.407643\pi\)
0.286094 + 0.958201i \(0.407643\pi\)
\(614\) 3.08183 0.124373
\(615\) 8.45371 0.340887
\(616\) 7.17408 0.289052
\(617\) 31.0958 1.25187 0.625934 0.779876i \(-0.284718\pi\)
0.625934 + 0.779876i \(0.284718\pi\)
\(618\) −1.78829 −0.0719354
\(619\) −1.80860 −0.0726939 −0.0363469 0.999339i \(-0.511572\pi\)
−0.0363469 + 0.999339i \(0.511572\pi\)
\(620\) −0.237301 −0.00953024
\(621\) −9.11699 −0.365852
\(622\) 5.66081 0.226978
\(623\) −17.6526 −0.707238
\(624\) −16.2682 −0.651250
\(625\) −30.2266 −1.20906
\(626\) 6.45049 0.257813
\(627\) 30.9620 1.23650
\(628\) −9.01658 −0.359801
\(629\) −13.3219 −0.531177
\(630\) −0.759360 −0.0302536
\(631\) 4.27550 0.170205 0.0851025 0.996372i \(-0.472878\pi\)
0.0851025 + 0.996372i \(0.472878\pi\)
\(632\) 9.54898 0.379838
\(633\) 25.5442 1.01529
\(634\) 1.68162 0.0667858
\(635\) 2.54722 0.101084
\(636\) 11.6084 0.460303
\(637\) 4.68194 0.185505
\(638\) −7.86518 −0.311385
\(639\) 7.54064 0.298303
\(640\) −21.6715 −0.856643
\(641\) −21.0567 −0.831688 −0.415844 0.909436i \(-0.636514\pi\)
−0.415844 + 0.909436i \(0.636514\pi\)
\(642\) −5.05309 −0.199430
\(643\) −23.4286 −0.923935 −0.461968 0.886897i \(-0.652856\pi\)
−0.461968 + 0.886897i \(0.652856\pi\)
\(644\) 17.4237 0.686592
\(645\) −4.82826 −0.190113
\(646\) 6.61555 0.260285
\(647\) −30.4852 −1.19850 −0.599248 0.800564i \(-0.704533\pi\)
−0.599248 + 0.800564i \(0.704533\pi\)
\(648\) −1.16596 −0.0458031
\(649\) −57.6903 −2.26454
\(650\) 2.07736 0.0814808
\(651\) 0.0487464 0.00191052
\(652\) 4.57829 0.179300
\(653\) −11.7448 −0.459609 −0.229805 0.973237i \(-0.573809\pi\)
−0.229805 + 0.973237i \(0.573809\pi\)
\(654\) 0.338953 0.0132541
\(655\) −1.50284 −0.0587208
\(656\) −11.5317 −0.450238
\(657\) 5.40772 0.210975
\(658\) 3.03386 0.118272
\(659\) −23.1760 −0.902809 −0.451405 0.892319i \(-0.649077\pi\)
−0.451405 + 0.892319i \(0.649077\pi\)
\(660\) 29.9531 1.16592
\(661\) −11.9144 −0.463416 −0.231708 0.972785i \(-0.574431\pi\)
−0.231708 + 0.972785i \(0.574431\pi\)
\(662\) −3.32353 −0.129173
\(663\) 20.6475 0.801882
\(664\) 14.6476 0.568438
\(665\) 12.8178 0.497051
\(666\) 0.900543 0.0348953
\(667\) −39.0927 −1.51368
\(668\) 11.8156 0.457159
\(669\) 17.0666 0.659833
\(670\) 4.24651 0.164057
\(671\) 88.4178 3.41333
\(672\) 3.36776 0.129914
\(673\) −12.2102 −0.470668 −0.235334 0.971915i \(-0.575618\pi\)
−0.235334 + 0.971915i \(0.575618\pi\)
\(674\) 7.90682 0.304559
\(675\) −1.48835 −0.0572867
\(676\) −17.0484 −0.655707
\(677\) 30.4234 1.16927 0.584633 0.811298i \(-0.301239\pi\)
0.584633 + 0.811298i \(0.301239\pi\)
\(678\) 2.19937 0.0844664
\(679\) 0.133391 0.00511906
\(680\) 13.0976 0.502269
\(681\) −19.1172 −0.732574
\(682\) 0.0894143 0.00342385
\(683\) −10.7503 −0.411349 −0.205674 0.978620i \(-0.565939\pi\)
−0.205674 + 0.978620i \(0.565939\pi\)
\(684\) 9.61689 0.367711
\(685\) −17.5257 −0.669622
\(686\) −0.298113 −0.0113820
\(687\) 17.4537 0.665900
\(688\) 6.58624 0.251098
\(689\) 28.4386 1.08343
\(690\) −6.92308 −0.263557
\(691\) −24.4202 −0.928987 −0.464493 0.885577i \(-0.653764\pi\)
−0.464493 + 0.885577i \(0.653764\pi\)
\(692\) 31.1557 1.18436
\(693\) −6.15296 −0.233732
\(694\) 2.39313 0.0908418
\(695\) 59.1302 2.24294
\(696\) −4.99950 −0.189506
\(697\) 14.6360 0.554377
\(698\) 1.25811 0.0476201
\(699\) −18.3373 −0.693581
\(700\) 2.84443 0.107509
\(701\) −10.6603 −0.402636 −0.201318 0.979526i \(-0.564522\pi\)
−0.201318 + 0.979526i \(0.564522\pi\)
\(702\) −1.39575 −0.0526790
\(703\) −15.2009 −0.573312
\(704\) −36.5816 −1.37872
\(705\) 25.9229 0.976311
\(706\) 8.06859 0.303665
\(707\) −17.4204 −0.655163
\(708\) −17.9188 −0.673429
\(709\) 8.83062 0.331641 0.165820 0.986156i \(-0.446973\pi\)
0.165820 + 0.986156i \(0.446973\pi\)
\(710\) 5.72606 0.214895
\(711\) −8.18983 −0.307142
\(712\) −20.5822 −0.771351
\(713\) 0.444421 0.0166437
\(714\) −1.31468 −0.0492008
\(715\) 73.3799 2.74425
\(716\) −42.0953 −1.57318
\(717\) −12.5721 −0.469514
\(718\) −6.16945 −0.230242
\(719\) −11.2112 −0.418109 −0.209054 0.977904i \(-0.567039\pi\)
−0.209054 + 0.977904i \(0.567039\pi\)
\(720\) 8.85077 0.329849
\(721\) −5.99870 −0.223403
\(722\) 1.88452 0.0701346
\(723\) −1.76945 −0.0658064
\(724\) −15.1046 −0.561359
\(725\) −6.38190 −0.237018
\(726\) −8.00697 −0.297167
\(727\) −30.6785 −1.13780 −0.568901 0.822406i \(-0.692631\pi\)
−0.568901 + 0.822406i \(0.692631\pi\)
\(728\) 5.45894 0.202322
\(729\) 1.00000 0.0370370
\(730\) 4.10641 0.151985
\(731\) −8.35920 −0.309176
\(732\) 27.4629 1.01506
\(733\) 42.1689 1.55754 0.778772 0.627307i \(-0.215843\pi\)
0.778772 + 0.627307i \(0.215843\pi\)
\(734\) −0.235305 −0.00868528
\(735\) −2.54722 −0.0939558
\(736\) 30.7038 1.13176
\(737\) 34.4087 1.26746
\(738\) −0.989374 −0.0364194
\(739\) −21.9476 −0.807354 −0.403677 0.914902i \(-0.632268\pi\)
−0.403677 + 0.914902i \(0.632268\pi\)
\(740\) −14.7055 −0.540587
\(741\) 23.5598 0.865489
\(742\) −1.81077 −0.0664754
\(743\) 34.0869 1.25053 0.625264 0.780414i \(-0.284991\pi\)
0.625264 + 0.780414i \(0.284991\pi\)
\(744\) 0.0568362 0.00208372
\(745\) −12.7682 −0.467790
\(746\) −1.87008 −0.0684686
\(747\) −12.5627 −0.459647
\(748\) 51.8579 1.89611
\(749\) −16.9503 −0.619350
\(750\) 2.66660 0.0973706
\(751\) 3.36757 0.122884 0.0614422 0.998111i \(-0.480430\pi\)
0.0614422 + 0.998111i \(0.480430\pi\)
\(752\) −35.3614 −1.28950
\(753\) 30.8131 1.12289
\(754\) −5.98482 −0.217954
\(755\) 27.8818 1.01472
\(756\) −1.91113 −0.0695071
\(757\) 4.97069 0.180663 0.0903315 0.995912i \(-0.471207\pi\)
0.0903315 + 0.995912i \(0.471207\pi\)
\(758\) −7.58846 −0.275625
\(759\) −56.0965 −2.03617
\(760\) 14.9449 0.542110
\(761\) −34.7856 −1.26098 −0.630489 0.776198i \(-0.717146\pi\)
−0.630489 + 0.776198i \(0.717146\pi\)
\(762\) −0.298113 −0.0107995
\(763\) 1.13699 0.0411620
\(764\) 35.1657 1.27225
\(765\) −11.2333 −0.406142
\(766\) −0.571721 −0.0206571
\(767\) −43.8980 −1.58506
\(768\) −9.35443 −0.337549
\(769\) 9.55583 0.344592 0.172296 0.985045i \(-0.444881\pi\)
0.172296 + 0.985045i \(0.444881\pi\)
\(770\) −4.67231 −0.168378
\(771\) −13.9647 −0.502925
\(772\) −13.3591 −0.480805
\(773\) 28.8187 1.03654 0.518268 0.855218i \(-0.326577\pi\)
0.518268 + 0.855218i \(0.326577\pi\)
\(774\) 0.565072 0.0203111
\(775\) 0.0725518 0.00260614
\(776\) 0.155528 0.00558312
\(777\) 3.02081 0.108371
\(778\) −9.08805 −0.325822
\(779\) 16.7003 0.598351
\(780\) 22.7920 0.816086
\(781\) 46.3972 1.66022
\(782\) −11.9860 −0.428617
\(783\) 4.28790 0.153237
\(784\) 3.47467 0.124095
\(785\) 12.0176 0.428928
\(786\) 0.175884 0.00627357
\(787\) −16.4957 −0.588009 −0.294004 0.955804i \(-0.594988\pi\)
−0.294004 + 0.955804i \(0.594988\pi\)
\(788\) −36.5960 −1.30368
\(789\) −2.37995 −0.0847285
\(790\) −6.21902 −0.221263
\(791\) 7.37766 0.262319
\(792\) −7.17408 −0.254920
\(793\) 67.2794 2.38916
\(794\) −0.300803 −0.0106751
\(795\) −15.4721 −0.548739
\(796\) −22.5190 −0.798164
\(797\) −38.3239 −1.35750 −0.678752 0.734368i \(-0.737479\pi\)
−0.678752 + 0.734368i \(0.737479\pi\)
\(798\) −1.50012 −0.0531036
\(799\) 44.8804 1.58775
\(800\) 5.01241 0.177215
\(801\) 17.6526 0.623725
\(802\) 5.65452 0.199668
\(803\) 33.2735 1.17420
\(804\) 10.6875 0.376918
\(805\) −23.2230 −0.818504
\(806\) 0.0680376 0.00239652
\(807\) −6.90652 −0.243121
\(808\) −20.3115 −0.714555
\(809\) 1.14289 0.0401819 0.0200910 0.999798i \(-0.493604\pi\)
0.0200910 + 0.999798i \(0.493604\pi\)
\(810\) 0.759360 0.0266812
\(811\) 3.16944 0.111294 0.0556471 0.998450i \(-0.482278\pi\)
0.0556471 + 0.998450i \(0.482278\pi\)
\(812\) −8.19472 −0.287578
\(813\) 15.2627 0.535285
\(814\) 5.54100 0.194212
\(815\) −6.10212 −0.213748
\(816\) 15.3234 0.536426
\(817\) −9.53825 −0.333701
\(818\) 6.35981 0.222365
\(819\) −4.68194 −0.163600
\(820\) 16.1561 0.564197
\(821\) −14.3760 −0.501725 −0.250863 0.968023i \(-0.580714\pi\)
−0.250863 + 0.968023i \(0.580714\pi\)
\(822\) 2.05111 0.0715406
\(823\) 12.2041 0.425409 0.212705 0.977117i \(-0.431773\pi\)
0.212705 + 0.977117i \(0.431773\pi\)
\(824\) −6.99422 −0.243655
\(825\) −9.15777 −0.318833
\(826\) 2.79511 0.0972543
\(827\) 17.7731 0.618030 0.309015 0.951057i \(-0.400001\pi\)
0.309015 + 0.951057i \(0.400001\pi\)
\(828\) −17.4237 −0.605517
\(829\) 12.9454 0.449613 0.224807 0.974403i \(-0.427825\pi\)
0.224807 + 0.974403i \(0.427825\pi\)
\(830\) −9.53965 −0.331126
\(831\) 20.0356 0.695026
\(832\) −27.8359 −0.965036
\(833\) −4.41002 −0.152798
\(834\) −6.92027 −0.239629
\(835\) −15.7483 −0.544991
\(836\) 59.1723 2.04652
\(837\) −0.0487464 −0.00168492
\(838\) 0.571332 0.0197363
\(839\) 35.7687 1.23487 0.617437 0.786621i \(-0.288171\pi\)
0.617437 + 0.786621i \(0.288171\pi\)
\(840\) −2.96995 −0.102473
\(841\) −10.6139 −0.365998
\(842\) −3.32786 −0.114685
\(843\) −19.7110 −0.678882
\(844\) 48.8183 1.68039
\(845\) 22.7227 0.781686
\(846\) −3.03386 −0.104306
\(847\) −26.8589 −0.922882
\(848\) 21.1055 0.724767
\(849\) 16.3259 0.560303
\(850\) −1.95671 −0.0671147
\(851\) 27.5407 0.944084
\(852\) 14.4111 0.493717
\(853\) −42.0346 −1.43924 −0.719619 0.694370i \(-0.755683\pi\)
−0.719619 + 0.694370i \(0.755683\pi\)
\(854\) −4.28387 −0.146591
\(855\) −12.8178 −0.438358
\(856\) −19.7633 −0.675496
\(857\) 39.5497 1.35099 0.675496 0.737364i \(-0.263930\pi\)
0.675496 + 0.737364i \(0.263930\pi\)
\(858\) −8.58797 −0.293188
\(859\) 5.41594 0.184789 0.0923947 0.995722i \(-0.470548\pi\)
0.0923947 + 0.995722i \(0.470548\pi\)
\(860\) −9.22743 −0.314653
\(861\) −3.31879 −0.113104
\(862\) 7.53527 0.256652
\(863\) 30.5858 1.04115 0.520576 0.853815i \(-0.325717\pi\)
0.520576 + 0.853815i \(0.325717\pi\)
\(864\) −3.36776 −0.114573
\(865\) −41.5255 −1.41191
\(866\) −7.29822 −0.248004
\(867\) −2.44832 −0.0831492
\(868\) 0.0931607 0.00316208
\(869\) −50.3916 −1.70942
\(870\) 3.25606 0.110391
\(871\) 26.1825 0.887159
\(872\) 1.32569 0.0448934
\(873\) −0.133391 −0.00451459
\(874\) −13.6766 −0.462616
\(875\) 8.94496 0.302395
\(876\) 10.3349 0.349183
\(877\) 40.7400 1.37569 0.687846 0.725857i \(-0.258556\pi\)
0.687846 + 0.725857i \(0.258556\pi\)
\(878\) −9.88727 −0.333679
\(879\) 7.46323 0.251728
\(880\) 54.4584 1.83579
\(881\) −13.0783 −0.440620 −0.220310 0.975430i \(-0.570707\pi\)
−0.220310 + 0.975430i \(0.570707\pi\)
\(882\) 0.298113 0.0100380
\(883\) −46.1932 −1.55452 −0.777262 0.629177i \(-0.783392\pi\)
−0.777262 + 0.629177i \(0.783392\pi\)
\(884\) 39.4600 1.32718
\(885\) 23.8828 0.802812
\(886\) 6.83270 0.229549
\(887\) 23.4042 0.785838 0.392919 0.919573i \(-0.371465\pi\)
0.392919 + 0.919573i \(0.371465\pi\)
\(888\) 3.52214 0.118195
\(889\) −1.00000 −0.0335389
\(890\) 13.4047 0.449327
\(891\) 6.15296 0.206132
\(892\) 32.6165 1.09208
\(893\) 51.2107 1.71370
\(894\) 1.49432 0.0499774
\(895\) 56.1062 1.87542
\(896\) 8.50790 0.284229
\(897\) −42.6852 −1.42522
\(898\) −3.23220 −0.107860
\(899\) −0.209020 −0.00697119
\(900\) −2.84443 −0.0948144
\(901\) −26.7870 −0.892403
\(902\) −6.08758 −0.202694
\(903\) 1.89550 0.0630783
\(904\) 8.60203 0.286099
\(905\) 20.1320 0.669210
\(906\) −3.26313 −0.108410
\(907\) −0.601645 −0.0199773 −0.00998864 0.999950i \(-0.503180\pi\)
−0.00998864 + 0.999950i \(0.503180\pi\)
\(908\) −36.5355 −1.21247
\(909\) 17.4204 0.577799
\(910\) −3.55528 −0.117856
\(911\) −55.2607 −1.83087 −0.915435 0.402467i \(-0.868153\pi\)
−0.915435 + 0.402467i \(0.868153\pi\)
\(912\) 17.4847 0.578977
\(913\) −77.2980 −2.55819
\(914\) 6.12734 0.202675
\(915\) −36.6035 −1.21008
\(916\) 33.3563 1.10212
\(917\) 0.589991 0.0194832
\(918\) 1.31468 0.0433910
\(919\) 40.3608 1.33138 0.665689 0.746229i \(-0.268138\pi\)
0.665689 + 0.746229i \(0.268138\pi\)
\(920\) −27.0770 −0.892704
\(921\) −10.3378 −0.340642
\(922\) −8.95650 −0.294967
\(923\) 35.3048 1.16207
\(924\) −11.7591 −0.386846
\(925\) 4.49603 0.147829
\(926\) −7.74166 −0.254407
\(927\) 5.99870 0.197023
\(928\) −14.4406 −0.474036
\(929\) −17.1233 −0.561798 −0.280899 0.959737i \(-0.590633\pi\)
−0.280899 + 0.959737i \(0.590633\pi\)
\(930\) −0.0370161 −0.00121380
\(931\) −5.03205 −0.164919
\(932\) −35.0450 −1.14794
\(933\) −18.9888 −0.621667
\(934\) −8.51792 −0.278715
\(935\) −69.1181 −2.26041
\(936\) −5.45894 −0.178431
\(937\) −27.9645 −0.913560 −0.456780 0.889580i \(-0.650997\pi\)
−0.456780 + 0.889580i \(0.650997\pi\)
\(938\) −1.66711 −0.0544331
\(939\) −21.6377 −0.706121
\(940\) 49.5419 1.61588
\(941\) −37.0801 −1.20878 −0.604389 0.796689i \(-0.706583\pi\)
−0.604389 + 0.796689i \(0.706583\pi\)
\(942\) −1.40648 −0.0458255
\(943\) −30.2574 −0.985317
\(944\) −32.5786 −1.06034
\(945\) 2.54722 0.0828612
\(946\) 3.47687 0.113043
\(947\) −47.2707 −1.53609 −0.768045 0.640396i \(-0.778770\pi\)
−0.768045 + 0.640396i \(0.778770\pi\)
\(948\) −15.6518 −0.508347
\(949\) 25.3187 0.821878
\(950\) −2.23270 −0.0724384
\(951\) −5.64090 −0.182919
\(952\) −5.14190 −0.166650
\(953\) 1.78295 0.0577553 0.0288776 0.999583i \(-0.490807\pi\)
0.0288776 + 0.999583i \(0.490807\pi\)
\(954\) 1.81077 0.0586258
\(955\) −46.8702 −1.51668
\(956\) −24.0269 −0.777086
\(957\) 26.3832 0.852849
\(958\) −8.71790 −0.281663
\(959\) 6.88031 0.222177
\(960\) 15.1442 0.488777
\(961\) −30.9976 −0.999923
\(962\) 4.21629 0.135939
\(963\) 16.9503 0.546215
\(964\) −3.38164 −0.108915
\(965\) 17.8055 0.573180
\(966\) 2.71789 0.0874467
\(967\) 19.3686 0.622851 0.311426 0.950271i \(-0.399194\pi\)
0.311426 + 0.950271i \(0.399194\pi\)
\(968\) −31.3163 −1.00654
\(969\) −22.1915 −0.712892
\(970\) −0.101291 −0.00325227
\(971\) −56.6777 −1.81888 −0.909438 0.415840i \(-0.863487\pi\)
−0.909438 + 0.415840i \(0.863487\pi\)
\(972\) 1.91113 0.0612995
\(973\) −23.2136 −0.744194
\(974\) −5.62838 −0.180345
\(975\) −6.96838 −0.223167
\(976\) 49.9309 1.59825
\(977\) −34.5076 −1.10400 −0.551998 0.833845i \(-0.686134\pi\)
−0.551998 + 0.833845i \(0.686134\pi\)
\(978\) 0.714158 0.0228362
\(979\) 108.616 3.47138
\(980\) −4.86807 −0.155505
\(981\) −1.13699 −0.0363015
\(982\) 7.20803 0.230018
\(983\) 30.3657 0.968514 0.484257 0.874926i \(-0.339090\pi\)
0.484257 + 0.874926i \(0.339090\pi\)
\(984\) −3.86957 −0.123357
\(985\) 48.7766 1.55415
\(986\) 5.63723 0.179526
\(987\) −10.1769 −0.323934
\(988\) 45.0257 1.43246
\(989\) 17.2813 0.549512
\(990\) 4.67231 0.148496
\(991\) −25.7213 −0.817063 −0.408532 0.912744i \(-0.633959\pi\)
−0.408532 + 0.912744i \(0.633959\pi\)
\(992\) 0.164166 0.00521228
\(993\) 11.1486 0.353789
\(994\) −2.24796 −0.0713009
\(995\) 30.0141 0.951512
\(996\) −24.0090 −0.760755
\(997\) 13.4555 0.426139 0.213069 0.977037i \(-0.431654\pi\)
0.213069 + 0.977037i \(0.431654\pi\)
\(998\) −1.98970 −0.0629830
\(999\) −3.02081 −0.0955743
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.o.1.8 16
3.2 odd 2 8001.2.a.r.1.9 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.o.1.8 16 1.1 even 1 trivial
8001.2.a.r.1.9 16 3.2 odd 2