Properties

Label 2-2667-1.1-c1-0-35
Degree $2$
Conductor $2667$
Sign $1$
Analytic cond. $21.2961$
Root an. cond. $4.61477$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.298·2-s − 3-s − 1.91·4-s + 2.54·5-s − 0.298·6-s − 7-s − 1.16·8-s + 9-s + 0.759·10-s + 6.15·11-s + 1.91·12-s + 4.68·13-s − 0.298·14-s − 2.54·15-s + 3.47·16-s − 4.41·17-s + 0.298·18-s − 5.03·19-s − 4.86·20-s + 21-s + 1.83·22-s + 9.11·23-s + 1.16·24-s + 1.48·25-s + 1.39·26-s − 27-s + 1.91·28-s + ⋯
L(s)  = 1  + 0.210·2-s − 0.577·3-s − 0.955·4-s + 1.13·5-s − 0.121·6-s − 0.377·7-s − 0.412·8-s + 0.333·9-s + 0.240·10-s + 1.85·11-s + 0.551·12-s + 1.29·13-s − 0.0796·14-s − 0.657·15-s + 0.868·16-s − 1.06·17-s + 0.0702·18-s − 1.15·19-s − 1.08·20-s + 0.218·21-s + 0.391·22-s + 1.90·23-s + 0.237·24-s + 0.297·25-s + 0.273·26-s − 0.192·27-s + 0.361·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2667\)    =    \(3 \cdot 7 \cdot 127\)
Sign: $1$
Analytic conductor: \(21.2961\)
Root analytic conductor: \(4.61477\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2667,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.768878954\)
\(L(\frac12)\) \(\approx\) \(1.768878954\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 + T \)
127 \( 1 - T \)
good2 \( 1 - 0.298T + 2T^{2} \)
5 \( 1 - 2.54T + 5T^{2} \)
11 \( 1 - 6.15T + 11T^{2} \)
13 \( 1 - 4.68T + 13T^{2} \)
17 \( 1 + 4.41T + 17T^{2} \)
19 \( 1 + 5.03T + 19T^{2} \)
23 \( 1 - 9.11T + 23T^{2} \)
29 \( 1 + 4.28T + 29T^{2} \)
31 \( 1 - 0.0487T + 31T^{2} \)
37 \( 1 - 3.02T + 37T^{2} \)
41 \( 1 + 3.31T + 41T^{2} \)
43 \( 1 - 1.89T + 43T^{2} \)
47 \( 1 + 10.1T + 47T^{2} \)
53 \( 1 - 6.07T + 53T^{2} \)
59 \( 1 + 9.37T + 59T^{2} \)
61 \( 1 - 14.3T + 61T^{2} \)
67 \( 1 - 5.59T + 67T^{2} \)
71 \( 1 - 7.54T + 71T^{2} \)
73 \( 1 - 5.40T + 73T^{2} \)
79 \( 1 + 8.18T + 79T^{2} \)
83 \( 1 + 12.5T + 83T^{2} \)
89 \( 1 - 17.6T + 89T^{2} \)
97 \( 1 + 0.133T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.003242161975005121508667100542, −8.484945782617781208645420838218, −6.90291419869118292121678165008, −6.38322145669723333219497003387, −5.89718059652994695017894983972, −4.94450947735057328728811409652, −4.13709668071529696553940674130, −3.43104530539583768033144342193, −1.88689773443113863851843202918, −0.888210803136682772547570392725, 0.888210803136682772547570392725, 1.88689773443113863851843202918, 3.43104530539583768033144342193, 4.13709668071529696553940674130, 4.94450947735057328728811409652, 5.89718059652994695017894983972, 6.38322145669723333219497003387, 6.90291419869118292121678165008, 8.484945782617781208645420838218, 9.003242161975005121508667100542

Graph of the $Z$-function along the critical line