Properties

Label 2667.2.a.o.1.16
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,5,-16,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} - 13 x^{14} + 98 x^{13} + 9 x^{12} - 712 x^{11} + 565 x^{10} + 2282 x^{9} - 3082 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Root \(2.76723\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.76723 q^{2} -1.00000 q^{3} +5.65757 q^{4} -3.65468 q^{5} -2.76723 q^{6} -1.00000 q^{7} +10.1213 q^{8} +1.00000 q^{9} -10.1133 q^{10} +0.555158 q^{11} -5.65757 q^{12} +1.94794 q^{13} -2.76723 q^{14} +3.65468 q^{15} +16.6929 q^{16} +6.99463 q^{17} +2.76723 q^{18} -2.93493 q^{19} -20.6766 q^{20} +1.00000 q^{21} +1.53625 q^{22} -4.18318 q^{23} -10.1213 q^{24} +8.35670 q^{25} +5.39040 q^{26} -1.00000 q^{27} -5.65757 q^{28} +8.74311 q^{29} +10.1133 q^{30} +0.936637 q^{31} +25.9505 q^{32} -0.555158 q^{33} +19.3558 q^{34} +3.65468 q^{35} +5.65757 q^{36} +2.96085 q^{37} -8.12162 q^{38} -1.94794 q^{39} -36.9902 q^{40} -0.248112 q^{41} +2.76723 q^{42} +0.630338 q^{43} +3.14084 q^{44} -3.65468 q^{45} -11.5758 q^{46} +4.41168 q^{47} -16.6929 q^{48} +1.00000 q^{49} +23.1249 q^{50} -6.99463 q^{51} +11.0206 q^{52} +7.79091 q^{53} -2.76723 q^{54} -2.02893 q^{55} -10.1213 q^{56} +2.93493 q^{57} +24.1942 q^{58} +3.50891 q^{59} +20.6766 q^{60} +0.0482375 q^{61} +2.59189 q^{62} -1.00000 q^{63} +38.4252 q^{64} -7.11910 q^{65} -1.53625 q^{66} +1.92412 q^{67} +39.5726 q^{68} +4.18318 q^{69} +10.1133 q^{70} -6.19394 q^{71} +10.1213 q^{72} +12.2682 q^{73} +8.19335 q^{74} -8.35670 q^{75} -16.6045 q^{76} -0.555158 q^{77} -5.39040 q^{78} -15.7700 q^{79} -61.0073 q^{80} +1.00000 q^{81} -0.686584 q^{82} -13.8174 q^{83} +5.65757 q^{84} -25.5632 q^{85} +1.74429 q^{86} -8.74311 q^{87} +5.61894 q^{88} +4.29172 q^{89} -10.1133 q^{90} -1.94794 q^{91} -23.6666 q^{92} -0.936637 q^{93} +12.2081 q^{94} +10.7262 q^{95} -25.9505 q^{96} +12.7904 q^{97} +2.76723 q^{98} +0.555158 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{2} - 16 q^{3} + 19 q^{4} - q^{5} - 5 q^{6} - 16 q^{7} + 6 q^{8} + 16 q^{9} - 12 q^{10} + 11 q^{11} - 19 q^{12} + 18 q^{13} - 5 q^{14} + q^{15} + 25 q^{16} - 5 q^{17} + 5 q^{18} - 11 q^{19}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.76723 1.95673 0.978364 0.206892i \(-0.0663348\pi\)
0.978364 + 0.206892i \(0.0663348\pi\)
\(3\) −1.00000 −0.577350
\(4\) 5.65757 2.82878
\(5\) −3.65468 −1.63442 −0.817212 0.576338i \(-0.804481\pi\)
−0.817212 + 0.576338i \(0.804481\pi\)
\(6\) −2.76723 −1.12972
\(7\) −1.00000 −0.377964
\(8\) 10.1213 3.57843
\(9\) 1.00000 0.333333
\(10\) −10.1133 −3.19812
\(11\) 0.555158 0.167386 0.0836932 0.996492i \(-0.473328\pi\)
0.0836932 + 0.996492i \(0.473328\pi\)
\(12\) −5.65757 −1.63320
\(13\) 1.94794 0.540261 0.270131 0.962824i \(-0.412933\pi\)
0.270131 + 0.962824i \(0.412933\pi\)
\(14\) −2.76723 −0.739574
\(15\) 3.65468 0.943635
\(16\) 16.6929 4.17323
\(17\) 6.99463 1.69645 0.848224 0.529638i \(-0.177672\pi\)
0.848224 + 0.529638i \(0.177672\pi\)
\(18\) 2.76723 0.652243
\(19\) −2.93493 −0.673318 −0.336659 0.941627i \(-0.609297\pi\)
−0.336659 + 0.941627i \(0.609297\pi\)
\(20\) −20.6766 −4.62343
\(21\) 1.00000 0.218218
\(22\) 1.53625 0.327530
\(23\) −4.18318 −0.872253 −0.436127 0.899885i \(-0.643650\pi\)
−0.436127 + 0.899885i \(0.643650\pi\)
\(24\) −10.1213 −2.06601
\(25\) 8.35670 1.67134
\(26\) 5.39040 1.05714
\(27\) −1.00000 −0.192450
\(28\) −5.65757 −1.06918
\(29\) 8.74311 1.62355 0.811777 0.583967i \(-0.198500\pi\)
0.811777 + 0.583967i \(0.198500\pi\)
\(30\) 10.1133 1.84644
\(31\) 0.936637 0.168225 0.0841125 0.996456i \(-0.473194\pi\)
0.0841125 + 0.996456i \(0.473194\pi\)
\(32\) 25.9505 4.58744
\(33\) −0.555158 −0.0966406
\(34\) 19.3558 3.31949
\(35\) 3.65468 0.617754
\(36\) 5.65757 0.942928
\(37\) 2.96085 0.486760 0.243380 0.969931i \(-0.421744\pi\)
0.243380 + 0.969931i \(0.421744\pi\)
\(38\) −8.12162 −1.31750
\(39\) −1.94794 −0.311920
\(40\) −36.9902 −5.84867
\(41\) −0.248112 −0.0387486 −0.0193743 0.999812i \(-0.506167\pi\)
−0.0193743 + 0.999812i \(0.506167\pi\)
\(42\) 2.76723 0.426993
\(43\) 0.630338 0.0961257 0.0480628 0.998844i \(-0.484695\pi\)
0.0480628 + 0.998844i \(0.484695\pi\)
\(44\) 3.14084 0.473500
\(45\) −3.65468 −0.544808
\(46\) −11.5758 −1.70676
\(47\) 4.41168 0.643509 0.321755 0.946823i \(-0.395727\pi\)
0.321755 + 0.946823i \(0.395727\pi\)
\(48\) −16.6929 −2.40942
\(49\) 1.00000 0.142857
\(50\) 23.1249 3.27036
\(51\) −6.99463 −0.979445
\(52\) 11.0206 1.52828
\(53\) 7.79091 1.07016 0.535082 0.844800i \(-0.320281\pi\)
0.535082 + 0.844800i \(0.320281\pi\)
\(54\) −2.76723 −0.376572
\(55\) −2.02893 −0.273580
\(56\) −10.1213 −1.35252
\(57\) 2.93493 0.388740
\(58\) 24.1942 3.17685
\(59\) 3.50891 0.456822 0.228411 0.973565i \(-0.426647\pi\)
0.228411 + 0.973565i \(0.426647\pi\)
\(60\) 20.6766 2.66934
\(61\) 0.0482375 0.00617618 0.00308809 0.999995i \(-0.499017\pi\)
0.00308809 + 0.999995i \(0.499017\pi\)
\(62\) 2.59189 0.329170
\(63\) −1.00000 −0.125988
\(64\) 38.4252 4.80315
\(65\) −7.11910 −0.883015
\(66\) −1.53625 −0.189099
\(67\) 1.92412 0.235069 0.117534 0.993069i \(-0.462501\pi\)
0.117534 + 0.993069i \(0.462501\pi\)
\(68\) 39.5726 4.79888
\(69\) 4.18318 0.503596
\(70\) 10.1133 1.20878
\(71\) −6.19394 −0.735086 −0.367543 0.930007i \(-0.619801\pi\)
−0.367543 + 0.930007i \(0.619801\pi\)
\(72\) 10.1213 1.19281
\(73\) 12.2682 1.43588 0.717939 0.696106i \(-0.245086\pi\)
0.717939 + 0.696106i \(0.245086\pi\)
\(74\) 8.19335 0.952458
\(75\) −8.35670 −0.964948
\(76\) −16.6045 −1.90467
\(77\) −0.555158 −0.0632661
\(78\) −5.39040 −0.610342
\(79\) −15.7700 −1.77427 −0.887133 0.461513i \(-0.847307\pi\)
−0.887133 + 0.461513i \(0.847307\pi\)
\(80\) −61.0073 −6.82082
\(81\) 1.00000 0.111111
\(82\) −0.686584 −0.0758205
\(83\) −13.8174 −1.51666 −0.758328 0.651873i \(-0.773983\pi\)
−0.758328 + 0.651873i \(0.773983\pi\)
\(84\) 5.65757 0.617291
\(85\) −25.5632 −2.77271
\(86\) 1.74429 0.188092
\(87\) −8.74311 −0.937360
\(88\) 5.61894 0.598981
\(89\) 4.29172 0.454921 0.227461 0.973787i \(-0.426958\pi\)
0.227461 + 0.973787i \(0.426958\pi\)
\(90\) −10.1133 −1.06604
\(91\) −1.94794 −0.204200
\(92\) −23.6666 −2.46742
\(93\) −0.936637 −0.0971247
\(94\) 12.2081 1.25917
\(95\) 10.7262 1.10049
\(96\) −25.9505 −2.64856
\(97\) 12.7904 1.29866 0.649332 0.760505i \(-0.275049\pi\)
0.649332 + 0.760505i \(0.275049\pi\)
\(98\) 2.76723 0.279533
\(99\) 0.555158 0.0557955
\(100\) 47.2786 4.72786
\(101\) 10.5712 1.05188 0.525938 0.850523i \(-0.323715\pi\)
0.525938 + 0.850523i \(0.323715\pi\)
\(102\) −19.3558 −1.91651
\(103\) −1.21519 −0.119737 −0.0598683 0.998206i \(-0.519068\pi\)
−0.0598683 + 0.998206i \(0.519068\pi\)
\(104\) 19.7157 1.93329
\(105\) −3.65468 −0.356660
\(106\) 21.5592 2.09402
\(107\) −9.63721 −0.931664 −0.465832 0.884873i \(-0.654245\pi\)
−0.465832 + 0.884873i \(0.654245\pi\)
\(108\) −5.65757 −0.544400
\(109\) 13.1868 1.26306 0.631531 0.775351i \(-0.282427\pi\)
0.631531 + 0.775351i \(0.282427\pi\)
\(110\) −5.61450 −0.535322
\(111\) −2.96085 −0.281031
\(112\) −16.6929 −1.57733
\(113\) −20.1795 −1.89833 −0.949165 0.314780i \(-0.898069\pi\)
−0.949165 + 0.314780i \(0.898069\pi\)
\(114\) 8.12162 0.760659
\(115\) 15.2882 1.42563
\(116\) 49.4647 4.59268
\(117\) 1.94794 0.180087
\(118\) 9.70997 0.893875
\(119\) −6.99463 −0.641197
\(120\) 36.9902 3.37673
\(121\) −10.6918 −0.971982
\(122\) 0.133484 0.0120851
\(123\) 0.248112 0.0223715
\(124\) 5.29909 0.475872
\(125\) −12.2677 −1.09725
\(126\) −2.76723 −0.246525
\(127\) 1.00000 0.0887357
\(128\) 54.4304 4.81101
\(129\) −0.630338 −0.0554982
\(130\) −19.7002 −1.72782
\(131\) 12.6295 1.10344 0.551722 0.834028i \(-0.313971\pi\)
0.551722 + 0.834028i \(0.313971\pi\)
\(132\) −3.14084 −0.273375
\(133\) 2.93493 0.254490
\(134\) 5.32449 0.459966
\(135\) 3.65468 0.314545
\(136\) 70.7950 6.07062
\(137\) −12.5440 −1.07171 −0.535854 0.844311i \(-0.680010\pi\)
−0.535854 + 0.844311i \(0.680010\pi\)
\(138\) 11.5758 0.985400
\(139\) −21.0486 −1.78532 −0.892658 0.450736i \(-0.851162\pi\)
−0.892658 + 0.450736i \(0.851162\pi\)
\(140\) 20.6766 1.74749
\(141\) −4.41168 −0.371530
\(142\) −17.1401 −1.43836
\(143\) 1.08141 0.0904324
\(144\) 16.6929 1.39108
\(145\) −31.9533 −2.65358
\(146\) 33.9488 2.80962
\(147\) −1.00000 −0.0824786
\(148\) 16.7512 1.37694
\(149\) 15.1278 1.23932 0.619660 0.784871i \(-0.287271\pi\)
0.619660 + 0.784871i \(0.287271\pi\)
\(150\) −23.1249 −1.88814
\(151\) −3.34426 −0.272152 −0.136076 0.990698i \(-0.543449\pi\)
−0.136076 + 0.990698i \(0.543449\pi\)
\(152\) −29.7053 −2.40942
\(153\) 6.99463 0.565483
\(154\) −1.53625 −0.123795
\(155\) −3.42311 −0.274951
\(156\) −11.0206 −0.882354
\(157\) −24.1821 −1.92994 −0.964972 0.262352i \(-0.915502\pi\)
−0.964972 + 0.262352i \(0.915502\pi\)
\(158\) −43.6393 −3.47176
\(159\) −7.79091 −0.617859
\(160\) −94.8408 −7.49783
\(161\) 4.18318 0.329681
\(162\) 2.76723 0.217414
\(163\) −1.13219 −0.0886803 −0.0443402 0.999016i \(-0.514119\pi\)
−0.0443402 + 0.999016i \(0.514119\pi\)
\(164\) −1.40371 −0.109611
\(165\) 2.02893 0.157952
\(166\) −38.2359 −2.96768
\(167\) 7.51198 0.581295 0.290647 0.956830i \(-0.406129\pi\)
0.290647 + 0.956830i \(0.406129\pi\)
\(168\) 10.1213 0.780877
\(169\) −9.20553 −0.708118
\(170\) −70.7392 −5.42545
\(171\) −2.93493 −0.224439
\(172\) 3.56618 0.271919
\(173\) −16.2369 −1.23447 −0.617233 0.786781i \(-0.711746\pi\)
−0.617233 + 0.786781i \(0.711746\pi\)
\(174\) −24.1942 −1.83416
\(175\) −8.35670 −0.631707
\(176\) 9.26721 0.698542
\(177\) −3.50891 −0.263746
\(178\) 11.8762 0.890157
\(179\) 6.60031 0.493331 0.246665 0.969101i \(-0.420665\pi\)
0.246665 + 0.969101i \(0.420665\pi\)
\(180\) −20.6766 −1.54114
\(181\) 6.48777 0.482232 0.241116 0.970496i \(-0.422487\pi\)
0.241116 + 0.970496i \(0.422487\pi\)
\(182\) −5.39040 −0.399563
\(183\) −0.0482375 −0.00356582
\(184\) −42.3393 −3.12130
\(185\) −10.8210 −0.795573
\(186\) −2.59189 −0.190047
\(187\) 3.88313 0.283962
\(188\) 24.9594 1.82035
\(189\) 1.00000 0.0727393
\(190\) 29.6819 2.15335
\(191\) 20.7832 1.50382 0.751908 0.659268i \(-0.229134\pi\)
0.751908 + 0.659268i \(0.229134\pi\)
\(192\) −38.4252 −2.77310
\(193\) −20.4234 −1.47011 −0.735053 0.678010i \(-0.762843\pi\)
−0.735053 + 0.678010i \(0.762843\pi\)
\(194\) 35.3939 2.54113
\(195\) 7.11910 0.509809
\(196\) 5.65757 0.404112
\(197\) 23.1445 1.64898 0.824488 0.565879i \(-0.191463\pi\)
0.824488 + 0.565879i \(0.191463\pi\)
\(198\) 1.53625 0.109177
\(199\) −20.3061 −1.43946 −0.719730 0.694254i \(-0.755735\pi\)
−0.719730 + 0.694254i \(0.755735\pi\)
\(200\) 84.5809 5.98077
\(201\) −1.92412 −0.135717
\(202\) 29.2530 2.05823
\(203\) −8.74311 −0.613646
\(204\) −39.5726 −2.77064
\(205\) 0.906772 0.0633317
\(206\) −3.36272 −0.234292
\(207\) −4.18318 −0.290751
\(208\) 32.5168 2.25463
\(209\) −1.62935 −0.112704
\(210\) −10.1133 −0.697887
\(211\) −6.39849 −0.440490 −0.220245 0.975445i \(-0.570686\pi\)
−0.220245 + 0.975445i \(0.570686\pi\)
\(212\) 44.0776 3.02726
\(213\) 6.19394 0.424402
\(214\) −26.6684 −1.82301
\(215\) −2.30369 −0.157110
\(216\) −10.1213 −0.688669
\(217\) −0.936637 −0.0635831
\(218\) 36.4908 2.47147
\(219\) −12.2682 −0.829005
\(220\) −11.4788 −0.773899
\(221\) 13.6251 0.916525
\(222\) −8.19335 −0.549902
\(223\) −19.8687 −1.33051 −0.665254 0.746617i \(-0.731677\pi\)
−0.665254 + 0.746617i \(0.731677\pi\)
\(224\) −25.9505 −1.73389
\(225\) 8.35670 0.557113
\(226\) −55.8414 −3.71451
\(227\) −14.6479 −0.972215 −0.486108 0.873899i \(-0.661584\pi\)
−0.486108 + 0.873899i \(0.661584\pi\)
\(228\) 16.6045 1.09966
\(229\) −0.677012 −0.0447382 −0.0223691 0.999750i \(-0.507121\pi\)
−0.0223691 + 0.999750i \(0.507121\pi\)
\(230\) 42.3060 2.78957
\(231\) 0.555158 0.0365267
\(232\) 88.4919 5.80978
\(233\) −21.7935 −1.42774 −0.713870 0.700279i \(-0.753059\pi\)
−0.713870 + 0.700279i \(0.753059\pi\)
\(234\) 5.39040 0.352381
\(235\) −16.1233 −1.05177
\(236\) 19.8519 1.29225
\(237\) 15.7700 1.02437
\(238\) −19.3558 −1.25465
\(239\) −10.1562 −0.656951 −0.328476 0.944512i \(-0.606535\pi\)
−0.328476 + 0.944512i \(0.606535\pi\)
\(240\) 61.0073 3.93800
\(241\) −12.8103 −0.825185 −0.412593 0.910916i \(-0.635377\pi\)
−0.412593 + 0.910916i \(0.635377\pi\)
\(242\) −29.5867 −1.90190
\(243\) −1.00000 −0.0641500
\(244\) 0.272907 0.0174711
\(245\) −3.65468 −0.233489
\(246\) 0.686584 0.0437750
\(247\) −5.71706 −0.363768
\(248\) 9.48001 0.601981
\(249\) 13.8174 0.875642
\(250\) −33.9475 −2.14703
\(251\) 23.8715 1.50676 0.753379 0.657586i \(-0.228423\pi\)
0.753379 + 0.657586i \(0.228423\pi\)
\(252\) −5.65757 −0.356393
\(253\) −2.32233 −0.146003
\(254\) 2.76723 0.173631
\(255\) 25.5632 1.60083
\(256\) 73.7710 4.61069
\(257\) 7.89624 0.492554 0.246277 0.969200i \(-0.420793\pi\)
0.246277 + 0.969200i \(0.420793\pi\)
\(258\) −1.74429 −0.108595
\(259\) −2.96085 −0.183978
\(260\) −40.2768 −2.49786
\(261\) 8.74311 0.541185
\(262\) 34.9488 2.15914
\(263\) 24.4029 1.50475 0.752374 0.658737i \(-0.228909\pi\)
0.752374 + 0.658737i \(0.228909\pi\)
\(264\) −5.61894 −0.345822
\(265\) −28.4733 −1.74910
\(266\) 8.12162 0.497968
\(267\) −4.29172 −0.262649
\(268\) 10.8858 0.664959
\(269\) −18.5871 −1.13328 −0.566639 0.823966i \(-0.691756\pi\)
−0.566639 + 0.823966i \(0.691756\pi\)
\(270\) 10.1133 0.615479
\(271\) −16.2454 −0.986839 −0.493419 0.869792i \(-0.664253\pi\)
−0.493419 + 0.869792i \(0.664253\pi\)
\(272\) 116.761 7.07967
\(273\) 1.94794 0.117895
\(274\) −34.7122 −2.09704
\(275\) 4.63929 0.279760
\(276\) 23.6666 1.42456
\(277\) 0.627986 0.0377320 0.0188660 0.999822i \(-0.493994\pi\)
0.0188660 + 0.999822i \(0.493994\pi\)
\(278\) −58.2462 −3.49338
\(279\) 0.936637 0.0560750
\(280\) 36.9902 2.21059
\(281\) −24.1453 −1.44039 −0.720195 0.693772i \(-0.755948\pi\)
−0.720195 + 0.693772i \(0.755948\pi\)
\(282\) −12.2081 −0.726983
\(283\) 1.57053 0.0933583 0.0466791 0.998910i \(-0.485136\pi\)
0.0466791 + 0.998910i \(0.485136\pi\)
\(284\) −35.0426 −2.07940
\(285\) −10.7262 −0.635366
\(286\) 2.99252 0.176951
\(287\) 0.248112 0.0146456
\(288\) 25.9505 1.52915
\(289\) 31.9249 1.87794
\(290\) −88.4221 −5.19233
\(291\) −12.7904 −0.749784
\(292\) 69.4079 4.06179
\(293\) 23.5738 1.37720 0.688599 0.725143i \(-0.258226\pi\)
0.688599 + 0.725143i \(0.258226\pi\)
\(294\) −2.76723 −0.161388
\(295\) −12.8240 −0.746640
\(296\) 29.9677 1.74184
\(297\) −0.555158 −0.0322135
\(298\) 41.8622 2.42501
\(299\) −8.14858 −0.471245
\(300\) −47.2786 −2.72963
\(301\) −0.630338 −0.0363321
\(302\) −9.25434 −0.532527
\(303\) −10.5712 −0.607300
\(304\) −48.9925 −2.80991
\(305\) −0.176293 −0.0100945
\(306\) 19.3558 1.10650
\(307\) 17.0815 0.974891 0.487446 0.873153i \(-0.337929\pi\)
0.487446 + 0.873153i \(0.337929\pi\)
\(308\) −3.14084 −0.178966
\(309\) 1.21519 0.0691299
\(310\) −9.47254 −0.538004
\(311\) 22.2805 1.26341 0.631706 0.775208i \(-0.282355\pi\)
0.631706 + 0.775208i \(0.282355\pi\)
\(312\) −19.7157 −1.11618
\(313\) −3.88085 −0.219359 −0.109679 0.993967i \(-0.534982\pi\)
−0.109679 + 0.993967i \(0.534982\pi\)
\(314\) −66.9176 −3.77638
\(315\) 3.65468 0.205918
\(316\) −89.2200 −5.01902
\(317\) 28.0393 1.57485 0.787423 0.616413i \(-0.211415\pi\)
0.787423 + 0.616413i \(0.211415\pi\)
\(318\) −21.5592 −1.20898
\(319\) 4.85381 0.271761
\(320\) −140.432 −7.85038
\(321\) 9.63721 0.537897
\(322\) 11.5758 0.645096
\(323\) −20.5287 −1.14225
\(324\) 5.65757 0.314309
\(325\) 16.2783 0.902960
\(326\) −3.13304 −0.173523
\(327\) −13.1868 −0.729229
\(328\) −2.51123 −0.138659
\(329\) −4.41168 −0.243224
\(330\) 5.61450 0.309068
\(331\) 22.4003 1.23123 0.615617 0.788046i \(-0.288907\pi\)
0.615617 + 0.788046i \(0.288907\pi\)
\(332\) −78.1728 −4.29029
\(333\) 2.96085 0.162253
\(334\) 20.7874 1.13744
\(335\) −7.03205 −0.384202
\(336\) 16.6929 0.910673
\(337\) −8.28715 −0.451430 −0.225715 0.974193i \(-0.572472\pi\)
−0.225715 + 0.974193i \(0.572472\pi\)
\(338\) −25.4738 −1.38559
\(339\) 20.1795 1.09600
\(340\) −144.625 −7.84341
\(341\) 0.519981 0.0281586
\(342\) −8.12162 −0.439167
\(343\) −1.00000 −0.0539949
\(344\) 6.37986 0.343979
\(345\) −15.2882 −0.823089
\(346\) −44.9311 −2.41551
\(347\) −12.4589 −0.668831 −0.334415 0.942426i \(-0.608539\pi\)
−0.334415 + 0.942426i \(0.608539\pi\)
\(348\) −49.4647 −2.65159
\(349\) 21.8887 1.17168 0.585838 0.810428i \(-0.300765\pi\)
0.585838 + 0.810428i \(0.300765\pi\)
\(350\) −23.1249 −1.23608
\(351\) −1.94794 −0.103973
\(352\) 14.4066 0.767876
\(353\) 22.4787 1.19642 0.598209 0.801340i \(-0.295879\pi\)
0.598209 + 0.801340i \(0.295879\pi\)
\(354\) −9.70997 −0.516079
\(355\) 22.6369 1.20144
\(356\) 24.2807 1.28687
\(357\) 6.99463 0.370195
\(358\) 18.2646 0.965314
\(359\) 3.73903 0.197339 0.0986693 0.995120i \(-0.468541\pi\)
0.0986693 + 0.995120i \(0.468541\pi\)
\(360\) −36.9902 −1.94956
\(361\) −10.3862 −0.546643
\(362\) 17.9532 0.943598
\(363\) 10.6918 0.561174
\(364\) −11.0206 −0.577636
\(365\) −44.8362 −2.34683
\(366\) −0.133484 −0.00697733
\(367\) −22.4121 −1.16990 −0.584951 0.811069i \(-0.698886\pi\)
−0.584951 + 0.811069i \(0.698886\pi\)
\(368\) −69.8295 −3.64011
\(369\) −0.248112 −0.0129162
\(370\) −29.9441 −1.55672
\(371\) −7.79091 −0.404484
\(372\) −5.29909 −0.274745
\(373\) −9.89929 −0.512566 −0.256283 0.966602i \(-0.582498\pi\)
−0.256283 + 0.966602i \(0.582498\pi\)
\(374\) 10.7455 0.555637
\(375\) 12.2677 0.633499
\(376\) 44.6520 2.30275
\(377\) 17.0310 0.877144
\(378\) 2.76723 0.142331
\(379\) −14.9228 −0.766531 −0.383266 0.923638i \(-0.625201\pi\)
−0.383266 + 0.923638i \(0.625201\pi\)
\(380\) 60.6843 3.11304
\(381\) −1.00000 −0.0512316
\(382\) 57.5118 2.94256
\(383\) 10.4734 0.535164 0.267582 0.963535i \(-0.413775\pi\)
0.267582 + 0.963535i \(0.413775\pi\)
\(384\) −54.4304 −2.77764
\(385\) 2.02893 0.103404
\(386\) −56.5162 −2.87660
\(387\) 0.630338 0.0320419
\(388\) 72.3623 3.67364
\(389\) −20.3230 −1.03042 −0.515210 0.857064i \(-0.672286\pi\)
−0.515210 + 0.857064i \(0.672286\pi\)
\(390\) 19.7002 0.997558
\(391\) −29.2598 −1.47973
\(392\) 10.1213 0.511204
\(393\) −12.6295 −0.637074
\(394\) 64.0461 3.22660
\(395\) 57.6344 2.89990
\(396\) 3.14084 0.157833
\(397\) −23.5947 −1.18418 −0.592091 0.805871i \(-0.701698\pi\)
−0.592091 + 0.805871i \(0.701698\pi\)
\(398\) −56.1916 −2.81663
\(399\) −2.93493 −0.146930
\(400\) 139.498 6.97488
\(401\) −32.2761 −1.61179 −0.805896 0.592057i \(-0.798316\pi\)
−0.805896 + 0.592057i \(0.798316\pi\)
\(402\) −5.32449 −0.265561
\(403\) 1.82451 0.0908854
\(404\) 59.8073 2.97553
\(405\) −3.65468 −0.181603
\(406\) −24.1942 −1.20074
\(407\) 1.64374 0.0814771
\(408\) −70.7950 −3.50487
\(409\) −12.1525 −0.600901 −0.300450 0.953797i \(-0.597137\pi\)
−0.300450 + 0.953797i \(0.597137\pi\)
\(410\) 2.50925 0.123923
\(411\) 12.5440 0.618751
\(412\) −6.87503 −0.338709
\(413\) −3.50891 −0.172662
\(414\) −11.5758 −0.568921
\(415\) 50.4982 2.47886
\(416\) 50.5500 2.47842
\(417\) 21.0486 1.03075
\(418\) −4.50878 −0.220532
\(419\) 18.4594 0.901802 0.450901 0.892574i \(-0.351103\pi\)
0.450901 + 0.892574i \(0.351103\pi\)
\(420\) −20.6766 −1.00891
\(421\) −6.08449 −0.296540 −0.148270 0.988947i \(-0.547370\pi\)
−0.148270 + 0.988947i \(0.547370\pi\)
\(422\) −17.7061 −0.861919
\(423\) 4.41168 0.214503
\(424\) 78.8544 3.82951
\(425\) 58.4520 2.83534
\(426\) 17.1401 0.830439
\(427\) −0.0482375 −0.00233438
\(428\) −54.5232 −2.63548
\(429\) −1.08141 −0.0522111
\(430\) −6.37483 −0.307422
\(431\) 39.0370 1.88035 0.940174 0.340695i \(-0.110662\pi\)
0.940174 + 0.340695i \(0.110662\pi\)
\(432\) −16.6929 −0.803138
\(433\) −2.40523 −0.115588 −0.0577940 0.998329i \(-0.518407\pi\)
−0.0577940 + 0.998329i \(0.518407\pi\)
\(434\) −2.59189 −0.124415
\(435\) 31.9533 1.53204
\(436\) 74.6049 3.57293
\(437\) 12.2773 0.587304
\(438\) −33.9488 −1.62214
\(439\) 26.8409 1.28105 0.640523 0.767939i \(-0.278718\pi\)
0.640523 + 0.767939i \(0.278718\pi\)
\(440\) −20.5354 −0.978988
\(441\) 1.00000 0.0476190
\(442\) 37.7039 1.79339
\(443\) −31.2747 −1.48591 −0.742954 0.669343i \(-0.766576\pi\)
−0.742954 + 0.669343i \(0.766576\pi\)
\(444\) −16.7512 −0.794977
\(445\) −15.6849 −0.743534
\(446\) −54.9814 −2.60344
\(447\) −15.1278 −0.715521
\(448\) −38.4252 −1.81542
\(449\) 32.2247 1.52078 0.760389 0.649468i \(-0.225008\pi\)
0.760389 + 0.649468i \(0.225008\pi\)
\(450\) 23.1249 1.09012
\(451\) −0.137742 −0.00648599
\(452\) −114.167 −5.36996
\(453\) 3.34426 0.157127
\(454\) −40.5341 −1.90236
\(455\) 7.11910 0.333748
\(456\) 29.7053 1.39108
\(457\) 35.3199 1.65219 0.826097 0.563528i \(-0.190556\pi\)
0.826097 + 0.563528i \(0.190556\pi\)
\(458\) −1.87345 −0.0875405
\(459\) −6.99463 −0.326482
\(460\) 86.4940 4.03280
\(461\) −23.2707 −1.08382 −0.541912 0.840435i \(-0.682299\pi\)
−0.541912 + 0.840435i \(0.682299\pi\)
\(462\) 1.53625 0.0714728
\(463\) −19.8736 −0.923606 −0.461803 0.886982i \(-0.652797\pi\)
−0.461803 + 0.886982i \(0.652797\pi\)
\(464\) 145.948 6.77547
\(465\) 3.42311 0.158743
\(466\) −60.3076 −2.79370
\(467\) 13.6216 0.630332 0.315166 0.949037i \(-0.397940\pi\)
0.315166 + 0.949037i \(0.397940\pi\)
\(468\) 11.0206 0.509427
\(469\) −1.92412 −0.0888477
\(470\) −44.6168 −2.05802
\(471\) 24.1821 1.11425
\(472\) 35.5149 1.63470
\(473\) 0.349937 0.0160901
\(474\) 43.6393 2.00442
\(475\) −24.5263 −1.12534
\(476\) −39.5726 −1.81381
\(477\) 7.79091 0.356721
\(478\) −28.1046 −1.28548
\(479\) −8.95421 −0.409128 −0.204564 0.978853i \(-0.565578\pi\)
−0.204564 + 0.978853i \(0.565578\pi\)
\(480\) 94.8408 4.32887
\(481\) 5.76755 0.262978
\(482\) −35.4491 −1.61466
\(483\) −4.18318 −0.190341
\(484\) −60.4896 −2.74953
\(485\) −46.7447 −2.12257
\(486\) −2.76723 −0.125524
\(487\) 24.5758 1.11364 0.556818 0.830635i \(-0.312022\pi\)
0.556818 + 0.830635i \(0.312022\pi\)
\(488\) 0.488227 0.0221010
\(489\) 1.13219 0.0511996
\(490\) −10.1133 −0.456874
\(491\) 5.65703 0.255298 0.127649 0.991819i \(-0.459257\pi\)
0.127649 + 0.991819i \(0.459257\pi\)
\(492\) 1.40371 0.0632842
\(493\) 61.1549 2.75428
\(494\) −15.8204 −0.711794
\(495\) −2.02893 −0.0911934
\(496\) 15.6352 0.702042
\(497\) 6.19394 0.277836
\(498\) 38.2359 1.71339
\(499\) 20.5463 0.919778 0.459889 0.887976i \(-0.347889\pi\)
0.459889 + 0.887976i \(0.347889\pi\)
\(500\) −69.4051 −3.10389
\(501\) −7.51198 −0.335611
\(502\) 66.0581 2.94832
\(503\) 21.5279 0.959881 0.479941 0.877301i \(-0.340658\pi\)
0.479941 + 0.877301i \(0.340658\pi\)
\(504\) −10.1213 −0.450840
\(505\) −38.6344 −1.71921
\(506\) −6.42641 −0.285689
\(507\) 9.20553 0.408832
\(508\) 5.65757 0.251014
\(509\) −16.2431 −0.719963 −0.359982 0.932959i \(-0.617217\pi\)
−0.359982 + 0.932959i \(0.617217\pi\)
\(510\) 70.7392 3.13238
\(511\) −12.2682 −0.542711
\(512\) 95.2806 4.21085
\(513\) 2.93493 0.129580
\(514\) 21.8507 0.963793
\(515\) 4.44114 0.195700
\(516\) −3.56618 −0.156992
\(517\) 2.44918 0.107715
\(518\) −8.19335 −0.359995
\(519\) 16.2369 0.712719
\(520\) −72.0547 −3.15981
\(521\) −9.68875 −0.424472 −0.212236 0.977218i \(-0.568074\pi\)
−0.212236 + 0.977218i \(0.568074\pi\)
\(522\) 24.1942 1.05895
\(523\) 39.2356 1.71565 0.857827 0.513938i \(-0.171814\pi\)
0.857827 + 0.513938i \(0.171814\pi\)
\(524\) 71.4523 3.12141
\(525\) 8.35670 0.364716
\(526\) 67.5285 2.94438
\(527\) 6.55143 0.285385
\(528\) −9.26721 −0.403303
\(529\) −5.50100 −0.239174
\(530\) −78.7922 −3.42251
\(531\) 3.50891 0.152274
\(532\) 16.6045 0.719898
\(533\) −0.483308 −0.0209344
\(534\) −11.8762 −0.513932
\(535\) 35.2209 1.52273
\(536\) 19.4747 0.841178
\(537\) −6.60031 −0.284825
\(538\) −51.4349 −2.21752
\(539\) 0.555158 0.0239123
\(540\) 20.6766 0.889779
\(541\) −3.27381 −0.140752 −0.0703761 0.997521i \(-0.522420\pi\)
−0.0703761 + 0.997521i \(0.522420\pi\)
\(542\) −44.9548 −1.93097
\(543\) −6.48777 −0.278417
\(544\) 181.514 7.78236
\(545\) −48.1934 −2.06438
\(546\) 5.39040 0.230688
\(547\) 9.89249 0.422972 0.211486 0.977381i \(-0.432170\pi\)
0.211486 + 0.977381i \(0.432170\pi\)
\(548\) −70.9686 −3.03163
\(549\) 0.0482375 0.00205873
\(550\) 12.8380 0.547413
\(551\) −25.6604 −1.09317
\(552\) 42.3393 1.80208
\(553\) 15.7700 0.670610
\(554\) 1.73778 0.0738312
\(555\) 10.8210 0.459324
\(556\) −119.084 −5.05027
\(557\) 43.2458 1.83238 0.916191 0.400741i \(-0.131247\pi\)
0.916191 + 0.400741i \(0.131247\pi\)
\(558\) 2.59189 0.109723
\(559\) 1.22786 0.0519330
\(560\) 61.0073 2.57803
\(561\) −3.88313 −0.163946
\(562\) −66.8157 −2.81845
\(563\) −32.6266 −1.37505 −0.687523 0.726163i \(-0.741302\pi\)
−0.687523 + 0.726163i \(0.741302\pi\)
\(564\) −24.9594 −1.05098
\(565\) 73.7497 3.10267
\(566\) 4.34602 0.182677
\(567\) −1.00000 −0.0419961
\(568\) −62.6909 −2.63045
\(569\) −19.9702 −0.837194 −0.418597 0.908172i \(-0.637478\pi\)
−0.418597 + 0.908172i \(0.637478\pi\)
\(570\) −29.6819 −1.24324
\(571\) 1.89515 0.0793095 0.0396548 0.999213i \(-0.487374\pi\)
0.0396548 + 0.999213i \(0.487374\pi\)
\(572\) 6.11817 0.255814
\(573\) −20.7832 −0.868229
\(574\) 0.686584 0.0286575
\(575\) −34.9576 −1.45783
\(576\) 38.4252 1.60105
\(577\) −42.2561 −1.75914 −0.879572 0.475766i \(-0.842171\pi\)
−0.879572 + 0.475766i \(0.842171\pi\)
\(578\) 88.3436 3.67461
\(579\) 20.4234 0.848766
\(580\) −180.778 −7.50639
\(581\) 13.8174 0.573242
\(582\) −35.3939 −1.46712
\(583\) 4.32518 0.179131
\(584\) 124.170 5.13819
\(585\) −7.11910 −0.294338
\(586\) 65.2342 2.69480
\(587\) 21.6495 0.893570 0.446785 0.894641i \(-0.352569\pi\)
0.446785 + 0.894641i \(0.352569\pi\)
\(588\) −5.65757 −0.233314
\(589\) −2.74896 −0.113269
\(590\) −35.4869 −1.46097
\(591\) −23.1445 −0.952037
\(592\) 49.4252 2.03136
\(593\) 6.30725 0.259008 0.129504 0.991579i \(-0.458662\pi\)
0.129504 + 0.991579i \(0.458662\pi\)
\(594\) −1.53625 −0.0630331
\(595\) 25.5632 1.04799
\(596\) 85.5866 3.50577
\(597\) 20.3061 0.831073
\(598\) −22.5490 −0.922097
\(599\) 14.2600 0.582646 0.291323 0.956625i \(-0.405905\pi\)
0.291323 + 0.956625i \(0.405905\pi\)
\(600\) −84.5809 −3.45300
\(601\) 12.9645 0.528834 0.264417 0.964408i \(-0.414821\pi\)
0.264417 + 0.964408i \(0.414821\pi\)
\(602\) −1.74429 −0.0710920
\(603\) 1.92412 0.0783563
\(604\) −18.9204 −0.769859
\(605\) 39.0751 1.58863
\(606\) −29.2530 −1.18832
\(607\) 8.86616 0.359866 0.179933 0.983679i \(-0.442412\pi\)
0.179933 + 0.983679i \(0.442412\pi\)
\(608\) −76.1628 −3.08881
\(609\) 8.74311 0.354289
\(610\) −0.487842 −0.0197522
\(611\) 8.59368 0.347663
\(612\) 39.5726 1.59963
\(613\) −28.1476 −1.13687 −0.568436 0.822728i \(-0.692451\pi\)
−0.568436 + 0.822728i \(0.692451\pi\)
\(614\) 47.2684 1.90760
\(615\) −0.906772 −0.0365646
\(616\) −5.61894 −0.226393
\(617\) −31.2917 −1.25976 −0.629878 0.776694i \(-0.716895\pi\)
−0.629878 + 0.776694i \(0.716895\pi\)
\(618\) 3.36272 0.135268
\(619\) −15.0630 −0.605433 −0.302717 0.953081i \(-0.597894\pi\)
−0.302717 + 0.953081i \(0.597894\pi\)
\(620\) −19.3665 −0.777776
\(621\) 4.18318 0.167865
\(622\) 61.6553 2.47215
\(623\) −4.29172 −0.171944
\(624\) −32.5168 −1.30171
\(625\) 3.05091 0.122036
\(626\) −10.7392 −0.429225
\(627\) 1.62935 0.0650699
\(628\) −136.812 −5.45939
\(629\) 20.7101 0.825764
\(630\) 10.1133 0.402925
\(631\) −19.6368 −0.781729 −0.390864 0.920448i \(-0.627824\pi\)
−0.390864 + 0.920448i \(0.627824\pi\)
\(632\) −159.614 −6.34909
\(633\) 6.39849 0.254317
\(634\) 77.5913 3.08154
\(635\) −3.65468 −0.145032
\(636\) −44.0776 −1.74779
\(637\) 1.94794 0.0771802
\(638\) 13.4316 0.531762
\(639\) −6.19394 −0.245029
\(640\) −198.926 −7.86323
\(641\) −20.2180 −0.798562 −0.399281 0.916829i \(-0.630740\pi\)
−0.399281 + 0.916829i \(0.630740\pi\)
\(642\) 26.6684 1.05252
\(643\) −41.3314 −1.62995 −0.814975 0.579496i \(-0.803249\pi\)
−0.814975 + 0.579496i \(0.803249\pi\)
\(644\) 23.6666 0.932595
\(645\) 2.30369 0.0907075
\(646\) −56.8077 −2.23507
\(647\) 14.2815 0.561462 0.280731 0.959786i \(-0.409423\pi\)
0.280731 + 0.959786i \(0.409423\pi\)
\(648\) 10.1213 0.397603
\(649\) 1.94800 0.0764657
\(650\) 45.0459 1.76685
\(651\) 0.936637 0.0367097
\(652\) −6.40546 −0.250857
\(653\) 19.3064 0.755517 0.377758 0.925904i \(-0.376695\pi\)
0.377758 + 0.925904i \(0.376695\pi\)
\(654\) −36.4908 −1.42690
\(655\) −46.1568 −1.80350
\(656\) −4.14172 −0.161707
\(657\) 12.2682 0.478626
\(658\) −12.2081 −0.475922
\(659\) −5.14897 −0.200576 −0.100288 0.994958i \(-0.531976\pi\)
−0.100288 + 0.994958i \(0.531976\pi\)
\(660\) 11.4788 0.446811
\(661\) 25.0695 0.975090 0.487545 0.873098i \(-0.337892\pi\)
0.487545 + 0.873098i \(0.337892\pi\)
\(662\) 61.9869 2.40919
\(663\) −13.6251 −0.529156
\(664\) −139.850 −5.42725
\(665\) −10.7262 −0.415945
\(666\) 8.19335 0.317486
\(667\) −36.5740 −1.41615
\(668\) 42.4995 1.64436
\(669\) 19.8687 0.768169
\(670\) −19.4593 −0.751779
\(671\) 0.0267794 0.00103381
\(672\) 25.9505 1.00106
\(673\) 4.32081 0.166555 0.0832774 0.996526i \(-0.473461\pi\)
0.0832774 + 0.996526i \(0.473461\pi\)
\(674\) −22.9325 −0.883325
\(675\) −8.35670 −0.321649
\(676\) −52.0809 −2.00311
\(677\) 29.7713 1.14420 0.572102 0.820182i \(-0.306128\pi\)
0.572102 + 0.820182i \(0.306128\pi\)
\(678\) 55.8414 2.14458
\(679\) −12.7904 −0.490849
\(680\) −258.733 −9.92196
\(681\) 14.6479 0.561309
\(682\) 1.43891 0.0550987
\(683\) 47.0408 1.79996 0.899982 0.435926i \(-0.143579\pi\)
0.899982 + 0.435926i \(0.143579\pi\)
\(684\) −16.6045 −0.634890
\(685\) 45.8444 1.75163
\(686\) −2.76723 −0.105653
\(687\) 0.677012 0.0258296
\(688\) 10.5222 0.401155
\(689\) 15.1762 0.578168
\(690\) −42.3060 −1.61056
\(691\) −45.5994 −1.73468 −0.867341 0.497714i \(-0.834173\pi\)
−0.867341 + 0.497714i \(0.834173\pi\)
\(692\) −91.8611 −3.49203
\(693\) −0.555158 −0.0210887
\(694\) −34.4768 −1.30872
\(695\) 76.9258 2.91796
\(696\) −88.4919 −3.35428
\(697\) −1.73545 −0.0657350
\(698\) 60.5712 2.29265
\(699\) 21.7935 0.824306
\(700\) −47.2786 −1.78696
\(701\) −36.8277 −1.39096 −0.695482 0.718543i \(-0.744809\pi\)
−0.695482 + 0.718543i \(0.744809\pi\)
\(702\) −5.39040 −0.203447
\(703\) −8.68987 −0.327745
\(704\) 21.3320 0.803982
\(705\) 16.1233 0.607238
\(706\) 62.2037 2.34107
\(707\) −10.5712 −0.397571
\(708\) −19.8519 −0.746080
\(709\) −44.4738 −1.67025 −0.835124 0.550062i \(-0.814604\pi\)
−0.835124 + 0.550062i \(0.814604\pi\)
\(710\) 62.6415 2.35089
\(711\) −15.7700 −0.591422
\(712\) 43.4379 1.62790
\(713\) −3.91812 −0.146735
\(714\) 19.3558 0.724371
\(715\) −3.95222 −0.147805
\(716\) 37.3417 1.39553
\(717\) 10.1562 0.379291
\(718\) 10.3468 0.386138
\(719\) −40.3684 −1.50549 −0.752745 0.658313i \(-0.771270\pi\)
−0.752745 + 0.658313i \(0.771270\pi\)
\(720\) −61.0073 −2.27361
\(721\) 1.21519 0.0452562
\(722\) −28.7410 −1.06963
\(723\) 12.8103 0.476421
\(724\) 36.7050 1.36413
\(725\) 73.0635 2.71351
\(726\) 29.5867 1.09806
\(727\) −13.3192 −0.493983 −0.246992 0.969018i \(-0.579442\pi\)
−0.246992 + 0.969018i \(0.579442\pi\)
\(728\) −19.7157 −0.730714
\(729\) 1.00000 0.0370370
\(730\) −124.072 −4.59211
\(731\) 4.40899 0.163072
\(732\) −0.272907 −0.0100869
\(733\) 4.42067 0.163281 0.0816407 0.996662i \(-0.473984\pi\)
0.0816407 + 0.996662i \(0.473984\pi\)
\(734\) −62.0194 −2.28918
\(735\) 3.65468 0.134805
\(736\) −108.556 −4.00141
\(737\) 1.06819 0.0393473
\(738\) −0.686584 −0.0252735
\(739\) −8.20650 −0.301881 −0.150940 0.988543i \(-0.548230\pi\)
−0.150940 + 0.988543i \(0.548230\pi\)
\(740\) −61.2203 −2.25050
\(741\) 5.71706 0.210021
\(742\) −21.5592 −0.791465
\(743\) −9.58619 −0.351683 −0.175842 0.984418i \(-0.556265\pi\)
−0.175842 + 0.984418i \(0.556265\pi\)
\(744\) −9.48001 −0.347554
\(745\) −55.2874 −2.02557
\(746\) −27.3936 −1.00295
\(747\) −13.8174 −0.505552
\(748\) 21.9690 0.803268
\(749\) 9.63721 0.352136
\(750\) 33.9475 1.23959
\(751\) 12.9709 0.473315 0.236657 0.971593i \(-0.423948\pi\)
0.236657 + 0.971593i \(0.423948\pi\)
\(752\) 73.6438 2.68551
\(753\) −23.8715 −0.869927
\(754\) 47.1288 1.71633
\(755\) 12.2222 0.444812
\(756\) 5.65757 0.205764
\(757\) −2.09572 −0.0761704 −0.0380852 0.999274i \(-0.512126\pi\)
−0.0380852 + 0.999274i \(0.512126\pi\)
\(758\) −41.2948 −1.49989
\(759\) 2.32233 0.0842951
\(760\) 108.564 3.93802
\(761\) −33.6016 −1.21806 −0.609028 0.793149i \(-0.708440\pi\)
−0.609028 + 0.793149i \(0.708440\pi\)
\(762\) −2.76723 −0.100246
\(763\) −13.1868 −0.477393
\(764\) 117.582 4.25397
\(765\) −25.5632 −0.924238
\(766\) 28.9822 1.04717
\(767\) 6.83515 0.246803
\(768\) −73.7710 −2.66198
\(769\) 26.8826 0.969410 0.484705 0.874678i \(-0.338927\pi\)
0.484705 + 0.874678i \(0.338927\pi\)
\(770\) 5.61450 0.202333
\(771\) −7.89624 −0.284376
\(772\) −115.547 −4.15861
\(773\) −23.9492 −0.861392 −0.430696 0.902497i \(-0.641732\pi\)
−0.430696 + 0.902497i \(0.641732\pi\)
\(774\) 1.74429 0.0626973
\(775\) 7.82719 0.281161
\(776\) 129.455 4.64718
\(777\) 2.96085 0.106220
\(778\) −56.2386 −2.01625
\(779\) 0.728191 0.0260902
\(780\) 40.2768 1.44214
\(781\) −3.43861 −0.123043
\(782\) −80.9687 −2.89543
\(783\) −8.74311 −0.312453
\(784\) 16.6929 0.596176
\(785\) 88.3780 3.15435
\(786\) −34.9488 −1.24658
\(787\) −14.0942 −0.502405 −0.251203 0.967934i \(-0.580826\pi\)
−0.251203 + 0.967934i \(0.580826\pi\)
\(788\) 130.941 4.66460
\(789\) −24.4029 −0.868766
\(790\) 159.488 5.67432
\(791\) 20.1795 0.717501
\(792\) 5.61894 0.199660
\(793\) 0.0939637 0.00333675
\(794\) −65.2919 −2.31712
\(795\) 28.4733 1.00984
\(796\) −114.883 −4.07192
\(797\) −8.70735 −0.308430 −0.154215 0.988037i \(-0.549285\pi\)
−0.154215 + 0.988037i \(0.549285\pi\)
\(798\) −8.12162 −0.287502
\(799\) 30.8581 1.09168
\(800\) 216.861 7.66718
\(801\) 4.29172 0.151640
\(802\) −89.3155 −3.15384
\(803\) 6.81076 0.240347
\(804\) −10.8858 −0.383914
\(805\) −15.2882 −0.538838
\(806\) 5.04885 0.177838
\(807\) 18.5871 0.654298
\(808\) 106.995 3.76406
\(809\) 22.8454 0.803200 0.401600 0.915815i \(-0.368454\pi\)
0.401600 + 0.915815i \(0.368454\pi\)
\(810\) −10.1133 −0.355347
\(811\) −18.2254 −0.639981 −0.319990 0.947421i \(-0.603680\pi\)
−0.319990 + 0.947421i \(0.603680\pi\)
\(812\) −49.4647 −1.73587
\(813\) 16.2454 0.569752
\(814\) 4.54860 0.159428
\(815\) 4.13781 0.144941
\(816\) −116.761 −4.08745
\(817\) −1.85000 −0.0647232
\(818\) −33.6287 −1.17580
\(819\) −1.94794 −0.0680665
\(820\) 5.13012 0.179152
\(821\) −18.9953 −0.662940 −0.331470 0.943466i \(-0.607545\pi\)
−0.331470 + 0.943466i \(0.607545\pi\)
\(822\) 34.7122 1.21073
\(823\) 36.8392 1.28413 0.642067 0.766648i \(-0.278077\pi\)
0.642067 + 0.766648i \(0.278077\pi\)
\(824\) −12.2994 −0.428469
\(825\) −4.63929 −0.161519
\(826\) −9.70997 −0.337853
\(827\) −3.56729 −0.124047 −0.0620234 0.998075i \(-0.519755\pi\)
−0.0620234 + 0.998075i \(0.519755\pi\)
\(828\) −23.6666 −0.822472
\(829\) 30.7868 1.06927 0.534636 0.845083i \(-0.320449\pi\)
0.534636 + 0.845083i \(0.320449\pi\)
\(830\) 139.740 4.85045
\(831\) −0.627986 −0.0217846
\(832\) 74.8499 2.59495
\(833\) 6.99463 0.242350
\(834\) 58.2462 2.01690
\(835\) −27.4539 −0.950082
\(836\) −9.21814 −0.318816
\(837\) −0.936637 −0.0323749
\(838\) 51.0815 1.76458
\(839\) −12.1456 −0.419311 −0.209656 0.977775i \(-0.567234\pi\)
−0.209656 + 0.977775i \(0.567234\pi\)
\(840\) −36.9902 −1.27628
\(841\) 47.4420 1.63593
\(842\) −16.8372 −0.580248
\(843\) 24.1453 0.831610
\(844\) −36.1999 −1.24605
\(845\) 33.6433 1.15736
\(846\) 12.2081 0.419724
\(847\) 10.6918 0.367375
\(848\) 130.053 4.46604
\(849\) −1.57053 −0.0539004
\(850\) 161.750 5.54799
\(851\) −12.3858 −0.424579
\(852\) 35.0426 1.20054
\(853\) 17.8567 0.611402 0.305701 0.952128i \(-0.401109\pi\)
0.305701 + 0.952128i \(0.401109\pi\)
\(854\) −0.133484 −0.00456774
\(855\) 10.7262 0.366829
\(856\) −97.5414 −3.33390
\(857\) −6.09791 −0.208301 −0.104150 0.994562i \(-0.533212\pi\)
−0.104150 + 0.994562i \(0.533212\pi\)
\(858\) −2.99252 −0.102163
\(859\) 32.1385 1.09655 0.548276 0.836297i \(-0.315284\pi\)
0.548276 + 0.836297i \(0.315284\pi\)
\(860\) −13.0333 −0.444430
\(861\) −0.248112 −0.00845565
\(862\) 108.024 3.67933
\(863\) −17.6484 −0.600760 −0.300380 0.953820i \(-0.597114\pi\)
−0.300380 + 0.953820i \(0.597114\pi\)
\(864\) −25.9505 −0.882854
\(865\) 59.3405 2.01764
\(866\) −6.65583 −0.226174
\(867\) −31.9249 −1.08423
\(868\) −5.29909 −0.179863
\(869\) −8.75486 −0.296988
\(870\) 88.4221 2.99779
\(871\) 3.74807 0.126999
\(872\) 133.467 4.51978
\(873\) 12.7904 0.432888
\(874\) 33.9742 1.14919
\(875\) 12.2677 0.414723
\(876\) −69.4079 −2.34507
\(877\) 4.16997 0.140810 0.0704050 0.997518i \(-0.477571\pi\)
0.0704050 + 0.997518i \(0.477571\pi\)
\(878\) 74.2750 2.50666
\(879\) −23.5738 −0.795125
\(880\) −33.8687 −1.14171
\(881\) −19.7775 −0.666322 −0.333161 0.942870i \(-0.608115\pi\)
−0.333161 + 0.942870i \(0.608115\pi\)
\(882\) 2.76723 0.0931775
\(883\) −1.45909 −0.0491022 −0.0245511 0.999699i \(-0.507816\pi\)
−0.0245511 + 0.999699i \(0.507816\pi\)
\(884\) 77.0850 2.59265
\(885\) 12.8240 0.431073
\(886\) −86.5444 −2.90752
\(887\) 38.1475 1.28087 0.640435 0.768013i \(-0.278754\pi\)
0.640435 + 0.768013i \(0.278754\pi\)
\(888\) −29.9677 −1.00565
\(889\) −1.00000 −0.0335389
\(890\) −43.4036 −1.45489
\(891\) 0.555158 0.0185985
\(892\) −112.409 −3.76372
\(893\) −12.9479 −0.433286
\(894\) −41.8622 −1.40008
\(895\) −24.1220 −0.806311
\(896\) −54.4304 −1.81839
\(897\) 8.14858 0.272073
\(898\) 89.1732 2.97575
\(899\) 8.18912 0.273122
\(900\) 47.2786 1.57595
\(901\) 54.4946 1.81548
\(902\) −0.381163 −0.0126913
\(903\) 0.630338 0.0209763
\(904\) −204.244 −6.79304
\(905\) −23.7107 −0.788172
\(906\) 9.25434 0.307455
\(907\) −40.0841 −1.33097 −0.665485 0.746411i \(-0.731775\pi\)
−0.665485 + 0.746411i \(0.731775\pi\)
\(908\) −82.8715 −2.75019
\(909\) 10.5712 0.350625
\(910\) 19.7002 0.653055
\(911\) −6.62158 −0.219383 −0.109691 0.993966i \(-0.534986\pi\)
−0.109691 + 0.993966i \(0.534986\pi\)
\(912\) 48.9925 1.62230
\(913\) −7.67083 −0.253868
\(914\) 97.7382 3.23289
\(915\) 0.176293 0.00582806
\(916\) −3.83024 −0.126555
\(917\) −12.6295 −0.417063
\(918\) −19.3558 −0.638835
\(919\) −42.7740 −1.41098 −0.705492 0.708718i \(-0.749274\pi\)
−0.705492 + 0.708718i \(0.749274\pi\)
\(920\) 154.737 5.10152
\(921\) −17.0815 −0.562854
\(922\) −64.3954 −2.12075
\(923\) −12.0654 −0.397138
\(924\) 3.14084 0.103326
\(925\) 24.7429 0.813542
\(926\) −54.9949 −1.80725
\(927\) −1.21519 −0.0399122
\(928\) 226.888 7.44797
\(929\) 21.4514 0.703798 0.351899 0.936038i \(-0.385536\pi\)
0.351899 + 0.936038i \(0.385536\pi\)
\(930\) 9.47254 0.310617
\(931\) −2.93493 −0.0961883
\(932\) −123.298 −4.03876
\(933\) −22.2805 −0.729431
\(934\) 37.6941 1.23339
\(935\) −14.1916 −0.464115
\(936\) 19.7157 0.644429
\(937\) 35.3709 1.15552 0.577758 0.816208i \(-0.303928\pi\)
0.577758 + 0.816208i \(0.303928\pi\)
\(938\) −5.32449 −0.173851
\(939\) 3.88085 0.126647
\(940\) −91.2185 −2.97522
\(941\) −23.7917 −0.775586 −0.387793 0.921746i \(-0.626762\pi\)
−0.387793 + 0.921746i \(0.626762\pi\)
\(942\) 66.9176 2.18029
\(943\) 1.03790 0.0337986
\(944\) 58.5740 1.90642
\(945\) −3.65468 −0.118887
\(946\) 0.968357 0.0314840
\(947\) −25.7666 −0.837303 −0.418651 0.908147i \(-0.637497\pi\)
−0.418651 + 0.908147i \(0.637497\pi\)
\(948\) 89.2200 2.89773
\(949\) 23.8976 0.775749
\(950\) −67.8699 −2.20199
\(951\) −28.0393 −0.909238
\(952\) −70.7950 −2.29448
\(953\) −3.23924 −0.104929 −0.0524646 0.998623i \(-0.516708\pi\)
−0.0524646 + 0.998623i \(0.516708\pi\)
\(954\) 21.5592 0.698006
\(955\) −75.9558 −2.45787
\(956\) −57.4595 −1.85837
\(957\) −4.85381 −0.156901
\(958\) −24.7784 −0.800553
\(959\) 12.5440 0.405068
\(960\) 140.432 4.53242
\(961\) −30.1227 −0.971700
\(962\) 15.9601 0.514576
\(963\) −9.63721 −0.310555
\(964\) −72.4752 −2.33427
\(965\) 74.6409 2.40278
\(966\) −11.5758 −0.372446
\(967\) −55.7057 −1.79138 −0.895688 0.444683i \(-0.853316\pi\)
−0.895688 + 0.444683i \(0.853316\pi\)
\(968\) −108.215 −3.47817
\(969\) 20.5287 0.659478
\(970\) −129.353 −4.15328
\(971\) −22.6780 −0.727773 −0.363886 0.931443i \(-0.618550\pi\)
−0.363886 + 0.931443i \(0.618550\pi\)
\(972\) −5.65757 −0.181467
\(973\) 21.0486 0.674786
\(974\) 68.0069 2.17908
\(975\) −16.2783 −0.521324
\(976\) 0.805225 0.0257746
\(977\) 31.1235 0.995731 0.497865 0.867254i \(-0.334117\pi\)
0.497865 + 0.867254i \(0.334117\pi\)
\(978\) 3.13304 0.100184
\(979\) 2.38258 0.0761476
\(980\) −20.6766 −0.660490
\(981\) 13.1868 0.421021
\(982\) 15.6543 0.499549
\(983\) −41.0026 −1.30778 −0.653890 0.756590i \(-0.726864\pi\)
−0.653890 + 0.756590i \(0.726864\pi\)
\(984\) 2.51123 0.0800550
\(985\) −84.5857 −2.69513
\(986\) 169.230 5.38937
\(987\) 4.41168 0.140425
\(988\) −32.3446 −1.02902
\(989\) −2.63682 −0.0838460
\(990\) −5.61450 −0.178441
\(991\) −54.0876 −1.71815 −0.859074 0.511852i \(-0.828960\pi\)
−0.859074 + 0.511852i \(0.828960\pi\)
\(992\) 24.3062 0.771723
\(993\) −22.4003 −0.710853
\(994\) 17.1401 0.543650
\(995\) 74.2123 2.35269
\(996\) 78.1728 2.47700
\(997\) 50.5374 1.60054 0.800268 0.599643i \(-0.204691\pi\)
0.800268 + 0.599643i \(0.204691\pi\)
\(998\) 56.8563 1.79975
\(999\) −2.96085 −0.0936771
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.o.1.16 16
3.2 odd 2 8001.2.a.r.1.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.o.1.16 16 1.1 even 1 trivial
8001.2.a.r.1.1 16 3.2 odd 2