Properties

Label 2-2667-1.1-c1-0-50
Degree $2$
Conductor $2667$
Sign $1$
Analytic cond. $21.2961$
Root an. cond. $4.61477$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.76·2-s − 3-s + 5.65·4-s − 3.65·5-s − 2.76·6-s − 7-s + 10.1·8-s + 9-s − 10.1·10-s + 0.555·11-s − 5.65·12-s + 1.94·13-s − 2.76·14-s + 3.65·15-s + 16.6·16-s + 6.99·17-s + 2.76·18-s − 2.93·19-s − 20.6·20-s + 21-s + 1.53·22-s − 4.18·23-s − 10.1·24-s + 8.35·25-s + 5.39·26-s − 27-s − 5.65·28-s + ⋯
L(s)  = 1  + 1.95·2-s − 0.577·3-s + 2.82·4-s − 1.63·5-s − 1.12·6-s − 0.377·7-s + 3.57·8-s + 0.333·9-s − 3.19·10-s + 0.167·11-s − 1.63·12-s + 0.540·13-s − 0.739·14-s + 0.943·15-s + 4.17·16-s + 1.69·17-s + 0.652·18-s − 0.673·19-s − 4.62·20-s + 0.218·21-s + 0.327·22-s − 0.872·23-s − 2.06·24-s + 1.67·25-s + 1.05·26-s − 0.192·27-s − 1.06·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2667\)    =    \(3 \cdot 7 \cdot 127\)
Sign: $1$
Analytic conductor: \(21.2961\)
Root analytic conductor: \(4.61477\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2667,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.446662779\)
\(L(\frac12)\) \(\approx\) \(4.446662779\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 + T \)
127 \( 1 - T \)
good2 \( 1 - 2.76T + 2T^{2} \)
5 \( 1 + 3.65T + 5T^{2} \)
11 \( 1 - 0.555T + 11T^{2} \)
13 \( 1 - 1.94T + 13T^{2} \)
17 \( 1 - 6.99T + 17T^{2} \)
19 \( 1 + 2.93T + 19T^{2} \)
23 \( 1 + 4.18T + 23T^{2} \)
29 \( 1 - 8.74T + 29T^{2} \)
31 \( 1 - 0.936T + 31T^{2} \)
37 \( 1 - 2.96T + 37T^{2} \)
41 \( 1 + 0.248T + 41T^{2} \)
43 \( 1 - 0.630T + 43T^{2} \)
47 \( 1 - 4.41T + 47T^{2} \)
53 \( 1 - 7.79T + 53T^{2} \)
59 \( 1 - 3.50T + 59T^{2} \)
61 \( 1 - 0.0482T + 61T^{2} \)
67 \( 1 - 1.92T + 67T^{2} \)
71 \( 1 + 6.19T + 71T^{2} \)
73 \( 1 - 12.2T + 73T^{2} \)
79 \( 1 + 15.7T + 79T^{2} \)
83 \( 1 + 13.8T + 83T^{2} \)
89 \( 1 - 4.29T + 89T^{2} \)
97 \( 1 - 12.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.418727448929603172547825568154, −7.73815342098560460746903492541, −7.07270263037910982405335083482, −6.31834632804019693134542826536, −5.68130157354715309214440614078, −4.75696967997747476786715555588, −4.04503058333913070702458417048, −3.58883340518180200573077202212, −2.68298209898678164988171301014, −1.07158948589009756934814586603, 1.07158948589009756934814586603, 2.68298209898678164988171301014, 3.58883340518180200573077202212, 4.04503058333913070702458417048, 4.75696967997747476786715555588, 5.68130157354715309214440614078, 6.31834632804019693134542826536, 7.07270263037910982405335083482, 7.73815342098560460746903492541, 8.418727448929603172547825568154

Graph of the $Z$-function along the critical line