Properties

Label 2667.2.a.o.1.15
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,5,-16,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} - 13 x^{14} + 98 x^{13} + 9 x^{12} - 712 x^{11} + 565 x^{10} + 2282 x^{9} - 3082 x^{8} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.15
Root \(2.62936\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.62936 q^{2} -1.00000 q^{3} +4.91351 q^{4} -0.281520 q^{5} -2.62936 q^{6} -1.00000 q^{7} +7.66067 q^{8} +1.00000 q^{9} -0.740216 q^{10} +5.88693 q^{11} -4.91351 q^{12} +0.529744 q^{13} -2.62936 q^{14} +0.281520 q^{15} +10.3156 q^{16} -4.53224 q^{17} +2.62936 q^{18} +6.62793 q^{19} -1.38325 q^{20} +1.00000 q^{21} +15.4788 q^{22} +6.22430 q^{23} -7.66067 q^{24} -4.92075 q^{25} +1.39289 q^{26} -1.00000 q^{27} -4.91351 q^{28} -8.13724 q^{29} +0.740216 q^{30} -6.74165 q^{31} +11.8020 q^{32} -5.88693 q^{33} -11.9169 q^{34} +0.281520 q^{35} +4.91351 q^{36} +4.51976 q^{37} +17.4272 q^{38} -0.529744 q^{39} -2.15663 q^{40} -1.07598 q^{41} +2.62936 q^{42} +10.0962 q^{43} +28.9255 q^{44} -0.281520 q^{45} +16.3659 q^{46} +5.97230 q^{47} -10.3156 q^{48} +1.00000 q^{49} -12.9384 q^{50} +4.53224 q^{51} +2.60290 q^{52} +2.38641 q^{53} -2.62936 q^{54} -1.65729 q^{55} -7.66067 q^{56} -6.62793 q^{57} -21.3957 q^{58} +8.68072 q^{59} +1.38325 q^{60} -1.42983 q^{61} -17.7262 q^{62} -1.00000 q^{63} +10.4006 q^{64} -0.149133 q^{65} -15.4788 q^{66} -11.3904 q^{67} -22.2692 q^{68} -6.22430 q^{69} +0.740216 q^{70} +11.1525 q^{71} +7.66067 q^{72} +7.79261 q^{73} +11.8841 q^{74} +4.92075 q^{75} +32.5664 q^{76} -5.88693 q^{77} -1.39289 q^{78} +5.38043 q^{79} -2.90405 q^{80} +1.00000 q^{81} -2.82915 q^{82} +5.24596 q^{83} +4.91351 q^{84} +1.27591 q^{85} +26.5466 q^{86} +8.13724 q^{87} +45.0979 q^{88} -13.2313 q^{89} -0.740216 q^{90} -0.529744 q^{91} +30.5832 q^{92} +6.74165 q^{93} +15.7033 q^{94} -1.86589 q^{95} -11.8020 q^{96} +10.8359 q^{97} +2.62936 q^{98} +5.88693 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{2} - 16 q^{3} + 19 q^{4} - q^{5} - 5 q^{6} - 16 q^{7} + 6 q^{8} + 16 q^{9} - 12 q^{10} + 11 q^{11} - 19 q^{12} + 18 q^{13} - 5 q^{14} + q^{15} + 25 q^{16} - 5 q^{17} + 5 q^{18} - 11 q^{19}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.62936 1.85924 0.929618 0.368525i \(-0.120137\pi\)
0.929618 + 0.368525i \(0.120137\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.91351 2.45676
\(5\) −0.281520 −0.125900 −0.0629498 0.998017i \(-0.520051\pi\)
−0.0629498 + 0.998017i \(0.520051\pi\)
\(6\) −2.62936 −1.07343
\(7\) −1.00000 −0.377964
\(8\) 7.66067 2.70846
\(9\) 1.00000 0.333333
\(10\) −0.740216 −0.234077
\(11\) 5.88693 1.77498 0.887489 0.460829i \(-0.152448\pi\)
0.887489 + 0.460829i \(0.152448\pi\)
\(12\) −4.91351 −1.41841
\(13\) 0.529744 0.146924 0.0734622 0.997298i \(-0.476595\pi\)
0.0734622 + 0.997298i \(0.476595\pi\)
\(14\) −2.62936 −0.702725
\(15\) 0.281520 0.0726881
\(16\) 10.3156 2.57890
\(17\) −4.53224 −1.09923 −0.549614 0.835419i \(-0.685225\pi\)
−0.549614 + 0.835419i \(0.685225\pi\)
\(18\) 2.62936 0.619745
\(19\) 6.62793 1.52055 0.760275 0.649601i \(-0.225064\pi\)
0.760275 + 0.649601i \(0.225064\pi\)
\(20\) −1.38325 −0.309305
\(21\) 1.00000 0.218218
\(22\) 15.4788 3.30010
\(23\) 6.22430 1.29786 0.648928 0.760850i \(-0.275218\pi\)
0.648928 + 0.760850i \(0.275218\pi\)
\(24\) −7.66067 −1.56373
\(25\) −4.92075 −0.984149
\(26\) 1.39289 0.273167
\(27\) −1.00000 −0.192450
\(28\) −4.91351 −0.928567
\(29\) −8.13724 −1.51105 −0.755523 0.655122i \(-0.772617\pi\)
−0.755523 + 0.655122i \(0.772617\pi\)
\(30\) 0.740216 0.135144
\(31\) −6.74165 −1.21084 −0.605418 0.795908i \(-0.706994\pi\)
−0.605418 + 0.795908i \(0.706994\pi\)
\(32\) 11.8020 2.08633
\(33\) −5.88693 −1.02478
\(34\) −11.9169 −2.04372
\(35\) 0.281520 0.0475855
\(36\) 4.91351 0.818919
\(37\) 4.51976 0.743045 0.371522 0.928424i \(-0.378836\pi\)
0.371522 + 0.928424i \(0.378836\pi\)
\(38\) 17.4272 2.82706
\(39\) −0.529744 −0.0848269
\(40\) −2.15663 −0.340993
\(41\) −1.07598 −0.168041 −0.0840203 0.996464i \(-0.526776\pi\)
−0.0840203 + 0.996464i \(0.526776\pi\)
\(42\) 2.62936 0.405718
\(43\) 10.0962 1.53966 0.769829 0.638250i \(-0.220341\pi\)
0.769829 + 0.638250i \(0.220341\pi\)
\(44\) 28.9255 4.36069
\(45\) −0.281520 −0.0419665
\(46\) 16.3659 2.41302
\(47\) 5.97230 0.871149 0.435575 0.900153i \(-0.356545\pi\)
0.435575 + 0.900153i \(0.356545\pi\)
\(48\) −10.3156 −1.48893
\(49\) 1.00000 0.142857
\(50\) −12.9384 −1.82977
\(51\) 4.53224 0.634640
\(52\) 2.60290 0.360958
\(53\) 2.38641 0.327799 0.163900 0.986477i \(-0.447593\pi\)
0.163900 + 0.986477i \(0.447593\pi\)
\(54\) −2.62936 −0.357810
\(55\) −1.65729 −0.223469
\(56\) −7.66067 −1.02370
\(57\) −6.62793 −0.877890
\(58\) −21.3957 −2.80939
\(59\) 8.68072 1.13013 0.565067 0.825045i \(-0.308850\pi\)
0.565067 + 0.825045i \(0.308850\pi\)
\(60\) 1.38325 0.178577
\(61\) −1.42983 −0.183071 −0.0915355 0.995802i \(-0.529178\pi\)
−0.0915355 + 0.995802i \(0.529178\pi\)
\(62\) −17.7262 −2.25123
\(63\) −1.00000 −0.125988
\(64\) 10.4006 1.30007
\(65\) −0.149133 −0.0184977
\(66\) −15.4788 −1.90531
\(67\) −11.3904 −1.39155 −0.695776 0.718258i \(-0.744940\pi\)
−0.695776 + 0.718258i \(0.744940\pi\)
\(68\) −22.2692 −2.70054
\(69\) −6.22430 −0.749318
\(70\) 0.740216 0.0884728
\(71\) 11.1525 1.32356 0.661779 0.749699i \(-0.269802\pi\)
0.661779 + 0.749699i \(0.269802\pi\)
\(72\) 7.66067 0.902818
\(73\) 7.79261 0.912056 0.456028 0.889965i \(-0.349272\pi\)
0.456028 + 0.889965i \(0.349272\pi\)
\(74\) 11.8841 1.38150
\(75\) 4.92075 0.568199
\(76\) 32.5664 3.73562
\(77\) −5.88693 −0.670878
\(78\) −1.39289 −0.157713
\(79\) 5.38043 0.605346 0.302673 0.953095i \(-0.402121\pi\)
0.302673 + 0.953095i \(0.402121\pi\)
\(80\) −2.90405 −0.324682
\(81\) 1.00000 0.111111
\(82\) −2.82915 −0.312427
\(83\) 5.24596 0.575819 0.287910 0.957658i \(-0.407040\pi\)
0.287910 + 0.957658i \(0.407040\pi\)
\(84\) 4.91351 0.536108
\(85\) 1.27591 0.138392
\(86\) 26.5466 2.86259
\(87\) 8.13724 0.872403
\(88\) 45.0979 4.80745
\(89\) −13.2313 −1.40251 −0.701257 0.712909i \(-0.747377\pi\)
−0.701257 + 0.712909i \(0.747377\pi\)
\(90\) −0.740216 −0.0780256
\(91\) −0.529744 −0.0555322
\(92\) 30.5832 3.18852
\(93\) 6.74165 0.699076
\(94\) 15.7033 1.61967
\(95\) −1.86589 −0.191437
\(96\) −11.8020 −1.20454
\(97\) 10.8359 1.10022 0.550109 0.835093i \(-0.314586\pi\)
0.550109 + 0.835093i \(0.314586\pi\)
\(98\) 2.62936 0.265605
\(99\) 5.88693 0.591659
\(100\) −24.1782 −2.41782
\(101\) −10.8706 −1.08167 −0.540834 0.841129i \(-0.681891\pi\)
−0.540834 + 0.841129i \(0.681891\pi\)
\(102\) 11.9169 1.17995
\(103\) 6.93370 0.683198 0.341599 0.939846i \(-0.389032\pi\)
0.341599 + 0.939846i \(0.389032\pi\)
\(104\) 4.05819 0.397938
\(105\) −0.281520 −0.0274735
\(106\) 6.27473 0.609456
\(107\) −18.2465 −1.76395 −0.881976 0.471295i \(-0.843787\pi\)
−0.881976 + 0.471295i \(0.843787\pi\)
\(108\) −4.91351 −0.472803
\(109\) −3.90960 −0.374472 −0.187236 0.982315i \(-0.559953\pi\)
−0.187236 + 0.982315i \(0.559953\pi\)
\(110\) −4.35760 −0.415481
\(111\) −4.51976 −0.428997
\(112\) −10.3156 −0.974732
\(113\) 7.61713 0.716559 0.358280 0.933614i \(-0.383363\pi\)
0.358280 + 0.933614i \(0.383363\pi\)
\(114\) −17.4272 −1.63221
\(115\) −1.75226 −0.163400
\(116\) −39.9824 −3.71228
\(117\) 0.529744 0.0489748
\(118\) 22.8247 2.10118
\(119\) 4.53224 0.415469
\(120\) 2.15663 0.196873
\(121\) 23.6560 2.15054
\(122\) −3.75953 −0.340372
\(123\) 1.07598 0.0970182
\(124\) −33.1252 −2.97473
\(125\) 2.79289 0.249803
\(126\) −2.62936 −0.234242
\(127\) 1.00000 0.0887357
\(128\) 3.74276 0.330816
\(129\) −10.0962 −0.888922
\(130\) −0.392125 −0.0343916
\(131\) −7.91736 −0.691743 −0.345872 0.938282i \(-0.612417\pi\)
−0.345872 + 0.938282i \(0.612417\pi\)
\(132\) −28.9255 −2.51764
\(133\) −6.62793 −0.574714
\(134\) −29.9493 −2.58722
\(135\) 0.281520 0.0242294
\(136\) −34.7200 −2.97721
\(137\) −15.2967 −1.30688 −0.653442 0.756976i \(-0.726676\pi\)
−0.653442 + 0.756976i \(0.726676\pi\)
\(138\) −16.3659 −1.39316
\(139\) −18.8442 −1.59834 −0.799171 0.601103i \(-0.794728\pi\)
−0.799171 + 0.601103i \(0.794728\pi\)
\(140\) 1.38325 0.116906
\(141\) −5.97230 −0.502958
\(142\) 29.3239 2.46081
\(143\) 3.11857 0.260788
\(144\) 10.3156 0.859633
\(145\) 2.29079 0.190240
\(146\) 20.4896 1.69573
\(147\) −1.00000 −0.0824786
\(148\) 22.2079 1.82548
\(149\) 1.80216 0.147639 0.0738193 0.997272i \(-0.476481\pi\)
0.0738193 + 0.997272i \(0.476481\pi\)
\(150\) 12.9384 1.05642
\(151\) −18.6785 −1.52003 −0.760015 0.649905i \(-0.774809\pi\)
−0.760015 + 0.649905i \(0.774809\pi\)
\(152\) 50.7744 4.11834
\(153\) −4.53224 −0.366409
\(154\) −15.4788 −1.24732
\(155\) 1.89791 0.152444
\(156\) −2.60290 −0.208399
\(157\) 5.60729 0.447510 0.223755 0.974645i \(-0.428168\pi\)
0.223755 + 0.974645i \(0.428168\pi\)
\(158\) 14.1471 1.12548
\(159\) −2.38641 −0.189255
\(160\) −3.32251 −0.262668
\(161\) −6.22430 −0.490544
\(162\) 2.62936 0.206582
\(163\) −11.0862 −0.868340 −0.434170 0.900831i \(-0.642958\pi\)
−0.434170 + 0.900831i \(0.642958\pi\)
\(164\) −5.28686 −0.412835
\(165\) 1.65729 0.129020
\(166\) 13.7935 1.07058
\(167\) −14.5847 −1.12860 −0.564298 0.825571i \(-0.690853\pi\)
−0.564298 + 0.825571i \(0.690853\pi\)
\(168\) 7.66067 0.591033
\(169\) −12.7194 −0.978413
\(170\) 3.35483 0.257304
\(171\) 6.62793 0.506850
\(172\) 49.6079 3.78257
\(173\) 0.735687 0.0559333 0.0279666 0.999609i \(-0.491097\pi\)
0.0279666 + 0.999609i \(0.491097\pi\)
\(174\) 21.3957 1.62200
\(175\) 4.92075 0.371973
\(176\) 60.7272 4.57749
\(177\) −8.68072 −0.652483
\(178\) −34.7898 −2.60760
\(179\) −6.14587 −0.459364 −0.229682 0.973266i \(-0.573769\pi\)
−0.229682 + 0.973266i \(0.573769\pi\)
\(180\) −1.38325 −0.103102
\(181\) −26.5200 −1.97122 −0.985609 0.169039i \(-0.945934\pi\)
−0.985609 + 0.169039i \(0.945934\pi\)
\(182\) −1.39289 −0.103248
\(183\) 1.42983 0.105696
\(184\) 47.6823 3.51519
\(185\) −1.27240 −0.0935490
\(186\) 17.7262 1.29975
\(187\) −26.6810 −1.95111
\(188\) 29.3450 2.14020
\(189\) 1.00000 0.0727393
\(190\) −4.90610 −0.355926
\(191\) 3.47889 0.251724 0.125862 0.992048i \(-0.459830\pi\)
0.125862 + 0.992048i \(0.459830\pi\)
\(192\) −10.4006 −0.750598
\(193\) −19.7817 −1.42392 −0.711958 0.702222i \(-0.752191\pi\)
−0.711958 + 0.702222i \(0.752191\pi\)
\(194\) 28.4914 2.04557
\(195\) 0.149133 0.0106797
\(196\) 4.91351 0.350965
\(197\) −4.07163 −0.290092 −0.145046 0.989425i \(-0.546333\pi\)
−0.145046 + 0.989425i \(0.546333\pi\)
\(198\) 15.4788 1.10003
\(199\) 4.28232 0.303566 0.151783 0.988414i \(-0.451499\pi\)
0.151783 + 0.988414i \(0.451499\pi\)
\(200\) −37.6962 −2.66552
\(201\) 11.3904 0.803413
\(202\) −28.5828 −2.01108
\(203\) 8.13724 0.571122
\(204\) 22.2692 1.55916
\(205\) 0.302911 0.0211562
\(206\) 18.2312 1.27023
\(207\) 6.22430 0.432619
\(208\) 5.46462 0.378903
\(209\) 39.0182 2.69894
\(210\) −0.740216 −0.0510798
\(211\) −18.9882 −1.30720 −0.653601 0.756839i \(-0.726743\pi\)
−0.653601 + 0.756839i \(0.726743\pi\)
\(212\) 11.7257 0.805323
\(213\) −11.1525 −0.764156
\(214\) −47.9764 −3.27960
\(215\) −2.84229 −0.193842
\(216\) −7.66067 −0.521242
\(217\) 6.74165 0.457653
\(218\) −10.2797 −0.696231
\(219\) −7.79261 −0.526576
\(220\) −8.14311 −0.549009
\(221\) −2.40092 −0.161504
\(222\) −11.8841 −0.797607
\(223\) −18.8389 −1.26155 −0.630773 0.775968i \(-0.717262\pi\)
−0.630773 + 0.775968i \(0.717262\pi\)
\(224\) −11.8020 −0.788557
\(225\) −4.92075 −0.328050
\(226\) 20.0281 1.33225
\(227\) −9.90495 −0.657414 −0.328707 0.944432i \(-0.606613\pi\)
−0.328707 + 0.944432i \(0.606613\pi\)
\(228\) −32.5664 −2.15676
\(229\) 0.0909386 0.00600939 0.00300469 0.999995i \(-0.499044\pi\)
0.00300469 + 0.999995i \(0.499044\pi\)
\(230\) −4.60733 −0.303798
\(231\) 5.88693 0.387332
\(232\) −62.3367 −4.09260
\(233\) −9.23810 −0.605208 −0.302604 0.953116i \(-0.597856\pi\)
−0.302604 + 0.953116i \(0.597856\pi\)
\(234\) 1.39289 0.0910557
\(235\) −1.68132 −0.109677
\(236\) 42.6528 2.77646
\(237\) −5.38043 −0.349496
\(238\) 11.9169 0.772455
\(239\) 22.8712 1.47942 0.739708 0.672928i \(-0.234964\pi\)
0.739708 + 0.672928i \(0.234964\pi\)
\(240\) 2.90405 0.187455
\(241\) 25.5928 1.64857 0.824287 0.566171i \(-0.191576\pi\)
0.824287 + 0.566171i \(0.191576\pi\)
\(242\) 62.2000 3.99837
\(243\) −1.00000 −0.0641500
\(244\) −7.02549 −0.449761
\(245\) −0.281520 −0.0179856
\(246\) 2.82915 0.180380
\(247\) 3.51110 0.223406
\(248\) −51.6455 −3.27949
\(249\) −5.24596 −0.332449
\(250\) 7.34350 0.464444
\(251\) −10.2062 −0.644207 −0.322103 0.946705i \(-0.604390\pi\)
−0.322103 + 0.946705i \(0.604390\pi\)
\(252\) −4.91351 −0.309522
\(253\) 36.6420 2.30367
\(254\) 2.62936 0.164980
\(255\) −1.27591 −0.0799009
\(256\) −10.9601 −0.685008
\(257\) −13.3777 −0.834479 −0.417240 0.908797i \(-0.637002\pi\)
−0.417240 + 0.908797i \(0.637002\pi\)
\(258\) −26.5466 −1.65272
\(259\) −4.51976 −0.280845
\(260\) −0.732769 −0.0454444
\(261\) −8.13724 −0.503682
\(262\) −20.8176 −1.28611
\(263\) 14.5895 0.899629 0.449815 0.893122i \(-0.351490\pi\)
0.449815 + 0.893122i \(0.351490\pi\)
\(264\) −45.0979 −2.77558
\(265\) −0.671823 −0.0412697
\(266\) −17.4272 −1.06853
\(267\) 13.2313 0.809742
\(268\) −55.9667 −3.41871
\(269\) −0.998325 −0.0608689 −0.0304345 0.999537i \(-0.509689\pi\)
−0.0304345 + 0.999537i \(0.509689\pi\)
\(270\) 0.740216 0.0450481
\(271\) 22.3880 1.35997 0.679987 0.733224i \(-0.261985\pi\)
0.679987 + 0.733224i \(0.261985\pi\)
\(272\) −46.7527 −2.83480
\(273\) 0.529744 0.0320615
\(274\) −40.2205 −2.42981
\(275\) −28.9681 −1.74684
\(276\) −30.5832 −1.84089
\(277\) −7.05775 −0.424059 −0.212030 0.977263i \(-0.568007\pi\)
−0.212030 + 0.977263i \(0.568007\pi\)
\(278\) −49.5481 −2.97170
\(279\) −6.74165 −0.403612
\(280\) 2.15663 0.128883
\(281\) 24.0591 1.43524 0.717622 0.696433i \(-0.245231\pi\)
0.717622 + 0.696433i \(0.245231\pi\)
\(282\) −15.7033 −0.935118
\(283\) −11.0668 −0.657851 −0.328926 0.944356i \(-0.606687\pi\)
−0.328926 + 0.944356i \(0.606687\pi\)
\(284\) 54.7980 3.25166
\(285\) 1.86589 0.110526
\(286\) 8.19982 0.484866
\(287\) 1.07598 0.0635133
\(288\) 11.8020 0.695442
\(289\) 3.54115 0.208303
\(290\) 6.02331 0.353701
\(291\) −10.8359 −0.635212
\(292\) 38.2891 2.24070
\(293\) 22.6626 1.32396 0.661982 0.749519i \(-0.269715\pi\)
0.661982 + 0.749519i \(0.269715\pi\)
\(294\) −2.62936 −0.153347
\(295\) −2.44379 −0.142283
\(296\) 34.6244 2.01250
\(297\) −5.88693 −0.341595
\(298\) 4.73852 0.274495
\(299\) 3.29728 0.190687
\(300\) 24.1782 1.39593
\(301\) −10.0962 −0.581936
\(302\) −49.1123 −2.82610
\(303\) 10.8706 0.624502
\(304\) 68.3710 3.92135
\(305\) 0.402526 0.0230486
\(306\) −11.9169 −0.681242
\(307\) 17.4088 0.993572 0.496786 0.867873i \(-0.334513\pi\)
0.496786 + 0.867873i \(0.334513\pi\)
\(308\) −28.9255 −1.64819
\(309\) −6.93370 −0.394444
\(310\) 4.99028 0.283429
\(311\) −15.7117 −0.890930 −0.445465 0.895299i \(-0.646962\pi\)
−0.445465 + 0.895299i \(0.646962\pi\)
\(312\) −4.05819 −0.229750
\(313\) −13.9048 −0.785945 −0.392973 0.919550i \(-0.628553\pi\)
−0.392973 + 0.919550i \(0.628553\pi\)
\(314\) 14.7436 0.832027
\(315\) 0.281520 0.0158618
\(316\) 26.4368 1.48719
\(317\) 17.5737 0.987036 0.493518 0.869735i \(-0.335711\pi\)
0.493518 + 0.869735i \(0.335711\pi\)
\(318\) −6.27473 −0.351869
\(319\) −47.9034 −2.68207
\(320\) −2.92797 −0.163679
\(321\) 18.2465 1.01842
\(322\) −16.3659 −0.912036
\(323\) −30.0393 −1.67143
\(324\) 4.91351 0.272973
\(325\) −2.60673 −0.144596
\(326\) −29.1496 −1.61445
\(327\) 3.90960 0.216201
\(328\) −8.24276 −0.455130
\(329\) −5.97230 −0.329263
\(330\) 4.35760 0.239878
\(331\) 23.1601 1.27299 0.636497 0.771279i \(-0.280383\pi\)
0.636497 + 0.771279i \(0.280383\pi\)
\(332\) 25.7761 1.41465
\(333\) 4.51976 0.247682
\(334\) −38.3483 −2.09833
\(335\) 3.20661 0.175196
\(336\) 10.3156 0.562762
\(337\) −6.95439 −0.378830 −0.189415 0.981897i \(-0.560659\pi\)
−0.189415 + 0.981897i \(0.560659\pi\)
\(338\) −33.4438 −1.81910
\(339\) −7.61713 −0.413706
\(340\) 6.26922 0.339996
\(341\) −39.6876 −2.14921
\(342\) 17.4272 0.942354
\(343\) −1.00000 −0.0539949
\(344\) 77.3438 4.17010
\(345\) 1.75226 0.0943388
\(346\) 1.93438 0.103993
\(347\) 19.6511 1.05493 0.527463 0.849578i \(-0.323143\pi\)
0.527463 + 0.849578i \(0.323143\pi\)
\(348\) 39.9824 2.14328
\(349\) −15.6440 −0.837404 −0.418702 0.908124i \(-0.637515\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(350\) 12.9384 0.691586
\(351\) −0.529744 −0.0282756
\(352\) 69.4779 3.70318
\(353\) −28.9684 −1.54183 −0.770916 0.636937i \(-0.780201\pi\)
−0.770916 + 0.636937i \(0.780201\pi\)
\(354\) −22.8247 −1.21312
\(355\) −3.13965 −0.166635
\(356\) −65.0121 −3.44564
\(357\) −4.53224 −0.239871
\(358\) −16.1597 −0.854066
\(359\) 1.84320 0.0972803 0.0486401 0.998816i \(-0.484511\pi\)
0.0486401 + 0.998816i \(0.484511\pi\)
\(360\) −2.15663 −0.113664
\(361\) 24.9294 1.31207
\(362\) −69.7306 −3.66496
\(363\) −23.6560 −1.24162
\(364\) −2.60290 −0.136429
\(365\) −2.19378 −0.114827
\(366\) 3.75953 0.196514
\(367\) 32.0796 1.67454 0.837270 0.546790i \(-0.184150\pi\)
0.837270 + 0.546790i \(0.184150\pi\)
\(368\) 64.2074 3.34704
\(369\) −1.07598 −0.0560135
\(370\) −3.34560 −0.173930
\(371\) −2.38641 −0.123896
\(372\) 33.1252 1.71746
\(373\) −3.41982 −0.177072 −0.0885359 0.996073i \(-0.528219\pi\)
−0.0885359 + 0.996073i \(0.528219\pi\)
\(374\) −70.1538 −3.62757
\(375\) −2.79289 −0.144224
\(376\) 45.7518 2.35947
\(377\) −4.31065 −0.222010
\(378\) 2.62936 0.135239
\(379\) −11.9019 −0.611360 −0.305680 0.952134i \(-0.598884\pi\)
−0.305680 + 0.952134i \(0.598884\pi\)
\(380\) −9.16809 −0.470313
\(381\) −1.00000 −0.0512316
\(382\) 9.14725 0.468014
\(383\) 1.97154 0.100741 0.0503705 0.998731i \(-0.483960\pi\)
0.0503705 + 0.998731i \(0.483960\pi\)
\(384\) −3.74276 −0.190997
\(385\) 1.65729 0.0844633
\(386\) −52.0131 −2.64740
\(387\) 10.0962 0.513220
\(388\) 53.2423 2.70297
\(389\) 15.1519 0.768233 0.384116 0.923285i \(-0.374506\pi\)
0.384116 + 0.923285i \(0.374506\pi\)
\(390\) 0.392125 0.0198560
\(391\) −28.2100 −1.42664
\(392\) 7.66067 0.386922
\(393\) 7.91736 0.399378
\(394\) −10.7058 −0.539349
\(395\) −1.51470 −0.0762127
\(396\) 28.9255 1.45356
\(397\) 20.2999 1.01882 0.509412 0.860523i \(-0.329863\pi\)
0.509412 + 0.860523i \(0.329863\pi\)
\(398\) 11.2598 0.564400
\(399\) 6.62793 0.331811
\(400\) −50.7604 −2.53802
\(401\) 8.93416 0.446151 0.223075 0.974801i \(-0.428390\pi\)
0.223075 + 0.974801i \(0.428390\pi\)
\(402\) 29.9493 1.49374
\(403\) −3.57134 −0.177901
\(404\) −53.4130 −2.65740
\(405\) −0.281520 −0.0139888
\(406\) 21.3957 1.06185
\(407\) 26.6076 1.31889
\(408\) 34.7200 1.71889
\(409\) 35.0206 1.73166 0.865828 0.500341i \(-0.166792\pi\)
0.865828 + 0.500341i \(0.166792\pi\)
\(410\) 0.796461 0.0393344
\(411\) 15.2967 0.754530
\(412\) 34.0688 1.67845
\(413\) −8.68072 −0.427150
\(414\) 16.3659 0.804340
\(415\) −1.47684 −0.0724954
\(416\) 6.25206 0.306532
\(417\) 18.8442 0.922804
\(418\) 102.593 5.01797
\(419\) 0.262864 0.0128418 0.00642088 0.999979i \(-0.497956\pi\)
0.00642088 + 0.999979i \(0.497956\pi\)
\(420\) −1.38325 −0.0674958
\(421\) −16.5395 −0.806087 −0.403044 0.915181i \(-0.632048\pi\)
−0.403044 + 0.915181i \(0.632048\pi\)
\(422\) −49.9268 −2.43040
\(423\) 5.97230 0.290383
\(424\) 18.2815 0.887829
\(425\) 22.3020 1.08180
\(426\) −29.3239 −1.42075
\(427\) 1.42983 0.0691944
\(428\) −89.6542 −4.33360
\(429\) −3.11857 −0.150566
\(430\) −7.47338 −0.360399
\(431\) −1.16723 −0.0562235 −0.0281118 0.999605i \(-0.508949\pi\)
−0.0281118 + 0.999605i \(0.508949\pi\)
\(432\) −10.3156 −0.496309
\(433\) 20.2215 0.971784 0.485892 0.874019i \(-0.338495\pi\)
0.485892 + 0.874019i \(0.338495\pi\)
\(434\) 17.7262 0.850884
\(435\) −2.29079 −0.109835
\(436\) −19.2099 −0.919986
\(437\) 41.2542 1.97346
\(438\) −20.4896 −0.979029
\(439\) 7.60899 0.363157 0.181579 0.983376i \(-0.441879\pi\)
0.181579 + 0.983376i \(0.441879\pi\)
\(440\) −12.6959 −0.605255
\(441\) 1.00000 0.0476190
\(442\) −6.31288 −0.300273
\(443\) −26.1266 −1.24131 −0.620656 0.784083i \(-0.713133\pi\)
−0.620656 + 0.784083i \(0.713133\pi\)
\(444\) −22.2079 −1.05394
\(445\) 3.72487 0.176576
\(446\) −49.5341 −2.34551
\(447\) −1.80216 −0.0852392
\(448\) −10.4006 −0.491382
\(449\) 5.83016 0.275142 0.137571 0.990492i \(-0.456070\pi\)
0.137571 + 0.990492i \(0.456070\pi\)
\(450\) −12.9384 −0.609922
\(451\) −6.33425 −0.298268
\(452\) 37.4269 1.76041
\(453\) 18.6785 0.877590
\(454\) −26.0436 −1.22229
\(455\) 0.149133 0.00699148
\(456\) −50.7744 −2.37773
\(457\) −35.6020 −1.66539 −0.832696 0.553730i \(-0.813204\pi\)
−0.832696 + 0.553730i \(0.813204\pi\)
\(458\) 0.239110 0.0111729
\(459\) 4.53224 0.211547
\(460\) −8.60978 −0.401433
\(461\) 0.628045 0.0292510 0.0146255 0.999893i \(-0.495344\pi\)
0.0146255 + 0.999893i \(0.495344\pi\)
\(462\) 15.4788 0.720141
\(463\) −32.3183 −1.50196 −0.750979 0.660327i \(-0.770418\pi\)
−0.750979 + 0.660327i \(0.770418\pi\)
\(464\) −83.9404 −3.89684
\(465\) −1.89791 −0.0880134
\(466\) −24.2902 −1.12522
\(467\) 42.6554 1.97386 0.986929 0.161157i \(-0.0515224\pi\)
0.986929 + 0.161157i \(0.0515224\pi\)
\(468\) 2.60290 0.120319
\(469\) 11.3904 0.525958
\(470\) −4.42079 −0.203916
\(471\) −5.60729 −0.258370
\(472\) 66.5001 3.06092
\(473\) 59.4358 2.73286
\(474\) −14.1471 −0.649796
\(475\) −32.6143 −1.49645
\(476\) 22.2692 1.02071
\(477\) 2.38641 0.109266
\(478\) 60.1366 2.75058
\(479\) −0.329133 −0.0150385 −0.00751925 0.999972i \(-0.502393\pi\)
−0.00751925 + 0.999972i \(0.502393\pi\)
\(480\) 3.32251 0.151651
\(481\) 2.39432 0.109171
\(482\) 67.2925 3.06509
\(483\) 6.22430 0.283215
\(484\) 116.234 5.28337
\(485\) −3.05052 −0.138517
\(486\) −2.62936 −0.119270
\(487\) 1.30116 0.0589612 0.0294806 0.999565i \(-0.490615\pi\)
0.0294806 + 0.999565i \(0.490615\pi\)
\(488\) −10.9535 −0.495840
\(489\) 11.0862 0.501336
\(490\) −0.740216 −0.0334396
\(491\) −26.3888 −1.19091 −0.595456 0.803388i \(-0.703028\pi\)
−0.595456 + 0.803388i \(0.703028\pi\)
\(492\) 5.28686 0.238350
\(493\) 36.8799 1.66099
\(494\) 9.23194 0.415365
\(495\) −1.65729 −0.0744896
\(496\) −69.5441 −3.12262
\(497\) −11.1525 −0.500258
\(498\) −13.7935 −0.618102
\(499\) −21.1126 −0.945128 −0.472564 0.881296i \(-0.656672\pi\)
−0.472564 + 0.881296i \(0.656672\pi\)
\(500\) 13.7229 0.613707
\(501\) 14.5847 0.651595
\(502\) −26.8356 −1.19773
\(503\) −1.06969 −0.0476951 −0.0238475 0.999716i \(-0.507592\pi\)
−0.0238475 + 0.999716i \(0.507592\pi\)
\(504\) −7.66067 −0.341233
\(505\) 3.06030 0.136182
\(506\) 96.3450 4.28306
\(507\) 12.7194 0.564887
\(508\) 4.91351 0.218002
\(509\) 22.5239 0.998354 0.499177 0.866500i \(-0.333636\pi\)
0.499177 + 0.866500i \(0.333636\pi\)
\(510\) −3.35483 −0.148555
\(511\) −7.79261 −0.344725
\(512\) −36.3036 −1.60441
\(513\) −6.62793 −0.292630
\(514\) −35.1748 −1.55149
\(515\) −1.95197 −0.0860143
\(516\) −49.6079 −2.18387
\(517\) 35.1585 1.54627
\(518\) −11.8841 −0.522156
\(519\) −0.735687 −0.0322931
\(520\) −1.14246 −0.0501003
\(521\) 1.86602 0.0817516 0.0408758 0.999164i \(-0.486985\pi\)
0.0408758 + 0.999164i \(0.486985\pi\)
\(522\) −21.3957 −0.936464
\(523\) −10.3257 −0.451513 −0.225757 0.974184i \(-0.572485\pi\)
−0.225757 + 0.974184i \(0.572485\pi\)
\(524\) −38.9021 −1.69945
\(525\) −4.92075 −0.214759
\(526\) 38.3611 1.67262
\(527\) 30.5547 1.33098
\(528\) −60.7272 −2.64281
\(529\) 15.7419 0.684431
\(530\) −1.76646 −0.0767302
\(531\) 8.68072 0.376711
\(532\) −32.5664 −1.41193
\(533\) −0.569996 −0.0246893
\(534\) 34.7898 1.50550
\(535\) 5.13674 0.222081
\(536\) −87.2577 −3.76896
\(537\) 6.14587 0.265214
\(538\) −2.62495 −0.113170
\(539\) 5.88693 0.253568
\(540\) 1.38325 0.0595257
\(541\) −14.9035 −0.640752 −0.320376 0.947291i \(-0.603809\pi\)
−0.320376 + 0.947291i \(0.603809\pi\)
\(542\) 58.8660 2.52851
\(543\) 26.5200 1.13808
\(544\) −53.4896 −2.29335
\(545\) 1.10063 0.0471458
\(546\) 1.39289 0.0596100
\(547\) 0.550788 0.0235500 0.0117750 0.999931i \(-0.496252\pi\)
0.0117750 + 0.999931i \(0.496252\pi\)
\(548\) −75.1605 −3.21070
\(549\) −1.42983 −0.0610237
\(550\) −76.1675 −3.24779
\(551\) −53.9330 −2.29762
\(552\) −47.6823 −2.02949
\(553\) −5.38043 −0.228799
\(554\) −18.5573 −0.788426
\(555\) 1.27240 0.0540105
\(556\) −92.5912 −3.92674
\(557\) 26.6367 1.12863 0.564317 0.825558i \(-0.309140\pi\)
0.564317 + 0.825558i \(0.309140\pi\)
\(558\) −17.7262 −0.750409
\(559\) 5.34841 0.226214
\(560\) 2.90405 0.122718
\(561\) 26.6810 1.12647
\(562\) 63.2599 2.66846
\(563\) 33.1928 1.39891 0.699454 0.714677i \(-0.253426\pi\)
0.699454 + 0.714677i \(0.253426\pi\)
\(564\) −29.3450 −1.23565
\(565\) −2.14437 −0.0902144
\(566\) −29.0985 −1.22310
\(567\) −1.00000 −0.0419961
\(568\) 85.4356 3.58480
\(569\) 25.8211 1.08248 0.541239 0.840869i \(-0.317955\pi\)
0.541239 + 0.840869i \(0.317955\pi\)
\(570\) 4.90610 0.205494
\(571\) −33.0630 −1.38365 −0.691823 0.722068i \(-0.743192\pi\)
−0.691823 + 0.722068i \(0.743192\pi\)
\(572\) 15.3231 0.640692
\(573\) −3.47889 −0.145333
\(574\) 2.82915 0.118086
\(575\) −30.6282 −1.27728
\(576\) 10.4006 0.433358
\(577\) −37.5968 −1.56518 −0.782588 0.622540i \(-0.786101\pi\)
−0.782588 + 0.622540i \(0.786101\pi\)
\(578\) 9.31096 0.387285
\(579\) 19.7817 0.822098
\(580\) 11.2558 0.467374
\(581\) −5.24596 −0.217639
\(582\) −28.4914 −1.18101
\(583\) 14.0487 0.581836
\(584\) 59.6966 2.47026
\(585\) −0.149133 −0.00616591
\(586\) 59.5881 2.46156
\(587\) −0.355126 −0.0146576 −0.00732880 0.999973i \(-0.502333\pi\)
−0.00732880 + 0.999973i \(0.502333\pi\)
\(588\) −4.91351 −0.202630
\(589\) −44.6831 −1.84114
\(590\) −6.42561 −0.264538
\(591\) 4.07163 0.167484
\(592\) 46.6241 1.91624
\(593\) −7.40159 −0.303947 −0.151973 0.988385i \(-0.548563\pi\)
−0.151973 + 0.988385i \(0.548563\pi\)
\(594\) −15.4788 −0.635105
\(595\) −1.27591 −0.0523074
\(596\) 8.85494 0.362712
\(597\) −4.28232 −0.175264
\(598\) 8.66974 0.354532
\(599\) 25.6275 1.04711 0.523556 0.851991i \(-0.324605\pi\)
0.523556 + 0.851991i \(0.324605\pi\)
\(600\) 37.6962 1.53894
\(601\) −5.51196 −0.224837 −0.112419 0.993661i \(-0.535860\pi\)
−0.112419 + 0.993661i \(0.535860\pi\)
\(602\) −26.5466 −1.08196
\(603\) −11.3904 −0.463851
\(604\) −91.7768 −3.73435
\(605\) −6.65963 −0.270753
\(606\) 28.5828 1.16110
\(607\) 21.3164 0.865208 0.432604 0.901584i \(-0.357595\pi\)
0.432604 + 0.901584i \(0.357595\pi\)
\(608\) 78.2231 3.17237
\(609\) −8.13724 −0.329737
\(610\) 1.05838 0.0428527
\(611\) 3.16379 0.127993
\(612\) −22.2692 −0.900179
\(613\) 47.7819 1.92989 0.964946 0.262447i \(-0.0845295\pi\)
0.964946 + 0.262447i \(0.0845295\pi\)
\(614\) 45.7739 1.84728
\(615\) −0.302911 −0.0122145
\(616\) −45.0979 −1.81704
\(617\) −23.6397 −0.951700 −0.475850 0.879526i \(-0.657860\pi\)
−0.475850 + 0.879526i \(0.657860\pi\)
\(618\) −18.2312 −0.733365
\(619\) −37.9034 −1.52347 −0.761734 0.647890i \(-0.775652\pi\)
−0.761734 + 0.647890i \(0.775652\pi\)
\(620\) 9.32540 0.374517
\(621\) −6.22430 −0.249773
\(622\) −41.3117 −1.65645
\(623\) 13.2313 0.530100
\(624\) −5.46462 −0.218760
\(625\) 23.8175 0.952699
\(626\) −36.5607 −1.46126
\(627\) −39.0182 −1.55824
\(628\) 27.5515 1.09942
\(629\) −20.4846 −0.816776
\(630\) 0.740216 0.0294909
\(631\) −21.3232 −0.848862 −0.424431 0.905460i \(-0.639526\pi\)
−0.424431 + 0.905460i \(0.639526\pi\)
\(632\) 41.2177 1.63955
\(633\) 18.9882 0.754714
\(634\) 46.2075 1.83513
\(635\) −0.281520 −0.0111718
\(636\) −11.7257 −0.464953
\(637\) 0.529744 0.0209892
\(638\) −125.955 −4.98661
\(639\) 11.1525 0.441186
\(640\) −1.05366 −0.0416496
\(641\) 15.0762 0.595474 0.297737 0.954648i \(-0.403768\pi\)
0.297737 + 0.954648i \(0.403768\pi\)
\(642\) 47.9764 1.89348
\(643\) 9.56577 0.377237 0.188619 0.982050i \(-0.439599\pi\)
0.188619 + 0.982050i \(0.439599\pi\)
\(644\) −30.5832 −1.20515
\(645\) 2.84229 0.111915
\(646\) −78.9841 −3.10759
\(647\) −19.8265 −0.779461 −0.389730 0.920929i \(-0.627432\pi\)
−0.389730 + 0.920929i \(0.627432\pi\)
\(648\) 7.66067 0.300939
\(649\) 51.1028 2.00596
\(650\) −6.85403 −0.268837
\(651\) −6.74165 −0.264226
\(652\) −54.4723 −2.13330
\(653\) 39.0463 1.52800 0.764000 0.645216i \(-0.223233\pi\)
0.764000 + 0.645216i \(0.223233\pi\)
\(654\) 10.2797 0.401969
\(655\) 2.22890 0.0870901
\(656\) −11.0994 −0.433360
\(657\) 7.79261 0.304019
\(658\) −15.7033 −0.612178
\(659\) 0.346451 0.0134958 0.00674790 0.999977i \(-0.497852\pi\)
0.00674790 + 0.999977i \(0.497852\pi\)
\(660\) 8.14311 0.316970
\(661\) −44.3391 −1.72459 −0.862295 0.506407i \(-0.830974\pi\)
−0.862295 + 0.506407i \(0.830974\pi\)
\(662\) 60.8962 2.36680
\(663\) 2.40092 0.0932441
\(664\) 40.1876 1.55958
\(665\) 1.86589 0.0723562
\(666\) 11.8841 0.460498
\(667\) −50.6486 −1.96112
\(668\) −71.6620 −2.77269
\(669\) 18.8389 0.728353
\(670\) 8.43132 0.325730
\(671\) −8.41732 −0.324947
\(672\) 11.8020 0.455274
\(673\) 12.6656 0.488221 0.244111 0.969747i \(-0.421504\pi\)
0.244111 + 0.969747i \(0.421504\pi\)
\(674\) −18.2856 −0.704333
\(675\) 4.92075 0.189400
\(676\) −62.4968 −2.40372
\(677\) 37.1876 1.42923 0.714617 0.699516i \(-0.246601\pi\)
0.714617 + 0.699516i \(0.246601\pi\)
\(678\) −20.0281 −0.769176
\(679\) −10.8359 −0.415844
\(680\) 9.77436 0.374829
\(681\) 9.90495 0.379558
\(682\) −104.353 −3.99588
\(683\) 25.3023 0.968166 0.484083 0.875022i \(-0.339153\pi\)
0.484083 + 0.875022i \(0.339153\pi\)
\(684\) 32.5664 1.24521
\(685\) 4.30632 0.164536
\(686\) −2.62936 −0.100389
\(687\) −0.0909386 −0.00346952
\(688\) 104.149 3.97062
\(689\) 1.26419 0.0481617
\(690\) 4.60733 0.175398
\(691\) −29.3373 −1.11604 −0.558021 0.829827i \(-0.688439\pi\)
−0.558021 + 0.829827i \(0.688439\pi\)
\(692\) 3.61481 0.137414
\(693\) −5.88693 −0.223626
\(694\) 51.6697 1.96136
\(695\) 5.30501 0.201231
\(696\) 62.3367 2.36287
\(697\) 4.87661 0.184715
\(698\) −41.1336 −1.55693
\(699\) 9.23810 0.349417
\(700\) 24.1782 0.913849
\(701\) −2.53580 −0.0957758 −0.0478879 0.998853i \(-0.515249\pi\)
−0.0478879 + 0.998853i \(0.515249\pi\)
\(702\) −1.39289 −0.0525711
\(703\) 29.9567 1.12984
\(704\) 61.2276 2.30760
\(705\) 1.68132 0.0633222
\(706\) −76.1683 −2.86663
\(707\) 10.8706 0.408832
\(708\) −42.6528 −1.60299
\(709\) −44.3690 −1.66631 −0.833157 0.553036i \(-0.813469\pi\)
−0.833157 + 0.553036i \(0.813469\pi\)
\(710\) −8.25526 −0.309814
\(711\) 5.38043 0.201782
\(712\) −101.360 −3.79865
\(713\) −41.9620 −1.57149
\(714\) −11.9169 −0.445977
\(715\) −0.877939 −0.0328330
\(716\) −30.1978 −1.12855
\(717\) −22.8712 −0.854141
\(718\) 4.84642 0.180867
\(719\) 13.3006 0.496027 0.248013 0.968757i \(-0.420222\pi\)
0.248013 + 0.968757i \(0.420222\pi\)
\(720\) −2.90405 −0.108227
\(721\) −6.93370 −0.258224
\(722\) 65.5483 2.43946
\(723\) −25.5928 −0.951805
\(724\) −130.307 −4.84281
\(725\) 40.0413 1.48710
\(726\) −62.2000 −2.30846
\(727\) 12.3531 0.458152 0.229076 0.973408i \(-0.426430\pi\)
0.229076 + 0.973408i \(0.426430\pi\)
\(728\) −4.05819 −0.150407
\(729\) 1.00000 0.0370370
\(730\) −5.76822 −0.213491
\(731\) −45.7584 −1.69244
\(732\) 7.02549 0.259670
\(733\) 34.3503 1.26876 0.634379 0.773022i \(-0.281256\pi\)
0.634379 + 0.773022i \(0.281256\pi\)
\(734\) 84.3486 3.11336
\(735\) 0.281520 0.0103840
\(736\) 73.4595 2.70775
\(737\) −67.0543 −2.46998
\(738\) −2.82915 −0.104142
\(739\) 13.5112 0.497016 0.248508 0.968630i \(-0.420060\pi\)
0.248508 + 0.968630i \(0.420060\pi\)
\(740\) −6.25197 −0.229827
\(741\) −3.51110 −0.128984
\(742\) −6.27473 −0.230353
\(743\) −41.3180 −1.51581 −0.757905 0.652365i \(-0.773777\pi\)
−0.757905 + 0.652365i \(0.773777\pi\)
\(744\) 51.6455 1.89342
\(745\) −0.507344 −0.0185876
\(746\) −8.99194 −0.329218
\(747\) 5.24596 0.191940
\(748\) −131.097 −4.79339
\(749\) 18.2465 0.666711
\(750\) −7.34350 −0.268147
\(751\) −4.93707 −0.180156 −0.0900781 0.995935i \(-0.528712\pi\)
−0.0900781 + 0.995935i \(0.528712\pi\)
\(752\) 61.6078 2.24661
\(753\) 10.2062 0.371933
\(754\) −11.3342 −0.412768
\(755\) 5.25836 0.191371
\(756\) 4.91351 0.178703
\(757\) −23.7869 −0.864550 −0.432275 0.901742i \(-0.642289\pi\)
−0.432275 + 0.901742i \(0.642289\pi\)
\(758\) −31.2944 −1.13666
\(759\) −36.6420 −1.33002
\(760\) −14.2940 −0.518498
\(761\) −44.1026 −1.59872 −0.799359 0.600854i \(-0.794827\pi\)
−0.799359 + 0.600854i \(0.794827\pi\)
\(762\) −2.62936 −0.0952515
\(763\) 3.90960 0.141537
\(764\) 17.0936 0.618424
\(765\) 1.27591 0.0461308
\(766\) 5.18389 0.187301
\(767\) 4.59856 0.166044
\(768\) 10.9601 0.395489
\(769\) −48.0338 −1.73214 −0.866072 0.499920i \(-0.833363\pi\)
−0.866072 + 0.499920i \(0.833363\pi\)
\(770\) 4.35760 0.157037
\(771\) 13.3777 0.481787
\(772\) −97.1975 −3.49822
\(773\) 22.0762 0.794025 0.397013 0.917813i \(-0.370047\pi\)
0.397013 + 0.917813i \(0.370047\pi\)
\(774\) 26.5466 0.954196
\(775\) 33.1739 1.19164
\(776\) 83.0102 2.97989
\(777\) 4.51976 0.162146
\(778\) 39.8398 1.42833
\(779\) −7.13155 −0.255514
\(780\) 0.732769 0.0262373
\(781\) 65.6540 2.34929
\(782\) −74.1741 −2.65246
\(783\) 8.13724 0.290801
\(784\) 10.3156 0.368414
\(785\) −1.57856 −0.0563413
\(786\) 20.8176 0.742538
\(787\) 45.8301 1.63367 0.816834 0.576873i \(-0.195727\pi\)
0.816834 + 0.576873i \(0.195727\pi\)
\(788\) −20.0060 −0.712685
\(789\) −14.5895 −0.519401
\(790\) −3.98268 −0.141697
\(791\) −7.61713 −0.270834
\(792\) 45.0979 1.60248
\(793\) −0.757444 −0.0268976
\(794\) 53.3757 1.89423
\(795\) 0.671823 0.0238271
\(796\) 21.0413 0.745788
\(797\) −17.3092 −0.613124 −0.306562 0.951851i \(-0.599179\pi\)
−0.306562 + 0.951851i \(0.599179\pi\)
\(798\) 17.4272 0.616916
\(799\) −27.0679 −0.957592
\(800\) −58.0749 −2.05326
\(801\) −13.2313 −0.467504
\(802\) 23.4911 0.829499
\(803\) 45.8746 1.61888
\(804\) 55.9667 1.97379
\(805\) 1.75226 0.0617592
\(806\) −9.39034 −0.330761
\(807\) 0.998325 0.0351427
\(808\) −83.2764 −2.92965
\(809\) −20.2565 −0.712179 −0.356090 0.934452i \(-0.615890\pi\)
−0.356090 + 0.934452i \(0.615890\pi\)
\(810\) −0.740216 −0.0260085
\(811\) 19.1975 0.674116 0.337058 0.941484i \(-0.390568\pi\)
0.337058 + 0.941484i \(0.390568\pi\)
\(812\) 39.9824 1.40311
\(813\) −22.3880 −0.785181
\(814\) 69.9607 2.45212
\(815\) 3.12099 0.109324
\(816\) 46.7527 1.63667
\(817\) 66.9170 2.34113
\(818\) 92.0816 3.21956
\(819\) −0.529744 −0.0185107
\(820\) 1.48836 0.0519757
\(821\) 26.4827 0.924252 0.462126 0.886814i \(-0.347087\pi\)
0.462126 + 0.886814i \(0.347087\pi\)
\(822\) 40.2205 1.40285
\(823\) −49.4957 −1.72531 −0.862657 0.505790i \(-0.831201\pi\)
−0.862657 + 0.505790i \(0.831201\pi\)
\(824\) 53.1168 1.85041
\(825\) 28.9681 1.00854
\(826\) −22.8247 −0.794173
\(827\) 27.5998 0.959738 0.479869 0.877340i \(-0.340684\pi\)
0.479869 + 0.877340i \(0.340684\pi\)
\(828\) 30.5832 1.06284
\(829\) −5.45427 −0.189435 −0.0947173 0.995504i \(-0.530195\pi\)
−0.0947173 + 0.995504i \(0.530195\pi\)
\(830\) −3.88315 −0.134786
\(831\) 7.05775 0.244831
\(832\) 5.50965 0.191013
\(833\) −4.53224 −0.157033
\(834\) 49.5481 1.71571
\(835\) 4.10588 0.142090
\(836\) 191.716 6.63065
\(837\) 6.74165 0.233025
\(838\) 0.691164 0.0238759
\(839\) 35.7462 1.23410 0.617049 0.786925i \(-0.288328\pi\)
0.617049 + 0.786925i \(0.288328\pi\)
\(840\) −2.15663 −0.0744108
\(841\) 37.2146 1.28326
\(842\) −43.4883 −1.49871
\(843\) −24.0591 −0.828638
\(844\) −93.2989 −3.21148
\(845\) 3.58076 0.123182
\(846\) 15.7033 0.539891
\(847\) −23.6560 −0.812830
\(848\) 24.6173 0.845361
\(849\) 11.0668 0.379811
\(850\) 58.6399 2.01133
\(851\) 28.1324 0.964365
\(852\) −54.7980 −1.87735
\(853\) −37.4691 −1.28292 −0.641458 0.767158i \(-0.721670\pi\)
−0.641458 + 0.767158i \(0.721670\pi\)
\(854\) 3.75953 0.128649
\(855\) −1.86589 −0.0638122
\(856\) −139.780 −4.77758
\(857\) −22.1488 −0.756588 −0.378294 0.925686i \(-0.623489\pi\)
−0.378294 + 0.925686i \(0.623489\pi\)
\(858\) −8.19982 −0.279937
\(859\) −6.66621 −0.227448 −0.113724 0.993512i \(-0.536278\pi\)
−0.113724 + 0.993512i \(0.536278\pi\)
\(860\) −13.9656 −0.476224
\(861\) −1.07598 −0.0366694
\(862\) −3.06906 −0.104533
\(863\) 19.6229 0.667972 0.333986 0.942578i \(-0.391606\pi\)
0.333986 + 0.942578i \(0.391606\pi\)
\(864\) −11.8020 −0.401514
\(865\) −0.207111 −0.00704197
\(866\) 53.1696 1.80678
\(867\) −3.54115 −0.120264
\(868\) 33.1252 1.12434
\(869\) 31.6742 1.07447
\(870\) −6.02331 −0.204209
\(871\) −6.03397 −0.204453
\(872\) −29.9501 −1.01424
\(873\) 10.8359 0.366740
\(874\) 108.472 3.66912
\(875\) −2.79289 −0.0944168
\(876\) −38.2891 −1.29367
\(877\) 48.6407 1.64248 0.821241 0.570582i \(-0.193282\pi\)
0.821241 + 0.570582i \(0.193282\pi\)
\(878\) 20.0067 0.675195
\(879\) −22.6626 −0.764392
\(880\) −17.0959 −0.576304
\(881\) −9.08797 −0.306182 −0.153091 0.988212i \(-0.548923\pi\)
−0.153091 + 0.988212i \(0.548923\pi\)
\(882\) 2.62936 0.0885350
\(883\) 4.29728 0.144615 0.0723075 0.997382i \(-0.476964\pi\)
0.0723075 + 0.997382i \(0.476964\pi\)
\(884\) −11.7970 −0.396775
\(885\) 2.44379 0.0821473
\(886\) −68.6961 −2.30789
\(887\) 22.8510 0.767261 0.383630 0.923487i \(-0.374674\pi\)
0.383630 + 0.923487i \(0.374674\pi\)
\(888\) −34.6244 −1.16192
\(889\) −1.00000 −0.0335389
\(890\) 9.79401 0.328296
\(891\) 5.88693 0.197220
\(892\) −92.5652 −3.09931
\(893\) 39.5840 1.32463
\(894\) −4.73852 −0.158480
\(895\) 1.73019 0.0578337
\(896\) −3.74276 −0.125037
\(897\) −3.29728 −0.110093
\(898\) 15.3296 0.511554
\(899\) 54.8584 1.82963
\(900\) −24.1782 −0.805939
\(901\) −10.8158 −0.360326
\(902\) −16.6550 −0.554551
\(903\) 10.0962 0.335981
\(904\) 58.3523 1.94077
\(905\) 7.46592 0.248176
\(906\) 49.1123 1.63165
\(907\) 57.7685 1.91817 0.959086 0.283115i \(-0.0913679\pi\)
0.959086 + 0.283115i \(0.0913679\pi\)
\(908\) −48.6681 −1.61511
\(909\) −10.8706 −0.360556
\(910\) 0.392125 0.0129988
\(911\) 14.0228 0.464597 0.232299 0.972645i \(-0.425375\pi\)
0.232299 + 0.972645i \(0.425375\pi\)
\(912\) −68.3710 −2.26399
\(913\) 30.8826 1.02207
\(914\) −93.6104 −3.09636
\(915\) −0.402526 −0.0133071
\(916\) 0.446828 0.0147636
\(917\) 7.91736 0.261454
\(918\) 11.9169 0.393315
\(919\) −9.51583 −0.313898 −0.156949 0.987607i \(-0.550166\pi\)
−0.156949 + 0.987607i \(0.550166\pi\)
\(920\) −13.4235 −0.442560
\(921\) −17.4088 −0.573639
\(922\) 1.65136 0.0543845
\(923\) 5.90796 0.194463
\(924\) 28.9255 0.951580
\(925\) −22.2406 −0.731267
\(926\) −84.9762 −2.79249
\(927\) 6.93370 0.227733
\(928\) −96.0360 −3.15254
\(929\) 11.7678 0.386088 0.193044 0.981190i \(-0.438164\pi\)
0.193044 + 0.981190i \(0.438164\pi\)
\(930\) −4.99028 −0.163638
\(931\) 6.62793 0.217222
\(932\) −45.3915 −1.48685
\(933\) 15.7117 0.514378
\(934\) 112.156 3.66987
\(935\) 7.51122 0.245643
\(936\) 4.05819 0.132646
\(937\) −30.9966 −1.01262 −0.506308 0.862353i \(-0.668990\pi\)
−0.506308 + 0.862353i \(0.668990\pi\)
\(938\) 29.9493 0.977879
\(939\) 13.9048 0.453766
\(940\) −8.26119 −0.269450
\(941\) 29.7890 0.971094 0.485547 0.874211i \(-0.338620\pi\)
0.485547 + 0.874211i \(0.338620\pi\)
\(942\) −14.7436 −0.480371
\(943\) −6.69725 −0.218092
\(944\) 89.5468 2.91450
\(945\) −0.281520 −0.00915784
\(946\) 156.278 5.08103
\(947\) −0.245881 −0.00799006 −0.00399503 0.999992i \(-0.501272\pi\)
−0.00399503 + 0.999992i \(0.501272\pi\)
\(948\) −26.4368 −0.858628
\(949\) 4.12809 0.134003
\(950\) −85.7547 −2.78225
\(951\) −17.5737 −0.569866
\(952\) 34.7200 1.12528
\(953\) 29.4515 0.954027 0.477013 0.878896i \(-0.341719\pi\)
0.477013 + 0.878896i \(0.341719\pi\)
\(954\) 6.27473 0.203152
\(955\) −0.979377 −0.0316919
\(956\) 112.378 3.63457
\(957\) 47.9034 1.54850
\(958\) −0.865409 −0.0279601
\(959\) 15.2967 0.493956
\(960\) 2.92797 0.0944999
\(961\) 14.4498 0.466122
\(962\) 6.29551 0.202975
\(963\) −18.2465 −0.587984
\(964\) 125.750 4.05015
\(965\) 5.56894 0.179270
\(966\) 16.3659 0.526564
\(967\) 33.8225 1.08766 0.543829 0.839196i \(-0.316974\pi\)
0.543829 + 0.839196i \(0.316974\pi\)
\(968\) 181.221 5.82465
\(969\) 30.0393 0.965002
\(970\) −8.02091 −0.257536
\(971\) −55.5688 −1.78329 −0.891644 0.452736i \(-0.850448\pi\)
−0.891644 + 0.452736i \(0.850448\pi\)
\(972\) −4.91351 −0.157601
\(973\) 18.8442 0.604117
\(974\) 3.42121 0.109623
\(975\) 2.60673 0.0834823
\(976\) −14.7496 −0.472122
\(977\) 28.8054 0.921566 0.460783 0.887513i \(-0.347569\pi\)
0.460783 + 0.887513i \(0.347569\pi\)
\(978\) 29.1496 0.932103
\(979\) −77.8917 −2.48943
\(980\) −1.38325 −0.0441864
\(981\) −3.90960 −0.124824
\(982\) −69.3856 −2.21418
\(983\) 23.4017 0.746397 0.373198 0.927752i \(-0.378261\pi\)
0.373198 + 0.927752i \(0.378261\pi\)
\(984\) 8.24276 0.262770
\(985\) 1.14624 0.0365224
\(986\) 96.9703 3.08816
\(987\) 5.97230 0.190100
\(988\) 17.2519 0.548855
\(989\) 62.8419 1.99826
\(990\) −4.35760 −0.138494
\(991\) −57.4474 −1.82488 −0.912439 0.409213i \(-0.865803\pi\)
−0.912439 + 0.409213i \(0.865803\pi\)
\(992\) −79.5652 −2.52620
\(993\) −23.1601 −0.734964
\(994\) −29.3239 −0.930097
\(995\) −1.20556 −0.0382188
\(996\) −25.7761 −0.816748
\(997\) −31.3586 −0.993138 −0.496569 0.867997i \(-0.665407\pi\)
−0.496569 + 0.867997i \(0.665407\pi\)
\(998\) −55.5125 −1.75722
\(999\) −4.51976 −0.142999
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.o.1.15 16
3.2 odd 2 8001.2.a.r.1.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.o.1.15 16 1.1 even 1 trivial
8001.2.a.r.1.2 16 3.2 odd 2