Properties

Label 2-2667-1.1-c1-0-74
Degree $2$
Conductor $2667$
Sign $1$
Analytic cond. $21.2961$
Root an. cond. $4.61477$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.62·2-s − 3-s + 4.91·4-s − 0.281·5-s − 2.62·6-s − 7-s + 7.66·8-s + 9-s − 0.740·10-s + 5.88·11-s − 4.91·12-s + 0.529·13-s − 2.62·14-s + 0.281·15-s + 10.3·16-s − 4.53·17-s + 2.62·18-s + 6.62·19-s − 1.38·20-s + 21-s + 15.4·22-s + 6.22·23-s − 7.66·24-s − 4.92·25-s + 1.39·26-s − 27-s − 4.91·28-s + ⋯
L(s)  = 1  + 1.85·2-s − 0.577·3-s + 2.45·4-s − 0.125·5-s − 1.07·6-s − 0.377·7-s + 2.70·8-s + 0.333·9-s − 0.234·10-s + 1.77·11-s − 1.41·12-s + 0.146·13-s − 0.702·14-s + 0.0726·15-s + 2.57·16-s − 1.09·17-s + 0.619·18-s + 1.52·19-s − 0.309·20-s + 0.218·21-s + 3.30·22-s + 1.29·23-s − 1.56·24-s − 0.984·25-s + 0.273·26-s − 0.192·27-s − 0.928·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2667 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2667\)    =    \(3 \cdot 7 \cdot 127\)
Sign: $1$
Analytic conductor: \(21.2961\)
Root analytic conductor: \(4.61477\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2667,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.349471949\)
\(L(\frac12)\) \(\approx\) \(5.349471949\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 + T \)
127 \( 1 - T \)
good2 \( 1 - 2.62T + 2T^{2} \)
5 \( 1 + 0.281T + 5T^{2} \)
11 \( 1 - 5.88T + 11T^{2} \)
13 \( 1 - 0.529T + 13T^{2} \)
17 \( 1 + 4.53T + 17T^{2} \)
19 \( 1 - 6.62T + 19T^{2} \)
23 \( 1 - 6.22T + 23T^{2} \)
29 \( 1 + 8.13T + 29T^{2} \)
31 \( 1 + 6.74T + 31T^{2} \)
37 \( 1 - 4.51T + 37T^{2} \)
41 \( 1 + 1.07T + 41T^{2} \)
43 \( 1 - 10.0T + 43T^{2} \)
47 \( 1 - 5.97T + 47T^{2} \)
53 \( 1 - 2.38T + 53T^{2} \)
59 \( 1 - 8.68T + 59T^{2} \)
61 \( 1 + 1.42T + 61T^{2} \)
67 \( 1 + 11.3T + 67T^{2} \)
71 \( 1 - 11.1T + 71T^{2} \)
73 \( 1 - 7.79T + 73T^{2} \)
79 \( 1 - 5.38T + 79T^{2} \)
83 \( 1 - 5.24T + 83T^{2} \)
89 \( 1 + 13.2T + 89T^{2} \)
97 \( 1 - 10.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.077293265203973838067473569587, −7.43868636068790262791110493554, −7.07837716483638441943552245361, −6.27233946577220405280728366564, −5.70369408217228265114878072134, −4.95254650212132728428926744062, −3.87308292195879454582471613098, −3.74214175015374695120262642257, −2.42159031347442722794772985690, −1.26450456552102927214022696568, 1.26450456552102927214022696568, 2.42159031347442722794772985690, 3.74214175015374695120262642257, 3.87308292195879454582471613098, 4.95254650212132728428926744062, 5.70369408217228265114878072134, 6.27233946577220405280728366564, 7.07837716483638441943552245361, 7.43868636068790262791110493554, 9.077293265203973838067473569587

Graph of the $Z$-function along the critical line