# Properties

 Label 2646.2.h.n Level $2646$ Weight $2$ Character orbit 2646.h Analytic conductor $21.128$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2646,2,Mod(361,2646)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2646, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([2, 4]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2646.361");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2646 = 2 \cdot 3^{3} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2646.h (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$21.1284163748$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\sqrt{-2}, \sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} - 2x^{2} + 4$$ x^4 - 2*x^2 + 4 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$3$$ Twist minimal: no (minimal twist has level 126) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( - \beta_1 + 1) q^{2} - \beta_1 q^{4} + ( - \beta_{3} + 1) q^{5} - q^{8}+O(q^{10})$$ q + (-b1 + 1) * q^2 - b1 * q^4 + (-b3 + 1) * q^5 - q^8 $$q + ( - \beta_1 + 1) q^{2} - \beta_1 q^{4} + ( - \beta_{3} + 1) q^{5} - q^{8} + ( - \beta_{3} + \beta_{2} - \beta_1 + 1) q^{10} - 2 q^{11} + (2 \beta_{3} - 2 \beta_{2}) q^{13} + (\beta_1 - 1) q^{16} + (2 \beta_1 - 2) q^{17} + ( - \beta_{2} + 5 \beta_1) q^{19} + (\beta_{2} - \beta_1) q^{20} + (2 \beta_1 - 2) q^{22} + q^{23} + ( - 2 \beta_{3} + 2) q^{25} - 2 \beta_{2} q^{26} + ( - 2 \beta_{2} - 2 \beta_1) q^{29} + 6 \beta_1 q^{31} + \beta_1 q^{32} + 2 \beta_1 q^{34} + ( - 4 \beta_{2} - 2 \beta_1) q^{37} + ( - \beta_{3} + 5) q^{38} + (\beta_{3} - 1) q^{40} + ( - 4 \beta_{3} + 4 \beta_{2}) q^{41} + ( - 2 \beta_{2} - 2 \beta_1) q^{43} + 2 \beta_1 q^{44} + ( - \beta_1 + 1) q^{46} + ( - 4 \beta_{3} + 4 \beta_{2}) q^{47} + ( - 2 \beta_{3} + 2 \beta_{2} - 2 \beta_1 + 2) q^{50} - 2 \beta_{3} q^{52} + ( - 2 \beta_{3} + 2 \beta_{2} + 6 \beta_1 - 6) q^{53} + (2 \beta_{3} - 2) q^{55} + ( - 2 \beta_{3} - 2) q^{58} + 2 \beta_1 q^{59} + ( - \beta_{3} + \beta_{2} - 9 \beta_1 + 9) q^{61} + 6 q^{62} + q^{64} + (2 \beta_{3} - 2 \beta_{2} + 12 \beta_1 - 12) q^{65} + (2 \beta_{2} + 8 \beta_1) q^{67} + 2 q^{68} + (2 \beta_{3} - 5) q^{71} + ( - 2 \beta_{3} + 2 \beta_{2} + 2 \beta_1 - 2) q^{73} + ( - 4 \beta_{3} - 2) q^{74} + ( - \beta_{3} + \beta_{2} - 5 \beta_1 + 5) q^{76} + (2 \beta_{3} - 2 \beta_{2} + 3 \beta_1 - 3) q^{79} + (\beta_{3} - \beta_{2} + \beta_1 - 1) q^{80} + 4 \beta_{2} q^{82} - 2 \beta_1 q^{83} + (2 \beta_{3} - 2 \beta_{2} + 2 \beta_1 - 2) q^{85} + ( - 2 \beta_{3} - 2) q^{86} + 2 q^{88} + (2 \beta_{2} + 12 \beta_1) q^{89} - \beta_1 q^{92} + 4 \beta_{2} q^{94} + ( - 6 \beta_{2} + 11 \beta_1) q^{95} + (2 \beta_{2} - 2 \beta_1) q^{97}+O(q^{100})$$ q + (-b1 + 1) * q^2 - b1 * q^4 + (-b3 + 1) * q^5 - q^8 + (-b3 + b2 - b1 + 1) * q^10 - 2 * q^11 + (2*b3 - 2*b2) * q^13 + (b1 - 1) * q^16 + (2*b1 - 2) * q^17 + (-b2 + 5*b1) * q^19 + (b2 - b1) * q^20 + (2*b1 - 2) * q^22 + q^23 + (-2*b3 + 2) * q^25 - 2*b2 * q^26 + (-2*b2 - 2*b1) * q^29 + 6*b1 * q^31 + b1 * q^32 + 2*b1 * q^34 + (-4*b2 - 2*b1) * q^37 + (-b3 + 5) * q^38 + (b3 - 1) * q^40 + (-4*b3 + 4*b2) * q^41 + (-2*b2 - 2*b1) * q^43 + 2*b1 * q^44 + (-b1 + 1) * q^46 + (-4*b3 + 4*b2) * q^47 + (-2*b3 + 2*b2 - 2*b1 + 2) * q^50 - 2*b3 * q^52 + (-2*b3 + 2*b2 + 6*b1 - 6) * q^53 + (2*b3 - 2) * q^55 + (-2*b3 - 2) * q^58 + 2*b1 * q^59 + (-b3 + b2 - 9*b1 + 9) * q^61 + 6 * q^62 + q^64 + (2*b3 - 2*b2 + 12*b1 - 12) * q^65 + (2*b2 + 8*b1) * q^67 + 2 * q^68 + (2*b3 - 5) * q^71 + (-2*b3 + 2*b2 + 2*b1 - 2) * q^73 + (-4*b3 - 2) * q^74 + (-b3 + b2 - 5*b1 + 5) * q^76 + (2*b3 - 2*b2 + 3*b1 - 3) * q^79 + (b3 - b2 + b1 - 1) * q^80 + 4*b2 * q^82 - 2*b1 * q^83 + (2*b3 - 2*b2 + 2*b1 - 2) * q^85 + (-2*b3 - 2) * q^86 + 2 * q^88 + (2*b2 + 12*b1) * q^89 - b1 * q^92 + 4*b2 * q^94 + (-6*b2 + 11*b1) * q^95 + (2*b2 - 2*b1) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 2 q^{2} - 2 q^{4} + 4 q^{5} - 4 q^{8}+O(q^{10})$$ 4 * q + 2 * q^2 - 2 * q^4 + 4 * q^5 - 4 * q^8 $$4 q + 2 q^{2} - 2 q^{4} + 4 q^{5} - 4 q^{8} + 2 q^{10} - 8 q^{11} - 2 q^{16} - 4 q^{17} + 10 q^{19} - 2 q^{20} - 4 q^{22} + 4 q^{23} + 8 q^{25} - 4 q^{29} + 12 q^{31} + 2 q^{32} + 4 q^{34} - 4 q^{37} + 20 q^{38} - 4 q^{40} - 4 q^{43} + 4 q^{44} + 2 q^{46} + 4 q^{50} - 12 q^{53} - 8 q^{55} - 8 q^{58} + 4 q^{59} + 18 q^{61} + 24 q^{62} + 4 q^{64} - 24 q^{65} + 16 q^{67} + 8 q^{68} - 20 q^{71} - 4 q^{73} - 8 q^{74} + 10 q^{76} - 6 q^{79} - 2 q^{80} - 4 q^{83} - 4 q^{85} - 8 q^{86} + 8 q^{88} + 24 q^{89} - 2 q^{92} + 22 q^{95} - 4 q^{97}+O(q^{100})$$ 4 * q + 2 * q^2 - 2 * q^4 + 4 * q^5 - 4 * q^8 + 2 * q^10 - 8 * q^11 - 2 * q^16 - 4 * q^17 + 10 * q^19 - 2 * q^20 - 4 * q^22 + 4 * q^23 + 8 * q^25 - 4 * q^29 + 12 * q^31 + 2 * q^32 + 4 * q^34 - 4 * q^37 + 20 * q^38 - 4 * q^40 - 4 * q^43 + 4 * q^44 + 2 * q^46 + 4 * q^50 - 12 * q^53 - 8 * q^55 - 8 * q^58 + 4 * q^59 + 18 * q^61 + 24 * q^62 + 4 * q^64 - 24 * q^65 + 16 * q^67 + 8 * q^68 - 20 * q^71 - 4 * q^73 - 8 * q^74 + 10 * q^76 - 6 * q^79 - 2 * q^80 - 4 * q^83 - 4 * q^85 - 8 * q^86 + 8 * q^88 + 24 * q^89 - 2 * q^92 + 22 * q^95 - 4 * q^97

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - 2x^{2} + 4$$ :

 $$\beta_{1}$$ $$=$$ $$( \nu^{2} ) / 2$$ (v^2) / 2 $$\beta_{2}$$ $$=$$ $$( \nu^{3} + 2\nu ) / 2$$ (v^3 + 2*v) / 2 $$\beta_{3}$$ $$=$$ $$( -\nu^{3} + 4\nu ) / 2$$ (-v^3 + 4*v) / 2
 $$\nu$$ $$=$$ $$( \beta_{3} + \beta_{2} ) / 3$$ (b3 + b2) / 3 $$\nu^{2}$$ $$=$$ $$2\beta_1$$ 2*b1 $$\nu^{3}$$ $$=$$ $$( -2\beta_{3} + 4\beta_{2} ) / 3$$ (-2*b3 + 4*b2) / 3

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$1081$$ $$\chi(n)$$ $$-1 + \beta_{1}$$ $$-\beta_{1}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
361.1
 1.22474 + 0.707107i −1.22474 − 0.707107i 1.22474 − 0.707107i −1.22474 + 0.707107i
0.500000 0.866025i 0 −0.500000 0.866025i −1.44949 0 0 −1.00000 0 −0.724745 + 1.25529i
361.2 0.500000 0.866025i 0 −0.500000 0.866025i 3.44949 0 0 −1.00000 0 1.72474 2.98735i
667.1 0.500000 + 0.866025i 0 −0.500000 + 0.866025i −1.44949 0 0 −1.00000 0 −0.724745 1.25529i
667.2 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 3.44949 0 0 −1.00000 0 1.72474 + 2.98735i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.g even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2646.2.h.n 4
3.b odd 2 1 882.2.h.l 4
7.b odd 2 1 2646.2.h.m 4
7.c even 3 1 2646.2.e.k 4
7.c even 3 1 2646.2.f.k 4
7.d odd 6 1 378.2.f.d 4
7.d odd 6 1 2646.2.e.l 4
9.c even 3 1 2646.2.e.k 4
9.d odd 6 1 882.2.e.n 4
21.c even 2 1 882.2.h.k 4
21.g even 6 1 126.2.f.c 4
21.g even 6 1 882.2.e.m 4
21.h odd 6 1 882.2.e.n 4
21.h odd 6 1 882.2.f.j 4
28.f even 6 1 3024.2.r.e 4
63.g even 3 1 inner 2646.2.h.n 4
63.g even 3 1 7938.2.a.bm 2
63.h even 3 1 2646.2.f.k 4
63.i even 6 1 126.2.f.c 4
63.j odd 6 1 882.2.f.j 4
63.k odd 6 1 1134.2.a.i 2
63.k odd 6 1 2646.2.h.m 4
63.l odd 6 1 2646.2.e.l 4
63.n odd 6 1 882.2.h.l 4
63.n odd 6 1 7938.2.a.bn 2
63.o even 6 1 882.2.e.m 4
63.s even 6 1 882.2.h.k 4
63.s even 6 1 1134.2.a.p 2
63.t odd 6 1 378.2.f.d 4
84.j odd 6 1 1008.2.r.e 4
252.n even 6 1 9072.2.a.bd 2
252.r odd 6 1 1008.2.r.e 4
252.bj even 6 1 3024.2.r.e 4
252.bn odd 6 1 9072.2.a.bk 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
126.2.f.c 4 21.g even 6 1
126.2.f.c 4 63.i even 6 1
378.2.f.d 4 7.d odd 6 1
378.2.f.d 4 63.t odd 6 1
882.2.e.m 4 21.g even 6 1
882.2.e.m 4 63.o even 6 1
882.2.e.n 4 9.d odd 6 1
882.2.e.n 4 21.h odd 6 1
882.2.f.j 4 21.h odd 6 1
882.2.f.j 4 63.j odd 6 1
882.2.h.k 4 21.c even 2 1
882.2.h.k 4 63.s even 6 1
882.2.h.l 4 3.b odd 2 1
882.2.h.l 4 63.n odd 6 1
1008.2.r.e 4 84.j odd 6 1
1008.2.r.e 4 252.r odd 6 1
1134.2.a.i 2 63.k odd 6 1
1134.2.a.p 2 63.s even 6 1
2646.2.e.k 4 7.c even 3 1
2646.2.e.k 4 9.c even 3 1
2646.2.e.l 4 7.d odd 6 1
2646.2.e.l 4 63.l odd 6 1
2646.2.f.k 4 7.c even 3 1
2646.2.f.k 4 63.h even 3 1
2646.2.h.m 4 7.b odd 2 1
2646.2.h.m 4 63.k odd 6 1
2646.2.h.n 4 1.a even 1 1 trivial
2646.2.h.n 4 63.g even 3 1 inner
3024.2.r.e 4 28.f even 6 1
3024.2.r.e 4 252.bj even 6 1
7938.2.a.bm 2 63.g even 3 1
7938.2.a.bn 2 63.n odd 6 1
9072.2.a.bd 2 252.n even 6 1
9072.2.a.bk 2 252.bn odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2646, [\chi])$$:

 $$T_{5}^{2} - 2T_{5} - 5$$ T5^2 - 2*T5 - 5 $$T_{11} + 2$$ T11 + 2 $$T_{13}^{4} + 24T_{13}^{2} + 576$$ T13^4 + 24*T13^2 + 576

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T^{2} - T + 1)^{2}$$
$3$ $$T^{4}$$
$5$ $$(T^{2} - 2 T - 5)^{2}$$
$7$ $$T^{4}$$
$11$ $$(T + 2)^{4}$$
$13$ $$T^{4} + 24T^{2} + 576$$
$17$ $$(T^{2} + 2 T + 4)^{2}$$
$19$ $$T^{4} - 10 T^{3} + 81 T^{2} + \cdots + 361$$
$23$ $$(T - 1)^{4}$$
$29$ $$T^{4} + 4 T^{3} + 36 T^{2} - 80 T + 400$$
$31$ $$(T^{2} - 6 T + 36)^{2}$$
$37$ $$T^{4} + 4 T^{3} + 108 T^{2} + \cdots + 8464$$
$41$ $$T^{4} + 96T^{2} + 9216$$
$43$ $$T^{4} + 4 T^{3} + 36 T^{2} - 80 T + 400$$
$47$ $$T^{4} + 96T^{2} + 9216$$
$53$ $$T^{4} + 12 T^{3} + 132 T^{2} + \cdots + 144$$
$59$ $$(T^{2} - 2 T + 4)^{2}$$
$61$ $$T^{4} - 18 T^{3} + 249 T^{2} + \cdots + 5625$$
$67$ $$T^{4} - 16 T^{3} + 216 T^{2} + \cdots + 1600$$
$71$ $$(T^{2} + 10 T + 1)^{2}$$
$73$ $$T^{4} + 4 T^{3} + 36 T^{2} - 80 T + 400$$
$79$ $$T^{4} + 6 T^{3} + 51 T^{2} - 90 T + 225$$
$83$ $$(T^{2} + 2 T + 4)^{2}$$
$89$ $$T^{4} - 24 T^{3} + 456 T^{2} + \cdots + 14400$$
$97$ $$T^{4} + 4 T^{3} + 36 T^{2} - 80 T + 400$$