Properties

Label 2646.2.h
Level $2646$
Weight $2$
Character orbit 2646.h
Rep. character $\chi_{2646}(361,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $80$
Newform subspaces $20$
Sturm bound $1008$
Trace bound $13$

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.h (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 20 \)
Sturm bound: \(1008\)
Trace bound: \(13\)
Distinguishing \(T_p\): \(5\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(2646, [\chi])\).

Total New Old
Modular forms 1104 80 1024
Cusp forms 912 80 832
Eisenstein series 192 0 192

Trace form

\( 80q - 40q^{4} + 8q^{5} + O(q^{10}) \) \( 80q - 40q^{4} + 8q^{5} - 16q^{11} - 2q^{13} - 40q^{16} - 14q^{17} + 4q^{19} - 4q^{20} - 4q^{23} + 80q^{25} - 16q^{26} - 18q^{29} - 2q^{31} - 2q^{37} + 24q^{38} - 6q^{41} - 2q^{43} + 8q^{44} + 6q^{46} - 6q^{47} + 4q^{52} + 32q^{53} + 12q^{55} + 12q^{58} - 22q^{59} - 8q^{61} + 44q^{62} + 80q^{64} + 2q^{65} - 14q^{67} + 28q^{68} + 76q^{71} + 28q^{73} + 12q^{74} + 4q^{76} - 32q^{79} - 4q^{80} + 16q^{83} - 24q^{85} - 40q^{86} - 36q^{89} + 2q^{92} - 12q^{94} + 42q^{95} - 2q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(2646, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
2646.2.h.a \(2\) \(21.128\) \(\Q(\sqrt{-3}) \) None \(-1\) \(0\) \(-6\) \(0\) \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-3q^{5}+q^{8}+\cdots\)
2646.2.h.b \(2\) \(21.128\) \(\Q(\sqrt{-3}) \) None \(-1\) \(0\) \(-4\) \(0\) \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}-2q^{5}+q^{8}+\cdots\)
2646.2.h.c \(2\) \(21.128\) \(\Q(\sqrt{-3}) \) None \(-1\) \(0\) \(4\) \(0\) \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+2q^{5}+q^{8}+\cdots\)
2646.2.h.d \(2\) \(21.128\) \(\Q(\sqrt{-3}) \) None \(-1\) \(0\) \(6\) \(0\) \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+3q^{5}+q^{8}+\cdots\)
2646.2.h.e \(2\) \(21.128\) \(\Q(\sqrt{-3}) \) None \(-1\) \(0\) \(6\) \(0\) \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+3q^{5}+q^{8}+\cdots\)
2646.2.h.f \(2\) \(21.128\) \(\Q(\sqrt{-3}) \) None \(1\) \(0\) \(-6\) \(0\) \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-3q^{5}-q^{8}+\cdots\)
2646.2.h.g \(2\) \(21.128\) \(\Q(\sqrt{-3}) \) None \(1\) \(0\) \(-2\) \(0\) \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-q^{5}-q^{8}+(-1+\cdots)q^{10}+\cdots\)
2646.2.h.h \(2\) \(21.128\) \(\Q(\sqrt{-3}) \) None \(1\) \(0\) \(0\) \(0\) \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-q^{8}+3q^{11}+\cdots\)
2646.2.h.i \(2\) \(21.128\) \(\Q(\sqrt{-3}) \) None \(1\) \(0\) \(0\) \(0\) \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-q^{8}+3q^{11}+\cdots\)
2646.2.h.j \(2\) \(21.128\) \(\Q(\sqrt{-3}) \) None \(1\) \(0\) \(2\) \(0\) \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}+q^{5}-q^{8}+(1+\cdots)q^{10}+\cdots\)
2646.2.h.k \(4\) \(21.128\) \(\Q(\sqrt{-3}, \sqrt{-11})\) None \(-2\) \(0\) \(-6\) \(0\) \(q+(-1+\beta _{1})q^{2}-\beta _{1}q^{4}+(-1+\beta _{2}+\cdots)q^{5}+\cdots\)
2646.2.h.l \(4\) \(21.128\) \(\Q(\sqrt{-3}, \sqrt{-11})\) None \(-2\) \(0\) \(6\) \(0\) \(q-\beta _{1}q^{2}+(-1+\beta _{1})q^{4}+(1-\beta _{2})q^{5}+\cdots\)
2646.2.h.m \(4\) \(21.128\) \(\Q(\sqrt{-2}, \sqrt{-3})\) None \(2\) \(0\) \(-4\) \(0\) \(q+\beta _{1}q^{2}+(-1+\beta _{1})q^{4}+(-1-\beta _{3})q^{5}+\cdots\)
2646.2.h.n \(4\) \(21.128\) \(\Q(\sqrt{-2}, \sqrt{-3})\) None \(2\) \(0\) \(4\) \(0\) \(q+(1-\beta _{1})q^{2}-\beta _{1}q^{4}+(1-\beta _{3})q^{5}+\cdots\)
2646.2.h.o \(6\) \(21.128\) 6.0.309123.1 None \(-3\) \(0\) \(-2\) \(0\) \(q-\beta _{4}q^{2}+(-1+\beta _{4})q^{4}+\beta _{3}q^{5}+q^{8}+\cdots\)
2646.2.h.p \(6\) \(21.128\) 6.0.309123.1 None \(3\) \(0\) \(10\) \(0\) \(q+(1-\beta _{4})q^{2}-\beta _{4}q^{4}+(2+\beta _{1})q^{5}+\cdots\)
2646.2.h.q \(8\) \(21.128\) \(\Q(\zeta_{24})\) None \(-4\) \(0\) \(0\) \(0\) \(q+(-1+\zeta_{24})q^{2}-\zeta_{24}q^{4}+(\zeta_{24}^{5}+\cdots)q^{5}+\cdots\)
2646.2.h.r \(8\) \(21.128\) 8.0.\(\cdots\).2 None \(-4\) \(0\) \(0\) \(0\) \(q+(-1-\beta _{2})q^{2}+\beta _{2}q^{4}+(-\beta _{3}+\beta _{4}+\cdots)q^{5}+\cdots\)
2646.2.h.s \(8\) \(21.128\) 8.0.3317760000.3 None \(4\) \(0\) \(0\) \(0\) \(q+\beta _{3}q^{2}+(-1+\beta _{3})q^{4}-\beta _{1}q^{5}-q^{8}+\cdots\)
2646.2.h.t \(8\) \(21.128\) \(\Q(\zeta_{24})\) None \(4\) \(0\) \(0\) \(0\) \(q+(1-\zeta_{24})q^{2}-\zeta_{24}q^{4}+(-2\zeta_{24}^{5}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(2646, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(2646, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(378, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(441, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(882, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1323, [\chi])\)\(^{\oplus 2}\)