Properties

Label 2600.2.f.a.649.1
Level $2600$
Weight $2$
Character 2600.649
Analytic conductor $20.761$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2600,2,Mod(649,2600)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2600.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2600, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7611045255\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 104)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.1
Root \(-2.56155i\) of defining polynomial
Character \(\chi\) \(=\) 2600.649
Dual form 2600.2.f.a.649.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.56155i q^{3} -4.56155 q^{7} -3.56155 q^{9} +3.12311i q^{11} +(0.561553 - 3.56155i) q^{13} -0.561553i q^{17} +2.00000i q^{19} +11.6847i q^{21} +5.12311i q^{23} +1.43845i q^{27} -3.12311 q^{29} -3.12311i q^{31} +8.00000 q^{33} -5.43845 q^{37} +(-9.12311 - 1.43845i) q^{39} +8.00000i q^{41} +5.43845i q^{43} +3.43845 q^{47} +13.8078 q^{49} -1.43845 q^{51} -4.24621i q^{53} +5.12311 q^{57} +10.0000i q^{59} +11.1231 q^{61} +16.2462 q^{63} +0.876894 q^{67} +13.1231 q^{69} +5.68466i q^{71} +15.3693 q^{73} -14.2462i q^{77} +2.87689 q^{79} -7.00000 q^{81} -8.24621 q^{83} +8.00000i q^{87} +5.12311i q^{89} +(-2.56155 + 16.2462i) q^{91} -8.00000 q^{93} +10.2462 q^{97} -11.1231i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 10 q^{7} - 6 q^{9} - 6 q^{13} + 4 q^{29} + 32 q^{33} - 30 q^{37} - 20 q^{39} + 22 q^{47} + 14 q^{49} - 14 q^{51} + 4 q^{57} + 28 q^{61} + 32 q^{63} + 20 q^{67} + 36 q^{69} + 12 q^{73} + 28 q^{79}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times\).

\(n\) \(1301\) \(1601\) \(1951\) \(1977\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.56155i 1.47891i −0.673204 0.739457i \(-0.735083\pi\)
0.673204 0.739457i \(-0.264917\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −4.56155 −1.72410 −0.862052 0.506819i \(-0.830821\pi\)
−0.862052 + 0.506819i \(0.830821\pi\)
\(8\) 0 0
\(9\) −3.56155 −1.18718
\(10\) 0 0
\(11\) 3.12311i 0.941652i 0.882226 + 0.470826i \(0.156044\pi\)
−0.882226 + 0.470826i \(0.843956\pi\)
\(12\) 0 0
\(13\) 0.561553 3.56155i 0.155747 0.987797i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.561553i 0.136197i −0.997679 0.0680983i \(-0.978307\pi\)
0.997679 0.0680983i \(-0.0216931\pi\)
\(18\) 0 0
\(19\) 2.00000i 0.458831i 0.973329 + 0.229416i \(0.0736815\pi\)
−0.973329 + 0.229416i \(0.926318\pi\)
\(20\) 0 0
\(21\) 11.6847i 2.54980i
\(22\) 0 0
\(23\) 5.12311i 1.06824i 0.845408 + 0.534121i \(0.179357\pi\)
−0.845408 + 0.534121i \(0.820643\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 1.43845i 0.276829i
\(28\) 0 0
\(29\) −3.12311 −0.579946 −0.289973 0.957035i \(-0.593646\pi\)
−0.289973 + 0.957035i \(0.593646\pi\)
\(30\) 0 0
\(31\) 3.12311i 0.560926i −0.959865 0.280463i \(-0.909512\pi\)
0.959865 0.280463i \(-0.0904881\pi\)
\(32\) 0 0
\(33\) 8.00000 1.39262
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −5.43845 −0.894075 −0.447038 0.894515i \(-0.647521\pi\)
−0.447038 + 0.894515i \(0.647521\pi\)
\(38\) 0 0
\(39\) −9.12311 1.43845i −1.46087 0.230336i
\(40\) 0 0
\(41\) 8.00000i 1.24939i 0.780869 + 0.624695i \(0.214777\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 5.43845i 0.829355i 0.909968 + 0.414678i \(0.136106\pi\)
−0.909968 + 0.414678i \(0.863894\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.43845 0.501549 0.250775 0.968046i \(-0.419315\pi\)
0.250775 + 0.968046i \(0.419315\pi\)
\(48\) 0 0
\(49\) 13.8078 1.97254
\(50\) 0 0
\(51\) −1.43845 −0.201423
\(52\) 0 0
\(53\) 4.24621i 0.583262i −0.956531 0.291631i \(-0.905802\pi\)
0.956531 0.291631i \(-0.0941979\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 5.12311 0.678572
\(58\) 0 0
\(59\) 10.0000i 1.30189i 0.759125 + 0.650945i \(0.225627\pi\)
−0.759125 + 0.650945i \(0.774373\pi\)
\(60\) 0 0
\(61\) 11.1231 1.42417 0.712084 0.702094i \(-0.247752\pi\)
0.712084 + 0.702094i \(0.247752\pi\)
\(62\) 0 0
\(63\) 16.2462 2.04683
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 0.876894 0.107130 0.0535648 0.998564i \(-0.482942\pi\)
0.0535648 + 0.998564i \(0.482942\pi\)
\(68\) 0 0
\(69\) 13.1231 1.57984
\(70\) 0 0
\(71\) 5.68466i 0.674645i 0.941389 + 0.337322i \(0.109521\pi\)
−0.941389 + 0.337322i \(0.890479\pi\)
\(72\) 0 0
\(73\) 15.3693 1.79884 0.899421 0.437083i \(-0.143988\pi\)
0.899421 + 0.437083i \(0.143988\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 14.2462i 1.62351i
\(78\) 0 0
\(79\) 2.87689 0.323676 0.161838 0.986817i \(-0.448258\pi\)
0.161838 + 0.986817i \(0.448258\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) −8.24621 −0.905139 −0.452570 0.891729i \(-0.649493\pi\)
−0.452570 + 0.891729i \(0.649493\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 8.00000i 0.857690i
\(88\) 0 0
\(89\) 5.12311i 0.543048i 0.962432 + 0.271524i \(0.0875277\pi\)
−0.962432 + 0.271524i \(0.912472\pi\)
\(90\) 0 0
\(91\) −2.56155 + 16.2462i −0.268524 + 1.70307i
\(92\) 0 0
\(93\) −8.00000 −0.829561
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 10.2462 1.04035 0.520173 0.854061i \(-0.325868\pi\)
0.520173 + 0.854061i \(0.325868\pi\)
\(98\) 0 0
\(99\) 11.1231i 1.11791i
\(100\) 0 0
\(101\) 13.3693 1.33030 0.665148 0.746711i \(-0.268368\pi\)
0.665148 + 0.746711i \(0.268368\pi\)
\(102\) 0 0
\(103\) 5.12311i 0.504795i −0.967624 0.252397i \(-0.918781\pi\)
0.967624 0.252397i \(-0.0812190\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.00000i 0.386695i 0.981130 + 0.193347i \(0.0619344\pi\)
−0.981130 + 0.193347i \(0.938066\pi\)
\(108\) 0 0
\(109\) 15.6847i 1.50232i −0.660121 0.751159i \(-0.729495\pi\)
0.660121 0.751159i \(-0.270505\pi\)
\(110\) 0 0
\(111\) 13.9309i 1.32226i
\(112\) 0 0
\(113\) 10.0000i 0.940721i 0.882474 + 0.470360i \(0.155876\pi\)
−0.882474 + 0.470360i \(0.844124\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.00000 + 12.6847i −0.184900 + 1.17270i
\(118\) 0 0
\(119\) 2.56155i 0.234817i
\(120\) 0 0
\(121\) 1.24621 0.113292
\(122\) 0 0
\(123\) 20.4924 1.84774
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 13.1231i 1.16449i 0.813014 + 0.582244i \(0.197825\pi\)
−0.813014 + 0.582244i \(0.802175\pi\)
\(128\) 0 0
\(129\) 13.9309 1.22654
\(130\) 0 0
\(131\) −15.6847 −1.37037 −0.685187 0.728367i \(-0.740280\pi\)
−0.685187 + 0.728367i \(0.740280\pi\)
\(132\) 0 0
\(133\) 9.12311i 0.791074i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −5.12311 −0.437696 −0.218848 0.975759i \(-0.570230\pi\)
−0.218848 + 0.975759i \(0.570230\pi\)
\(138\) 0 0
\(139\) −12.8078 −1.08634 −0.543170 0.839623i \(-0.682776\pi\)
−0.543170 + 0.839623i \(0.682776\pi\)
\(140\) 0 0
\(141\) 8.80776i 0.741748i
\(142\) 0 0
\(143\) 11.1231 + 1.75379i 0.930161 + 0.146659i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 35.3693i 2.91721i
\(148\) 0 0
\(149\) 1.12311i 0.0920084i −0.998941 0.0460042i \(-0.985351\pi\)
0.998941 0.0460042i \(-0.0146488\pi\)
\(150\) 0 0
\(151\) 7.43845i 0.605332i −0.953097 0.302666i \(-0.902123\pi\)
0.953097 0.302666i \(-0.0978767\pi\)
\(152\) 0 0
\(153\) 2.00000i 0.161690i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.24621i 0.338885i 0.985540 + 0.169442i \(0.0541966\pi\)
−0.985540 + 0.169442i \(0.945803\pi\)
\(158\) 0 0
\(159\) −10.8769 −0.862594
\(160\) 0 0
\(161\) 23.3693i 1.84176i
\(162\) 0 0
\(163\) −3.75379 −0.294019 −0.147010 0.989135i \(-0.546965\pi\)
−0.147010 + 0.989135i \(0.546965\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.1231 1.17026 0.585131 0.810939i \(-0.301043\pi\)
0.585131 + 0.810939i \(0.301043\pi\)
\(168\) 0 0
\(169\) −12.3693 4.00000i −0.951486 0.307692i
\(170\) 0 0
\(171\) 7.12311i 0.544718i
\(172\) 0 0
\(173\) 12.2462i 0.931062i −0.885032 0.465531i \(-0.845863\pi\)
0.885032 0.465531i \(-0.154137\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 25.6155 1.92538
\(178\) 0 0
\(179\) −13.4384 −1.00444 −0.502218 0.864741i \(-0.667483\pi\)
−0.502218 + 0.864741i \(0.667483\pi\)
\(180\) 0 0
\(181\) 8.24621 0.612936 0.306468 0.951881i \(-0.400853\pi\)
0.306468 + 0.951881i \(0.400853\pi\)
\(182\) 0 0
\(183\) 28.4924i 2.10622i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 1.75379 0.128250
\(188\) 0 0
\(189\) 6.56155i 0.477283i
\(190\) 0 0
\(191\) −5.75379 −0.416330 −0.208165 0.978094i \(-0.566749\pi\)
−0.208165 + 0.978094i \(0.566749\pi\)
\(192\) 0 0
\(193\) −17.6155 −1.26799 −0.633997 0.773336i \(-0.718587\pi\)
−0.633997 + 0.773336i \(0.718587\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.43845 −0.387473 −0.193737 0.981054i \(-0.562061\pi\)
−0.193737 + 0.981054i \(0.562061\pi\)
\(198\) 0 0
\(199\) −2.24621 −0.159230 −0.0796148 0.996826i \(-0.525369\pi\)
−0.0796148 + 0.996826i \(0.525369\pi\)
\(200\) 0 0
\(201\) 2.24621i 0.158436i
\(202\) 0 0
\(203\) 14.2462 0.999888
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 18.2462i 1.26820i
\(208\) 0 0
\(209\) −6.24621 −0.432059
\(210\) 0 0
\(211\) 15.0540 1.03636 0.518179 0.855272i \(-0.326610\pi\)
0.518179 + 0.855272i \(0.326610\pi\)
\(212\) 0 0
\(213\) 14.5616 0.997741
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 14.2462i 0.967096i
\(218\) 0 0
\(219\) 39.3693i 2.66033i
\(220\) 0 0
\(221\) −2.00000 0.315342i −0.134535 0.0212122i
\(222\) 0 0
\(223\) −18.1771 −1.21723 −0.608614 0.793467i \(-0.708274\pi\)
−0.608614 + 0.793467i \(0.708274\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 21.3693 1.41833 0.709166 0.705042i \(-0.249072\pi\)
0.709166 + 0.705042i \(0.249072\pi\)
\(228\) 0 0
\(229\) 8.31534i 0.549493i 0.961517 + 0.274747i \(0.0885940\pi\)
−0.961517 + 0.274747i \(0.911406\pi\)
\(230\) 0 0
\(231\) −36.4924 −2.40103
\(232\) 0 0
\(233\) 0.561553i 0.0367885i 0.999831 + 0.0183943i \(0.00585541\pi\)
−0.999831 + 0.0183943i \(0.994145\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 7.36932i 0.478689i
\(238\) 0 0
\(239\) 19.9309i 1.28922i 0.764511 + 0.644610i \(0.222980\pi\)
−0.764511 + 0.644610i \(0.777020\pi\)
\(240\) 0 0
\(241\) 18.8769i 1.21597i 0.793949 + 0.607984i \(0.208021\pi\)
−0.793949 + 0.607984i \(0.791979\pi\)
\(242\) 0 0
\(243\) 22.2462i 1.42710i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 7.12311 + 1.12311i 0.453232 + 0.0714615i
\(248\) 0 0
\(249\) 21.1231i 1.33862i
\(250\) 0 0
\(251\) −8.49242 −0.536037 −0.268018 0.963414i \(-0.586369\pi\)
−0.268018 + 0.963414i \(0.586369\pi\)
\(252\) 0 0
\(253\) −16.0000 −1.00591
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.9309i 1.74228i 0.491035 + 0.871140i \(0.336619\pi\)
−0.491035 + 0.871140i \(0.663381\pi\)
\(258\) 0 0
\(259\) 24.8078 1.54148
\(260\) 0 0
\(261\) 11.1231 0.688503
\(262\) 0 0
\(263\) 28.4924i 1.75692i 0.477818 + 0.878459i \(0.341428\pi\)
−0.477818 + 0.878459i \(0.658572\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 13.1231 0.803121
\(268\) 0 0
\(269\) −19.1231 −1.16596 −0.582978 0.812488i \(-0.698113\pi\)
−0.582978 + 0.812488i \(0.698113\pi\)
\(270\) 0 0
\(271\) 2.31534i 0.140647i −0.997524 0.0703235i \(-0.977597\pi\)
0.997524 0.0703235i \(-0.0224032\pi\)
\(272\) 0 0
\(273\) 41.6155 + 6.56155i 2.51869 + 0.397123i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 17.3693i 1.04362i 0.853061 + 0.521811i \(0.174743\pi\)
−0.853061 + 0.521811i \(0.825257\pi\)
\(278\) 0 0
\(279\) 11.1231i 0.665923i
\(280\) 0 0
\(281\) 15.3693i 0.916857i 0.888731 + 0.458428i \(0.151587\pi\)
−0.888731 + 0.458428i \(0.848413\pi\)
\(282\) 0 0
\(283\) 12.0000i 0.713326i 0.934233 + 0.356663i \(0.116086\pi\)
−0.934233 + 0.356663i \(0.883914\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 36.4924i 2.15408i
\(288\) 0 0
\(289\) 16.6847 0.981450
\(290\) 0 0
\(291\) 26.2462i 1.53858i
\(292\) 0 0
\(293\) −0.315342 −0.0184225 −0.00921123 0.999958i \(-0.502932\pi\)
−0.00921123 + 0.999958i \(0.502932\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −4.49242 −0.260677
\(298\) 0 0
\(299\) 18.2462 + 2.87689i 1.05521 + 0.166375i
\(300\) 0 0
\(301\) 24.8078i 1.42990i
\(302\) 0 0
\(303\) 34.2462i 1.96739i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −18.0000 −1.02731 −0.513657 0.857996i \(-0.671710\pi\)
−0.513657 + 0.857996i \(0.671710\pi\)
\(308\) 0 0
\(309\) −13.1231 −0.746547
\(310\) 0 0
\(311\) 10.8769 0.616772 0.308386 0.951261i \(-0.400211\pi\)
0.308386 + 0.951261i \(0.400211\pi\)
\(312\) 0 0
\(313\) 8.56155i 0.483928i 0.970285 + 0.241964i \(0.0777915\pi\)
−0.970285 + 0.241964i \(0.922208\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6.87689 −0.386245 −0.193122 0.981175i \(-0.561861\pi\)
−0.193122 + 0.981175i \(0.561861\pi\)
\(318\) 0 0
\(319\) 9.75379i 0.546107i
\(320\) 0 0
\(321\) 10.2462 0.571888
\(322\) 0 0
\(323\) 1.12311 0.0624913
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −40.1771 −2.22180
\(328\) 0 0
\(329\) −15.6847 −0.864723
\(330\) 0 0
\(331\) 16.2462i 0.892973i 0.894790 + 0.446486i \(0.147325\pi\)
−0.894790 + 0.446486i \(0.852675\pi\)
\(332\) 0 0
\(333\) 19.3693 1.06143
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 13.6847i 0.745451i −0.927942 0.372725i \(-0.878423\pi\)
0.927942 0.372725i \(-0.121577\pi\)
\(338\) 0 0
\(339\) 25.6155 1.39124
\(340\) 0 0
\(341\) 9.75379 0.528197
\(342\) 0 0
\(343\) −31.0540 −1.67676
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.56155i 0.137511i −0.997634 0.0687557i \(-0.978097\pi\)
0.997634 0.0687557i \(-0.0219029\pi\)
\(348\) 0 0
\(349\) 17.9309i 0.959817i 0.877318 + 0.479909i \(0.159330\pi\)
−0.877318 + 0.479909i \(0.840670\pi\)
\(350\) 0 0
\(351\) 5.12311 + 0.807764i 0.273451 + 0.0431153i
\(352\) 0 0
\(353\) −33.6155 −1.78917 −0.894587 0.446894i \(-0.852530\pi\)
−0.894587 + 0.446894i \(0.852530\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 6.56155 0.347274
\(358\) 0 0
\(359\) 4.87689i 0.257393i −0.991684 0.128696i \(-0.958921\pi\)
0.991684 0.128696i \(-0.0410792\pi\)
\(360\) 0 0
\(361\) 15.0000 0.789474
\(362\) 0 0
\(363\) 3.19224i 0.167549i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.49242i 0.234503i 0.993102 + 0.117251i \(0.0374083\pi\)
−0.993102 + 0.117251i \(0.962592\pi\)
\(368\) 0 0
\(369\) 28.4924i 1.48326i
\(370\) 0 0
\(371\) 19.3693i 1.00560i
\(372\) 0 0
\(373\) 10.6307i 0.550436i −0.961382 0.275218i \(-0.911250\pi\)
0.961382 0.275218i \(-0.0887500\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.75379 + 11.1231i −0.0903247 + 0.572869i
\(378\) 0 0
\(379\) 26.0000i 1.33553i 0.744372 + 0.667765i \(0.232749\pi\)
−0.744372 + 0.667765i \(0.767251\pi\)
\(380\) 0 0
\(381\) 33.6155 1.72218
\(382\) 0 0
\(383\) −9.19224 −0.469701 −0.234851 0.972031i \(-0.575460\pi\)
−0.234851 + 0.972031i \(0.575460\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 19.3693i 0.984598i
\(388\) 0 0
\(389\) 28.2462 1.43214 0.716070 0.698029i \(-0.245939\pi\)
0.716070 + 0.698029i \(0.245939\pi\)
\(390\) 0 0
\(391\) 2.87689 0.145491
\(392\) 0 0
\(393\) 40.1771i 2.02667i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.12311 0.457876 0.228938 0.973441i \(-0.426475\pi\)
0.228938 + 0.973441i \(0.426475\pi\)
\(398\) 0 0
\(399\) −23.3693 −1.16993
\(400\) 0 0
\(401\) 7.36932i 0.368006i −0.982926 0.184003i \(-0.941094\pi\)
0.982926 0.184003i \(-0.0589056\pi\)
\(402\) 0 0
\(403\) −11.1231 1.75379i −0.554081 0.0873624i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.9848i 0.841908i
\(408\) 0 0
\(409\) 0.630683i 0.0311853i 0.999878 + 0.0155926i \(0.00496349\pi\)
−0.999878 + 0.0155926i \(0.995037\pi\)
\(410\) 0 0
\(411\) 13.1231i 0.647315i
\(412\) 0 0
\(413\) 45.6155i 2.24459i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 32.8078i 1.60660i
\(418\) 0 0
\(419\) 34.5616 1.68844 0.844221 0.535995i \(-0.180063\pi\)
0.844221 + 0.535995i \(0.180063\pi\)
\(420\) 0 0
\(421\) 3.19224i 0.155580i 0.996970 + 0.0777900i \(0.0247864\pi\)
−0.996970 + 0.0777900i \(0.975214\pi\)
\(422\) 0 0
\(423\) −12.2462 −0.595431
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −50.7386 −2.45541
\(428\) 0 0
\(429\) 4.49242 28.4924i 0.216896 1.37563i
\(430\) 0 0
\(431\) 24.4233i 1.17643i −0.808705 0.588214i \(-0.799831\pi\)
0.808705 0.588214i \(-0.200169\pi\)
\(432\) 0 0
\(433\) 21.6847i 1.04210i 0.853527 + 0.521049i \(0.174459\pi\)
−0.853527 + 0.521049i \(0.825541\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.2462 −0.490143
\(438\) 0 0
\(439\) −19.8617 −0.947949 −0.473975 0.880539i \(-0.657181\pi\)
−0.473975 + 0.880539i \(0.657181\pi\)
\(440\) 0 0
\(441\) −49.1771 −2.34177
\(442\) 0 0
\(443\) 36.1771i 1.71882i 0.511283 + 0.859412i \(0.329170\pi\)
−0.511283 + 0.859412i \(0.670830\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −2.87689 −0.136072
\(448\) 0 0
\(449\) 16.0000i 0.755087i 0.925992 + 0.377543i \(0.123231\pi\)
−0.925992 + 0.377543i \(0.876769\pi\)
\(450\) 0 0
\(451\) −24.9848 −1.17649
\(452\) 0 0
\(453\) −19.0540 −0.895234
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −25.6155 −1.19824 −0.599122 0.800658i \(-0.704484\pi\)
−0.599122 + 0.800658i \(0.704484\pi\)
\(458\) 0 0
\(459\) 0.807764 0.0377032
\(460\) 0 0
\(461\) 36.1771i 1.68493i 0.538747 + 0.842467i \(0.318898\pi\)
−0.538747 + 0.842467i \(0.681102\pi\)
\(462\) 0 0
\(463\) 39.6155 1.84109 0.920545 0.390637i \(-0.127745\pi\)
0.920545 + 0.390637i \(0.127745\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.4924i 0.763178i 0.924332 + 0.381589i \(0.124623\pi\)
−0.924332 + 0.381589i \(0.875377\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) 10.8769 0.501181
\(472\) 0 0
\(473\) −16.9848 −0.780964
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 15.1231i 0.692439i
\(478\) 0 0
\(479\) 9.19224i 0.420004i −0.977701 0.210002i \(-0.932653\pi\)
0.977701 0.210002i \(-0.0673470\pi\)
\(480\) 0 0
\(481\) −3.05398 + 19.3693i −0.139249 + 0.883165i
\(482\) 0 0
\(483\) −59.8617 −2.72380
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −41.8617 −1.89694 −0.948468 0.316872i \(-0.897367\pi\)
−0.948468 + 0.316872i \(0.897367\pi\)
\(488\) 0 0
\(489\) 9.61553i 0.434829i
\(490\) 0 0
\(491\) 11.1922 0.505099 0.252549 0.967584i \(-0.418731\pi\)
0.252549 + 0.967584i \(0.418731\pi\)
\(492\) 0 0
\(493\) 1.75379i 0.0789867i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 25.9309i 1.16316i
\(498\) 0 0
\(499\) 16.8769i 0.755514i −0.925905 0.377757i \(-0.876696\pi\)
0.925905 0.377757i \(-0.123304\pi\)
\(500\) 0 0
\(501\) 38.7386i 1.73071i
\(502\) 0 0
\(503\) 15.3693i 0.685284i −0.939466 0.342642i \(-0.888678\pi\)
0.939466 0.342642i \(-0.111322\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −10.2462 + 31.6847i −0.455050 + 1.40717i
\(508\) 0 0
\(509\) 27.3693i 1.21312i 0.795036 + 0.606562i \(0.207452\pi\)
−0.795036 + 0.606562i \(0.792548\pi\)
\(510\) 0 0
\(511\) −70.1080 −3.10139
\(512\) 0 0
\(513\) −2.87689 −0.127018
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 10.7386i 0.472285i
\(518\) 0 0
\(519\) −31.3693 −1.37696
\(520\) 0 0
\(521\) −27.9309 −1.22367 −0.611837 0.790984i \(-0.709569\pi\)
−0.611837 + 0.790984i \(0.709569\pi\)
\(522\) 0 0
\(523\) 30.2462i 1.32257i −0.750133 0.661287i \(-0.770010\pi\)
0.750133 0.661287i \(-0.229990\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.75379 −0.0763962
\(528\) 0 0
\(529\) −3.24621 −0.141140
\(530\) 0 0
\(531\) 35.6155i 1.54558i
\(532\) 0 0
\(533\) 28.4924 + 4.49242i 1.23414 + 0.194588i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 34.4233i 1.48547i
\(538\) 0 0
\(539\) 43.1231i 1.85744i
\(540\) 0 0
\(541\) 20.1771i 0.867480i 0.901038 + 0.433740i \(0.142806\pi\)
−0.901038 + 0.433740i \(0.857194\pi\)
\(542\) 0 0
\(543\) 21.1231i 0.906479i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 3.19224i 0.136490i −0.997669 0.0682451i \(-0.978260\pi\)
0.997669 0.0682451i \(-0.0217400\pi\)
\(548\) 0 0
\(549\) −39.6155 −1.69075
\(550\) 0 0
\(551\) 6.24621i 0.266098i
\(552\) 0 0
\(553\) −13.1231 −0.558051
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 9.93087 0.420784 0.210392 0.977617i \(-0.432526\pi\)
0.210392 + 0.977617i \(0.432526\pi\)
\(558\) 0 0
\(559\) 19.3693 + 3.05398i 0.819235 + 0.129169i
\(560\) 0 0
\(561\) 4.49242i 0.189670i
\(562\) 0 0
\(563\) 1.93087i 0.0813765i 0.999172 + 0.0406882i \(0.0129550\pi\)
−0.999172 + 0.0406882i \(0.987045\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 31.9309 1.34097
\(568\) 0 0
\(569\) 22.8078 0.956151 0.478076 0.878319i \(-0.341334\pi\)
0.478076 + 0.878319i \(0.341334\pi\)
\(570\) 0 0
\(571\) 23.0540 0.964779 0.482389 0.875957i \(-0.339769\pi\)
0.482389 + 0.875957i \(0.339769\pi\)
\(572\) 0 0
\(573\) 14.7386i 0.615715i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −27.8617 −1.15990 −0.579950 0.814652i \(-0.696928\pi\)
−0.579950 + 0.814652i \(0.696928\pi\)
\(578\) 0 0
\(579\) 45.1231i 1.87525i
\(580\) 0 0
\(581\) 37.6155 1.56056
\(582\) 0 0
\(583\) 13.2614 0.549230
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 42.4924 1.75385 0.876925 0.480627i \(-0.159591\pi\)
0.876925 + 0.480627i \(0.159591\pi\)
\(588\) 0 0
\(589\) 6.24621 0.257371
\(590\) 0 0
\(591\) 13.9309i 0.573039i
\(592\) 0 0
\(593\) −42.2462 −1.73484 −0.867422 0.497573i \(-0.834225\pi\)
−0.867422 + 0.497573i \(0.834225\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5.75379i 0.235487i
\(598\) 0 0
\(599\) −16.6307 −0.679511 −0.339756 0.940514i \(-0.610344\pi\)
−0.339756 + 0.940514i \(0.610344\pi\)
\(600\) 0 0
\(601\) 1.19224 0.0486323 0.0243162 0.999704i \(-0.492259\pi\)
0.0243162 + 0.999704i \(0.492259\pi\)
\(602\) 0 0
\(603\) −3.12311 −0.127183
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 33.6155i 1.36441i −0.731160 0.682206i \(-0.761021\pi\)
0.731160 0.682206i \(-0.238979\pi\)
\(608\) 0 0
\(609\) 36.4924i 1.47875i
\(610\) 0 0
\(611\) 1.93087 12.2462i 0.0781146 0.495429i
\(612\) 0 0
\(613\) −43.3693 −1.75167 −0.875835 0.482610i \(-0.839689\pi\)
−0.875835 + 0.482610i \(0.839689\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 18.2462 0.734565 0.367282 0.930109i \(-0.380288\pi\)
0.367282 + 0.930109i \(0.380288\pi\)
\(618\) 0 0
\(619\) 23.6155i 0.949188i −0.880205 0.474594i \(-0.842595\pi\)
0.880205 0.474594i \(-0.157405\pi\)
\(620\) 0 0
\(621\) −7.36932 −0.295720
\(622\) 0 0
\(623\) 23.3693i 0.936272i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 16.0000i 0.638978i
\(628\) 0 0
\(629\) 3.05398i 0.121770i
\(630\) 0 0
\(631\) 7.43845i 0.296120i −0.988978 0.148060i \(-0.952697\pi\)
0.988978 0.148060i \(-0.0473029\pi\)
\(632\) 0 0
\(633\) 38.5616i 1.53268i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 7.75379 49.1771i 0.307216 1.94847i
\(638\) 0 0
\(639\) 20.2462i 0.800928i
\(640\) 0 0
\(641\) 20.2462 0.799677 0.399839 0.916586i \(-0.369066\pi\)
0.399839 + 0.916586i \(0.369066\pi\)
\(642\) 0 0
\(643\) −16.8769 −0.665560 −0.332780 0.943005i \(-0.607987\pi\)
−0.332780 + 0.943005i \(0.607987\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.12311i 0.201410i 0.994916 + 0.100705i \(0.0321098\pi\)
−0.994916 + 0.100705i \(0.967890\pi\)
\(648\) 0 0
\(649\) −31.2311 −1.22593
\(650\) 0 0
\(651\) 36.4924 1.43025
\(652\) 0 0
\(653\) 27.6155i 1.08068i −0.841447 0.540340i \(-0.818296\pi\)
0.841447 0.540340i \(-0.181704\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −54.7386 −2.13556
\(658\) 0 0
\(659\) 42.7386 1.66486 0.832430 0.554130i \(-0.186949\pi\)
0.832430 + 0.554130i \(0.186949\pi\)
\(660\) 0 0
\(661\) 41.1231i 1.59950i −0.600331 0.799752i \(-0.704964\pi\)
0.600331 0.799752i \(-0.295036\pi\)
\(662\) 0 0
\(663\) −0.807764 + 5.12311i −0.0313710 + 0.198965i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 16.0000i 0.619522i
\(668\) 0 0
\(669\) 46.5616i 1.80017i
\(670\) 0 0
\(671\) 34.7386i 1.34107i
\(672\) 0 0
\(673\) 31.3002i 1.20653i 0.797539 + 0.603267i \(0.206135\pi\)
−0.797539 + 0.603267i \(0.793865\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 20.7386i 0.797050i −0.917157 0.398525i \(-0.869522\pi\)
0.917157 0.398525i \(-0.130478\pi\)
\(678\) 0 0
\(679\) −46.7386 −1.79366
\(680\) 0 0
\(681\) 54.7386i 2.09759i
\(682\) 0 0
\(683\) 4.24621 0.162477 0.0812384 0.996695i \(-0.474112\pi\)
0.0812384 + 0.996695i \(0.474112\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 21.3002 0.812653
\(688\) 0 0
\(689\) −15.1231 2.38447i −0.576144 0.0908411i
\(690\) 0 0
\(691\) 29.8617i 1.13599i −0.823031 0.567997i \(-0.807718\pi\)
0.823031 0.567997i \(-0.192282\pi\)
\(692\) 0 0
\(693\) 50.7386i 1.92740i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 4.49242 0.170163
\(698\) 0 0
\(699\) 1.43845 0.0544071
\(700\) 0 0
\(701\) −45.2311 −1.70835 −0.854177 0.519983i \(-0.825938\pi\)
−0.854177 + 0.519983i \(0.825938\pi\)
\(702\) 0 0
\(703\) 10.8769i 0.410230i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −60.9848 −2.29357
\(708\) 0 0
\(709\) 1.12311i 0.0421791i −0.999778 0.0210896i \(-0.993286\pi\)
0.999778 0.0210896i \(-0.00671351\pi\)
\(710\) 0 0
\(711\) −10.2462 −0.384263
\(712\) 0 0
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 51.0540 1.90665
\(718\) 0 0
\(719\) 16.0000 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(720\) 0 0
\(721\) 23.3693i 0.870319i
\(722\) 0 0
\(723\) 48.3542 1.79831
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 43.2311i 1.60335i 0.597759 + 0.801676i \(0.296058\pi\)
−0.597759 + 0.801676i \(0.703942\pi\)
\(728\) 0 0
\(729\) 35.9848 1.33277
\(730\) 0 0
\(731\) 3.05398 0.112955
\(732\) 0 0
\(733\) −49.3002 −1.82094 −0.910472 0.413571i \(-0.864281\pi\)
−0.910472 + 0.413571i \(0.864281\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.73863i 0.100879i
\(738\) 0 0
\(739\) 41.8617i 1.53991i −0.638099 0.769954i \(-0.720279\pi\)
0.638099 0.769954i \(-0.279721\pi\)
\(740\) 0 0
\(741\) 2.87689 18.2462i 0.105685 0.670291i
\(742\) 0 0
\(743\) −45.0540 −1.65287 −0.826435 0.563032i \(-0.809635\pi\)
−0.826435 + 0.563032i \(0.809635\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 29.3693 1.07457
\(748\) 0 0
\(749\) 18.2462i 0.666702i
\(750\) 0 0
\(751\) −36.4924 −1.33163 −0.665814 0.746118i \(-0.731915\pi\)
−0.665814 + 0.746118i \(0.731915\pi\)
\(752\) 0 0
\(753\) 21.7538i 0.792752i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 22.0000i 0.799604i −0.916602 0.399802i \(-0.869079\pi\)
0.916602 0.399802i \(-0.130921\pi\)
\(758\) 0 0
\(759\) 40.9848i 1.48766i
\(760\) 0 0
\(761\) 53.1231i 1.92571i −0.270017 0.962856i \(-0.587029\pi\)
0.270017 0.962856i \(-0.412971\pi\)
\(762\) 0 0
\(763\) 71.5464i 2.59015i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 35.6155 + 5.61553i 1.28600 + 0.202765i
\(768\) 0 0
\(769\) 4.49242i 0.162001i −0.996714 0.0810004i \(-0.974188\pi\)
0.996714 0.0810004i \(-0.0258115\pi\)
\(770\) 0 0
\(771\) 71.5464 2.57668
\(772\) 0 0
\(773\) 23.0540 0.829194 0.414597 0.910005i \(-0.363923\pi\)
0.414597 + 0.910005i \(0.363923\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 63.5464i 2.27971i
\(778\) 0 0
\(779\) −16.0000 −0.573259
\(780\) 0 0
\(781\) −17.7538 −0.635281
\(782\) 0 0
\(783\) 4.49242i 0.160546i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 21.3693 0.761734 0.380867 0.924630i \(-0.375626\pi\)
0.380867 + 0.924630i \(0.375626\pi\)
\(788\) 0 0
\(789\) 72.9848 2.59833
\(790\) 0 0
\(791\) 45.6155i 1.62190i
\(792\) 0 0
\(793\) 6.24621 39.6155i 0.221809 1.40679i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.24621i 0.150409i 0.997168 + 0.0752043i \(0.0239609\pi\)
−0.997168 + 0.0752043i \(0.976039\pi\)
\(798\) 0 0
\(799\) 1.93087i 0.0683093i
\(800\) 0 0
\(801\) 18.2462i 0.644698i
\(802\) 0 0
\(803\) 48.0000i 1.69388i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 48.9848i 1.72435i
\(808\) 0 0
\(809\) −30.3153 −1.06583 −0.532915 0.846169i \(-0.678904\pi\)
−0.532915 + 0.846169i \(0.678904\pi\)
\(810\) 0 0
\(811\) 1.36932i 0.0480832i −0.999711 0.0240416i \(-0.992347\pi\)
0.999711 0.0240416i \(-0.00765342\pi\)
\(812\) 0 0
\(813\) −5.93087 −0.208005
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −10.8769 −0.380534
\(818\) 0 0
\(819\) 9.12311 57.8617i 0.318787 2.02185i
\(820\) 0 0
\(821\) 27.5464i 0.961376i −0.876892 0.480688i \(-0.840387\pi\)
0.876892 0.480688i \(-0.159613\pi\)
\(822\) 0 0
\(823\) 40.3542i 1.40666i 0.710865 + 0.703329i \(0.248304\pi\)
−0.710865 + 0.703329i \(0.751696\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 22.0000 0.765015 0.382507 0.923952i \(-0.375061\pi\)
0.382507 + 0.923952i \(0.375061\pi\)
\(828\) 0 0
\(829\) 15.1231 0.525247 0.262624 0.964898i \(-0.415412\pi\)
0.262624 + 0.964898i \(0.415412\pi\)
\(830\) 0 0
\(831\) 44.4924 1.54343
\(832\) 0 0
\(833\) 7.75379i 0.268653i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 4.49242 0.155281
\(838\) 0 0
\(839\) 13.8617i 0.478560i −0.970951 0.239280i \(-0.923089\pi\)
0.970951 0.239280i \(-0.0769114\pi\)
\(840\) 0 0
\(841\) −19.2462 −0.663662
\(842\) 0 0
\(843\) 39.3693 1.35595
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −5.68466 −0.195327
\(848\) 0 0
\(849\) 30.7386 1.05495
\(850\) 0 0
\(851\) 27.8617i 0.955088i
\(852\) 0 0
\(853\) −7.68466 −0.263118 −0.131559 0.991308i \(-0.541998\pi\)
−0.131559 + 0.991308i \(0.541998\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 17.5076i 0.598047i 0.954246 + 0.299024i \(0.0966610\pi\)
−0.954246 + 0.299024i \(0.903339\pi\)
\(858\) 0 0
\(859\) −6.24621 −0.213118 −0.106559 0.994306i \(-0.533983\pi\)
−0.106559 + 0.994306i \(0.533983\pi\)
\(860\) 0 0
\(861\) −93.4773 −3.18570
\(862\) 0 0
\(863\) 10.9460 0.372607 0.186304 0.982492i \(-0.440349\pi\)
0.186304 + 0.982492i \(0.440349\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 42.7386i 1.45148i
\(868\) 0 0
\(869\) 8.98485i 0.304790i
\(870\) 0 0
\(871\) 0.492423 3.12311i 0.0166851 0.105822i
\(872\) 0 0
\(873\) −36.4924 −1.23508
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −54.4233 −1.83774 −0.918872 0.394556i \(-0.870898\pi\)
−0.918872 + 0.394556i \(0.870898\pi\)
\(878\) 0 0
\(879\) 0.807764i 0.0272452i
\(880\) 0 0
\(881\) 43.7926 1.47541 0.737705 0.675123i \(-0.235909\pi\)
0.737705 + 0.675123i \(0.235909\pi\)
\(882\) 0 0
\(883\) 11.1922i 0.376649i −0.982107 0.188324i \(-0.939694\pi\)
0.982107 0.188324i \(-0.0603056\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 54.7386i 1.83794i 0.394323 + 0.918972i \(0.370979\pi\)
−0.394323 + 0.918972i \(0.629021\pi\)
\(888\) 0 0
\(889\) 59.8617i 2.00770i
\(890\) 0 0
\(891\) 21.8617i 0.732396i
\(892\) 0 0
\(893\) 6.87689i 0.230126i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 7.36932 46.7386i 0.246054 1.56056i
\(898\) 0 0
\(899\) 9.75379i 0.325307i
\(900\) 0 0
\(901\) −2.38447 −0.0794383
\(902\) 0 0
\(903\) −63.5464 −2.11469
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 26.5616i 0.881962i 0.897516 + 0.440981i \(0.145369\pi\)
−0.897516 + 0.440981i \(0.854631\pi\)
\(908\) 0 0
\(909\) −47.6155 −1.57931
\(910\) 0 0
\(911\) 42.2462 1.39968 0.699840 0.714300i \(-0.253255\pi\)
0.699840 + 0.714300i \(0.253255\pi\)
\(912\) 0 0
\(913\) 25.7538i 0.852326i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 71.5464 2.36267
\(918\) 0 0
\(919\) −18.2462 −0.601887 −0.300943 0.953642i \(-0.597302\pi\)
−0.300943 + 0.953642i \(0.597302\pi\)
\(920\) 0 0
\(921\) 46.1080i 1.51931i
\(922\) 0 0
\(923\) 20.2462 + 3.19224i 0.666412 + 0.105074i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 18.2462i 0.599284i
\(928\) 0 0
\(929\) 30.7386i 1.00850i 0.863557 + 0.504251i \(0.168231\pi\)
−0.863557 + 0.504251i \(0.831769\pi\)
\(930\) 0 0
\(931\) 27.6155i 0.905062i
\(932\) 0 0
\(933\) 27.8617i 0.912152i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 36.2462i 1.18411i −0.805897 0.592056i \(-0.798316\pi\)
0.805897 0.592056i \(-0.201684\pi\)
\(938\) 0 0
\(939\) 21.9309 0.715687
\(940\) 0 0
\(941\) 27.5464i 0.897987i 0.893535 + 0.448993i \(0.148217\pi\)
−0.893535 + 0.448993i \(0.851783\pi\)
\(942\) 0 0
\(943\) −40.9848 −1.33465
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −9.36932 −0.304462 −0.152231 0.988345i \(-0.548646\pi\)
−0.152231 + 0.988345i \(0.548646\pi\)
\(948\) 0 0
\(949\) 8.63068 54.7386i 0.280164 1.77689i
\(950\) 0 0
\(951\) 17.6155i 0.571223i
\(952\) 0 0
\(953\) 17.0540i 0.552432i −0.961096 0.276216i \(-0.910919\pi\)
0.961096 0.276216i \(-0.0890806\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) −24.9848 −0.807645
\(958\) 0 0
\(959\) 23.3693 0.754635
\(960\) 0 0
\(961\) 21.2462 0.685362
\(962\) 0 0
\(963\) 14.2462i 0.459078i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 11.4384 0.367836 0.183918 0.982942i \(-0.441122\pi\)
0.183918 + 0.982942i \(0.441122\pi\)
\(968\) 0 0
\(969\) 2.87689i 0.0924192i
\(970\) 0 0
\(971\) −11.8229 −0.379416 −0.189708 0.981841i \(-0.560754\pi\)
−0.189708 + 0.981841i \(0.560754\pi\)
\(972\) 0 0
\(973\) 58.4233 1.87296
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −35.2311 −1.12714 −0.563571 0.826068i \(-0.690573\pi\)
−0.563571 + 0.826068i \(0.690573\pi\)
\(978\) 0 0
\(979\) −16.0000 −0.511362
\(980\) 0 0
\(981\) 55.8617i 1.78353i
\(982\) 0 0
\(983\) 30.8078 0.982615 0.491308 0.870986i \(-0.336519\pi\)
0.491308 + 0.870986i \(0.336519\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 40.1771i 1.27885i
\(988\) 0 0
\(989\) −27.8617 −0.885952
\(990\) 0 0
\(991\) 33.6155 1.06783 0.533916 0.845537i \(-0.320720\pi\)
0.533916 + 0.845537i \(0.320720\pi\)
\(992\) 0 0
\(993\) 41.6155 1.32063
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 39.6155i 1.25464i −0.778763 0.627318i \(-0.784153\pi\)
0.778763 0.627318i \(-0.215847\pi\)
\(998\) 0 0
\(999\) 7.82292i 0.247506i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2600.2.f.a.649.1 4
5.2 odd 4 104.2.f.a.25.1 4
5.3 odd 4 2600.2.k.a.2001.4 4
5.4 even 2 2600.2.f.b.649.4 4
13.12 even 2 2600.2.f.b.649.1 4
15.2 even 4 936.2.c.d.649.4 4
20.7 even 4 208.2.f.b.129.3 4
40.27 even 4 832.2.f.f.129.2 4
40.37 odd 4 832.2.f.i.129.4 4
60.47 odd 4 1872.2.c.j.1585.4 4
65.2 even 12 1352.2.i.g.529.2 4
65.7 even 12 1352.2.i.h.1329.2 4
65.12 odd 4 104.2.f.a.25.2 yes 4
65.17 odd 12 1352.2.o.e.361.4 8
65.22 odd 12 1352.2.o.e.361.3 8
65.32 even 12 1352.2.i.g.1329.2 4
65.37 even 12 1352.2.i.h.529.2 4
65.38 odd 4 2600.2.k.a.2001.3 4
65.42 odd 12 1352.2.o.e.1161.3 8
65.47 even 4 1352.2.a.e.1.1 2
65.57 even 4 1352.2.a.d.1.1 2
65.62 odd 12 1352.2.o.e.1161.4 8
65.64 even 2 inner 2600.2.f.a.649.4 4
195.77 even 4 936.2.c.d.649.1 4
260.47 odd 4 2704.2.a.t.1.2 2
260.187 odd 4 2704.2.a.s.1.2 2
260.207 even 4 208.2.f.b.129.4 4
520.77 odd 4 832.2.f.i.129.3 4
520.467 even 4 832.2.f.f.129.1 4
780.467 odd 4 1872.2.c.j.1585.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.2.f.a.25.1 4 5.2 odd 4
104.2.f.a.25.2 yes 4 65.12 odd 4
208.2.f.b.129.3 4 20.7 even 4
208.2.f.b.129.4 4 260.207 even 4
832.2.f.f.129.1 4 520.467 even 4
832.2.f.f.129.2 4 40.27 even 4
832.2.f.i.129.3 4 520.77 odd 4
832.2.f.i.129.4 4 40.37 odd 4
936.2.c.d.649.1 4 195.77 even 4
936.2.c.d.649.4 4 15.2 even 4
1352.2.a.d.1.1 2 65.57 even 4
1352.2.a.e.1.1 2 65.47 even 4
1352.2.i.g.529.2 4 65.2 even 12
1352.2.i.g.1329.2 4 65.32 even 12
1352.2.i.h.529.2 4 65.37 even 12
1352.2.i.h.1329.2 4 65.7 even 12
1352.2.o.e.361.3 8 65.22 odd 12
1352.2.o.e.361.4 8 65.17 odd 12
1352.2.o.e.1161.3 8 65.42 odd 12
1352.2.o.e.1161.4 8 65.62 odd 12
1872.2.c.j.1585.1 4 780.467 odd 4
1872.2.c.j.1585.4 4 60.47 odd 4
2600.2.f.a.649.1 4 1.1 even 1 trivial
2600.2.f.a.649.4 4 65.64 even 2 inner
2600.2.f.b.649.1 4 13.12 even 2
2600.2.f.b.649.4 4 5.4 even 2
2600.2.k.a.2001.3 4 65.38 odd 4
2600.2.k.a.2001.4 4 5.3 odd 4
2704.2.a.s.1.2 2 260.187 odd 4
2704.2.a.t.1.2 2 260.47 odd 4