L(s) = 1 | − 2.56i·3-s − 4.56·7-s − 3.56·9-s + 3.12i·11-s + (0.561 − 3.56i)13-s − 0.561i·17-s + 2i·19-s + 11.6i·21-s + 5.12i·23-s + 1.43i·27-s − 3.12·29-s − 3.12i·31-s + 8·33-s − 5.43·37-s + (−9.12 − 1.43i)39-s + ⋯ |
L(s) = 1 | − 1.47i·3-s − 1.72·7-s − 1.18·9-s + 0.941i·11-s + (0.155 − 0.987i)13-s − 0.136i·17-s + 0.458i·19-s + 2.54i·21-s + 1.06i·23-s + 0.276i·27-s − 0.579·29-s − 0.560i·31-s + 1.39·33-s − 0.894·37-s + (−1.46 − 0.230i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 - 0.302i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.953 - 0.302i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8046573705\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8046573705\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-0.561 + 3.56i)T \) |
good | 3 | \( 1 + 2.56iT - 3T^{2} \) |
| 7 | \( 1 + 4.56T + 7T^{2} \) |
| 11 | \( 1 - 3.12iT - 11T^{2} \) |
| 17 | \( 1 + 0.561iT - 17T^{2} \) |
| 19 | \( 1 - 2iT - 19T^{2} \) |
| 23 | \( 1 - 5.12iT - 23T^{2} \) |
| 29 | \( 1 + 3.12T + 29T^{2} \) |
| 31 | \( 1 + 3.12iT - 31T^{2} \) |
| 37 | \( 1 + 5.43T + 37T^{2} \) |
| 41 | \( 1 - 8iT - 41T^{2} \) |
| 43 | \( 1 - 5.43iT - 43T^{2} \) |
| 47 | \( 1 - 3.43T + 47T^{2} \) |
| 53 | \( 1 + 4.24iT - 53T^{2} \) |
| 59 | \( 1 - 10iT - 59T^{2} \) |
| 61 | \( 1 - 11.1T + 61T^{2} \) |
| 67 | \( 1 - 0.876T + 67T^{2} \) |
| 71 | \( 1 - 5.68iT - 71T^{2} \) |
| 73 | \( 1 - 15.3T + 73T^{2} \) |
| 79 | \( 1 - 2.87T + 79T^{2} \) |
| 83 | \( 1 + 8.24T + 83T^{2} \) |
| 89 | \( 1 - 5.12iT - 89T^{2} \) |
| 97 | \( 1 - 10.2T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.840943948702352432265089111461, −7.85923112273994063251208173439, −7.36217819014320460134796948639, −6.67798584467323267444568373829, −6.07173253856647655474903920706, −5.32974057763998084254725424915, −3.86497537265539858807967157663, −3.03393134292721245810844775875, −2.13903797390252975914510355764, −0.951815859639121313382064301598,
0.31841013166316998929969633249, 2.42195262904634865033279362704, 3.54894811178749053830617286293, 3.73160269945257836760988190966, 4.83266648377018802074424267658, 5.68472786711422659121344350904, 6.47446162178942725914020610640, 7.08167871366954240189159589361, 8.533618833437418159120353669660, 9.035874086904718129420060510833