Properties

Label 2592.2.s.d.1727.1
Level $2592$
Weight $2$
Character 2592.1727
Analytic conductor $20.697$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2592,2,Mod(863,2592)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2592, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2592.863"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2592.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6972242039\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1727.1
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 2592.1727
Dual form 2592.2.s.d.863.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{5} +(-3.46410 - 2.00000i) q^{7} +(-2.82843 + 4.89898i) q^{11} +(-2.00000 - 3.46410i) q^{13} -4.24264i q^{17} +(2.82843 + 4.89898i) q^{23} +(-1.50000 + 2.59808i) q^{25} +(-1.22474 - 0.707107i) q^{29} +(3.46410 - 2.00000i) q^{31} +5.65685 q^{35} -6.00000 q^{37} +(8.57321 - 4.94975i) q^{41} +(6.92820 + 4.00000i) q^{43} +(2.82843 - 4.89898i) q^{47} +(4.50000 + 7.79423i) q^{49} -4.24264i q^{53} -8.00000i q^{55} +(5.65685 + 9.79796i) q^{59} +(1.00000 - 1.73205i) q^{61} +(4.89898 + 2.82843i) q^{65} +(-6.92820 + 4.00000i) q^{67} +5.65685 q^{71} +(19.5959 - 11.3137i) q^{77} +(3.46410 + 2.00000i) q^{79} +(2.82843 - 4.89898i) q^{83} +(3.00000 + 5.19615i) q^{85} +4.24264i q^{89} +16.0000i q^{91} +(4.00000 - 6.92820i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{13} - 12 q^{25} - 48 q^{37} + 36 q^{49} + 8 q^{61} + 24 q^{85} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.22474 + 0.707107i −0.547723 + 0.316228i −0.748203 0.663470i \(-0.769083\pi\)
0.200480 + 0.979698i \(0.435750\pi\)
\(6\) 0 0
\(7\) −3.46410 2.00000i −1.30931 0.755929i −0.327327 0.944911i \(-0.606148\pi\)
−0.981981 + 0.188982i \(0.939481\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.82843 + 4.89898i −0.852803 + 1.47710i 0.0258656 + 0.999665i \(0.491766\pi\)
−0.878668 + 0.477432i \(0.841568\pi\)
\(12\) 0 0
\(13\) −2.00000 3.46410i −0.554700 0.960769i −0.997927 0.0643593i \(-0.979500\pi\)
0.443227 0.896410i \(-0.353834\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.24264i 1.02899i −0.857493 0.514496i \(-0.827979\pi\)
0.857493 0.514496i \(-0.172021\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843 + 4.89898i 0.589768 + 1.02151i 0.994263 + 0.106967i \(0.0341141\pi\)
−0.404495 + 0.914540i \(0.632553\pi\)
\(24\) 0 0
\(25\) −1.50000 + 2.59808i −0.300000 + 0.519615i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.22474 0.707107i −0.227429 0.131306i 0.381956 0.924180i \(-0.375251\pi\)
−0.609386 + 0.792874i \(0.708584\pi\)
\(30\) 0 0
\(31\) 3.46410 2.00000i 0.622171 0.359211i −0.155543 0.987829i \(-0.549713\pi\)
0.777714 + 0.628619i \(0.216379\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.65685 0.956183
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.57321 4.94975i 1.33891 0.773021i 0.352265 0.935900i \(-0.385412\pi\)
0.986646 + 0.162880i \(0.0520782\pi\)
\(42\) 0 0
\(43\) 6.92820 + 4.00000i 1.05654 + 0.609994i 0.924473 0.381246i \(-0.124505\pi\)
0.132068 + 0.991241i \(0.457838\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.82843 4.89898i 0.412568 0.714590i −0.582601 0.812758i \(-0.697965\pi\)
0.995170 + 0.0981685i \(0.0312984\pi\)
\(48\) 0 0
\(49\) 4.50000 + 7.79423i 0.642857 + 1.11346i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.24264i 0.582772i −0.956606 0.291386i \(-0.905884\pi\)
0.956606 0.291386i \(-0.0941163\pi\)
\(54\) 0 0
\(55\) 8.00000i 1.07872i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.65685 + 9.79796i 0.736460 + 1.27559i 0.954080 + 0.299552i \(0.0968372\pi\)
−0.217620 + 0.976034i \(0.569829\pi\)
\(60\) 0 0
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.89898 + 2.82843i 0.607644 + 0.350823i
\(66\) 0 0
\(67\) −6.92820 + 4.00000i −0.846415 + 0.488678i −0.859440 0.511237i \(-0.829187\pi\)
0.0130248 + 0.999915i \(0.495854\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.65685 0.671345 0.335673 0.941979i \(-0.391036\pi\)
0.335673 + 0.941979i \(0.391036\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 19.5959 11.3137i 2.23316 1.28932i
\(78\) 0 0
\(79\) 3.46410 + 2.00000i 0.389742 + 0.225018i 0.682048 0.731307i \(-0.261089\pi\)
−0.292306 + 0.956325i \(0.594423\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.82843 4.89898i 0.310460 0.537733i −0.668002 0.744160i \(-0.732850\pi\)
0.978462 + 0.206427i \(0.0661835\pi\)
\(84\) 0 0
\(85\) 3.00000 + 5.19615i 0.325396 + 0.563602i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.24264i 0.449719i 0.974391 + 0.224860i \(0.0721923\pi\)
−0.974391 + 0.224860i \(0.927808\pi\)
\(90\) 0 0
\(91\) 16.0000i 1.67726i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.00000 6.92820i 0.406138 0.703452i −0.588315 0.808632i \(-0.700208\pi\)
0.994453 + 0.105180i \(0.0335417\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.9217 + 9.19239i 1.58427 + 0.914677i 0.994226 + 0.107303i \(0.0342215\pi\)
0.590040 + 0.807374i \(0.299112\pi\)
\(102\) 0 0
\(103\) −3.46410 + 2.00000i −0.341328 + 0.197066i −0.660859 0.750510i \(-0.729808\pi\)
0.319531 + 0.947576i \(0.396475\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.22474 + 0.707107i −0.115214 + 0.0665190i −0.556500 0.830848i \(-0.687856\pi\)
0.441285 + 0.897367i \(0.354523\pi\)
\(114\) 0 0
\(115\) −6.92820 4.00000i −0.646058 0.373002i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.48528 + 14.6969i −0.777844 + 1.34727i
\(120\) 0 0
\(121\) −10.5000 18.1865i −0.954545 1.65332i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.3137i 1.01193i
\(126\) 0 0
\(127\) 12.0000i 1.06483i −0.846484 0.532414i \(-0.821285\pi\)
0.846484 0.532414i \(-0.178715\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.65685 + 9.79796i 0.494242 + 0.856052i 0.999978 0.00663646i \(-0.00211246\pi\)
−0.505736 + 0.862688i \(0.668779\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.22474 0.707107i −0.104637 0.0604122i 0.446768 0.894650i \(-0.352575\pi\)
−0.551405 + 0.834238i \(0.685908\pi\)
\(138\) 0 0
\(139\) 6.92820 4.00000i 0.587643 0.339276i −0.176522 0.984297i \(-0.556485\pi\)
0.764165 + 0.645021i \(0.223151\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 22.6274 1.89220
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.22474 0.707107i 0.100335 0.0579284i −0.448993 0.893535i \(-0.648217\pi\)
0.549328 + 0.835607i \(0.314884\pi\)
\(150\) 0 0
\(151\) −17.3205 10.0000i −1.40952 0.813788i −0.414181 0.910195i \(-0.635932\pi\)
−0.995342 + 0.0964061i \(0.969265\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.82843 + 4.89898i −0.227185 + 0.393496i
\(156\) 0 0
\(157\) −1.00000 1.73205i −0.0798087 0.138233i 0.823359 0.567521i \(-0.192098\pi\)
−0.903167 + 0.429289i \(0.858764\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 22.6274i 1.78329i
\(162\) 0 0
\(163\) 24.0000i 1.87983i 0.341415 + 0.939913i \(0.389094\pi\)
−0.341415 + 0.939913i \(0.610906\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.65685 + 9.79796i 0.437741 + 0.758189i 0.997515 0.0704563i \(-0.0224455\pi\)
−0.559774 + 0.828645i \(0.689112\pi\)
\(168\) 0 0
\(169\) −1.50000 + 2.59808i −0.115385 + 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13.4722 7.77817i −1.02427 0.591364i −0.108933 0.994049i \(-0.534744\pi\)
−0.915338 + 0.402685i \(0.868077\pi\)
\(174\) 0 0
\(175\) 10.3923 6.00000i 0.785584 0.453557i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 12.0000 0.891953 0.445976 0.895045i \(-0.352856\pi\)
0.445976 + 0.895045i \(0.352856\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.34847 4.24264i 0.540270 0.311925i
\(186\) 0 0
\(187\) 20.7846 + 12.0000i 1.51992 + 0.877527i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.65685 + 9.79796i −0.409316 + 0.708955i −0.994813 0.101719i \(-0.967566\pi\)
0.585498 + 0.810674i \(0.300899\pi\)
\(192\) 0 0
\(193\) 1.00000 + 1.73205i 0.0719816 + 0.124676i 0.899770 0.436365i \(-0.143734\pi\)
−0.827788 + 0.561041i \(0.810401\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.07107i 0.503793i −0.967754 0.251896i \(-0.918946\pi\)
0.967754 0.251896i \(-0.0810542\pi\)
\(198\) 0 0
\(199\) 20.0000i 1.41776i −0.705328 0.708881i \(-0.749200\pi\)
0.705328 0.708881i \(-0.250800\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.82843 + 4.89898i 0.198517 + 0.343841i
\(204\) 0 0
\(205\) −7.00000 + 12.1244i −0.488901 + 0.846802i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −6.92820 + 4.00000i −0.476957 + 0.275371i −0.719148 0.694857i \(-0.755467\pi\)
0.242190 + 0.970229i \(0.422134\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.3137 −0.771589
\(216\) 0 0
\(217\) −16.0000 −1.08615
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −14.6969 + 8.48528i −0.988623 + 0.570782i
\(222\) 0 0
\(223\) −3.46410 2.00000i −0.231973 0.133930i 0.379509 0.925188i \(-0.376093\pi\)
−0.611482 + 0.791258i \(0.709426\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.82843 + 4.89898i −0.187729 + 0.325157i −0.944493 0.328532i \(-0.893446\pi\)
0.756764 + 0.653689i \(0.226779\pi\)
\(228\) 0 0
\(229\) 14.0000 + 24.2487i 0.925146 + 1.60240i 0.791326 + 0.611394i \(0.209391\pi\)
0.133820 + 0.991006i \(0.457276\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.07107i 0.463241i 0.972806 + 0.231621i \(0.0744028\pi\)
−0.972806 + 0.231621i \(0.925597\pi\)
\(234\) 0 0
\(235\) 8.00000i 0.521862i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.3137 + 19.5959i 0.731823 + 1.26755i 0.956103 + 0.293030i \(0.0946635\pi\)
−0.224280 + 0.974525i \(0.572003\pi\)
\(240\) 0 0
\(241\) −4.00000 + 6.92820i −0.257663 + 0.446285i −0.965615 0.259975i \(-0.916286\pi\)
0.707953 + 0.706260i \(0.249619\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −11.0227 6.36396i −0.704215 0.406579i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.9706 1.07117 0.535586 0.844481i \(-0.320091\pi\)
0.535586 + 0.844481i \(0.320091\pi\)
\(252\) 0 0
\(253\) −32.0000 −2.01182
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20.8207 12.0208i 1.29876 0.749838i 0.318568 0.947900i \(-0.396798\pi\)
0.980189 + 0.198062i \(0.0634648\pi\)
\(258\) 0 0
\(259\) 20.7846 + 12.0000i 1.29149 + 0.745644i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.65685 9.79796i 0.348817 0.604168i −0.637223 0.770680i \(-0.719917\pi\)
0.986040 + 0.166511i \(0.0532503\pi\)
\(264\) 0 0
\(265\) 3.00000 + 5.19615i 0.184289 + 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.2132i 1.29339i 0.762748 + 0.646696i \(0.223850\pi\)
−0.762748 + 0.646696i \(0.776150\pi\)
\(270\) 0 0
\(271\) 12.0000i 0.728948i −0.931214 0.364474i \(-0.881249\pi\)
0.931214 0.364474i \(-0.118751\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.48528 14.6969i −0.511682 0.886259i
\(276\) 0 0
\(277\) 2.00000 3.46410i 0.120168 0.208138i −0.799666 0.600446i \(-0.794990\pi\)
0.919834 + 0.392308i \(0.128323\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.12372 + 3.53553i 0.365311 + 0.210912i 0.671408 0.741088i \(-0.265690\pi\)
−0.306097 + 0.952000i \(0.599023\pi\)
\(282\) 0 0
\(283\) −13.8564 + 8.00000i −0.823678 + 0.475551i −0.851683 0.524057i \(-0.824418\pi\)
0.0280052 + 0.999608i \(0.491084\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −39.5980 −2.33739
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.12372 3.53553i 0.357752 0.206548i −0.310342 0.950625i \(-0.600444\pi\)
0.668094 + 0.744077i \(0.267110\pi\)
\(294\) 0 0
\(295\) −13.8564 8.00000i −0.806751 0.465778i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.3137 19.5959i 0.654289 1.13326i
\(300\) 0 0
\(301\) −16.0000 27.7128i −0.922225 1.59734i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.82843i 0.161955i
\(306\) 0 0
\(307\) 24.0000i 1.36975i −0.728659 0.684876i \(-0.759856\pi\)
0.728659 0.684876i \(-0.240144\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.65685 9.79796i −0.320771 0.555591i 0.659877 0.751374i \(-0.270609\pi\)
−0.980647 + 0.195783i \(0.937275\pi\)
\(312\) 0 0
\(313\) 11.0000 19.0526i 0.621757 1.07691i −0.367402 0.930062i \(-0.619753\pi\)
0.989158 0.146852i \(-0.0469141\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.8207 + 12.0208i 1.16940 + 0.675156i 0.953540 0.301267i \(-0.0974095\pi\)
0.215865 + 0.976423i \(0.430743\pi\)
\(318\) 0 0
\(319\) 6.92820 4.00000i 0.387905 0.223957i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 12.0000 0.665640
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −19.5959 + 11.3137i −1.08036 + 0.623745i
\(330\) 0 0
\(331\) −6.92820 4.00000i −0.380808 0.219860i 0.297361 0.954765i \(-0.403893\pi\)
−0.678170 + 0.734905i \(0.737227\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.65685 9.79796i 0.309067 0.535320i
\(336\) 0 0
\(337\) 8.00000 + 13.8564i 0.435788 + 0.754807i 0.997360 0.0726214i \(-0.0231365\pi\)
−0.561572 + 0.827428i \(0.689803\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 22.6274i 1.22534i
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.1421 24.4949i −0.759190 1.31495i −0.943264 0.332043i \(-0.892262\pi\)
0.184075 0.982912i \(-0.441071\pi\)
\(348\) 0 0
\(349\) 17.0000 29.4449i 0.909989 1.57615i 0.0959126 0.995390i \(-0.469423\pi\)
0.814076 0.580758i \(-0.197244\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8.57321 4.94975i −0.456306 0.263448i 0.254184 0.967156i \(-0.418193\pi\)
−0.710490 + 0.703707i \(0.751527\pi\)
\(354\) 0 0
\(355\) −6.92820 + 4.00000i −0.367711 + 0.212298i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.9706 0.895672 0.447836 0.894116i \(-0.352195\pi\)
0.447836 + 0.894116i \(0.352195\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −17.3205 10.0000i −0.904123 0.521996i −0.0255875 0.999673i \(-0.508146\pi\)
−0.878536 + 0.477677i \(0.841479\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.48528 + 14.6969i −0.440534 + 0.763027i
\(372\) 0 0
\(373\) −11.0000 19.0526i −0.569558 0.986504i −0.996610 0.0822766i \(-0.973781\pi\)
0.427051 0.904227i \(-0.359552\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.65685i 0.291343i
\(378\) 0 0
\(379\) 16.0000i 0.821865i 0.911666 + 0.410932i \(0.134797\pi\)
−0.911666 + 0.410932i \(0.865203\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.3137 19.5959i −0.578103 1.00130i −0.995697 0.0926706i \(-0.970460\pi\)
0.417593 0.908634i \(-0.362874\pi\)
\(384\) 0 0
\(385\) −16.0000 + 27.7128i −0.815436 + 1.41238i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.57321 + 4.94975i 0.434679 + 0.250962i 0.701338 0.712829i \(-0.252586\pi\)
−0.266659 + 0.963791i \(0.585920\pi\)
\(390\) 0 0
\(391\) 20.7846 12.0000i 1.05112 0.606866i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5.65685 −0.284627
\(396\) 0 0
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.4722 + 7.77817i −0.672769 + 0.388424i −0.797125 0.603814i \(-0.793647\pi\)
0.124356 + 0.992238i \(0.460314\pi\)
\(402\) 0 0
\(403\) −13.8564 8.00000i −0.690237 0.398508i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.9706 29.3939i 0.841200 1.45700i
\(408\) 0 0
\(409\) −4.00000 6.92820i −0.197787 0.342578i 0.750023 0.661411i \(-0.230042\pi\)
−0.947811 + 0.318834i \(0.896709\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 45.2548i 2.22684i
\(414\) 0 0
\(415\) 8.00000i 0.392705i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.82843 + 4.89898i 0.138178 + 0.239331i 0.926807 0.375538i \(-0.122542\pi\)
−0.788629 + 0.614869i \(0.789209\pi\)
\(420\) 0 0
\(421\) −14.0000 + 24.2487i −0.682318 + 1.18181i 0.291953 + 0.956433i \(0.405695\pi\)
−0.974272 + 0.225377i \(0.927639\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 11.0227 + 6.36396i 0.534680 + 0.308697i
\(426\) 0 0
\(427\) −6.92820 + 4.00000i −0.335279 + 0.193574i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.9706 0.817443 0.408722 0.912659i \(-0.365975\pi\)
0.408722 + 0.912659i \(0.365975\pi\)
\(432\) 0 0
\(433\) 30.0000 1.44171 0.720854 0.693087i \(-0.243750\pi\)
0.720854 + 0.693087i \(0.243750\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 24.2487 + 14.0000i 1.15733 + 0.668184i 0.950662 0.310228i \(-0.100405\pi\)
0.206666 + 0.978412i \(0.433739\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.82843 4.89898i 0.134383 0.232758i −0.790979 0.611844i \(-0.790428\pi\)
0.925361 + 0.379086i \(0.123762\pi\)
\(444\) 0 0
\(445\) −3.00000 5.19615i −0.142214 0.246321i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 38.1838i 1.80200i 0.433816 + 0.901002i \(0.357167\pi\)
−0.433816 + 0.901002i \(0.642833\pi\)
\(450\) 0 0
\(451\) 56.0000i 2.63694i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.3137 19.5959i −0.530395 0.918671i
\(456\) 0 0
\(457\) 4.00000 6.92820i 0.187112 0.324088i −0.757174 0.653213i \(-0.773421\pi\)
0.944286 + 0.329125i \(0.106754\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.9217 9.19239i −0.741547 0.428132i 0.0810847 0.996707i \(-0.474162\pi\)
−0.822631 + 0.568575i \(0.807495\pi\)
\(462\) 0 0
\(463\) −17.3205 + 10.0000i −0.804952 + 0.464739i −0.845200 0.534450i \(-0.820519\pi\)
0.0402476 + 0.999190i \(0.487185\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16.9706 −0.785304 −0.392652 0.919687i \(-0.628442\pi\)
−0.392652 + 0.919687i \(0.628442\pi\)
\(468\) 0 0
\(469\) 32.0000 1.47762
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −39.1918 + 22.6274i −1.80204 + 1.04041i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −19.7990 + 34.2929i −0.904639 + 1.56688i −0.0832378 + 0.996530i \(0.526526\pi\)
−0.821401 + 0.570351i \(0.806807\pi\)
\(480\) 0 0
\(481\) 12.0000 + 20.7846i 0.547153 + 0.947697i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11.3137i 0.513729i
\(486\) 0 0
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11.3137 19.5959i −0.510581 0.884351i −0.999925 0.0122607i \(-0.996097\pi\)
0.489344 0.872091i \(-0.337236\pi\)
\(492\) 0 0
\(493\) −3.00000 + 5.19615i −0.135113 + 0.234023i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −19.5959 11.3137i −0.878997 0.507489i
\(498\) 0 0
\(499\) 27.7128 16.0000i 1.24060 0.716258i 0.271380 0.962472i \(-0.412520\pi\)
0.969216 + 0.246214i \(0.0791865\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5.65685 −0.252227 −0.126113 0.992016i \(-0.540250\pi\)
−0.126113 + 0.992016i \(0.540250\pi\)
\(504\) 0 0
\(505\) −26.0000 −1.15698
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −28.1691 + 16.2635i −1.24857 + 0.720865i −0.970825 0.239788i \(-0.922922\pi\)
−0.277750 + 0.960653i \(0.589589\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.82843 4.89898i 0.124635 0.215875i
\(516\) 0 0
\(517\) 16.0000 + 27.7128i 0.703679 + 1.21881i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 32.5269i 1.42503i −0.701657 0.712515i \(-0.747556\pi\)
0.701657 0.712515i \(-0.252444\pi\)
\(522\) 0 0
\(523\) 16.0000i 0.699631i −0.936819 0.349816i \(-0.886244\pi\)
0.936819 0.349816i \(-0.113756\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.48528 14.6969i −0.369625 0.640209i
\(528\) 0 0
\(529\) −4.50000 + 7.79423i −0.195652 + 0.338880i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −34.2929 19.7990i −1.48539 0.857589i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −50.9117 −2.19292
\(540\) 0 0
\(541\) −20.0000 −0.859867 −0.429934 0.902861i \(-0.641463\pi\)
−0.429934 + 0.902861i \(0.641463\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.6969 + 8.48528i −0.629548 + 0.363470i
\(546\) 0 0
\(547\) 34.6410 + 20.0000i 1.48114 + 0.855138i 0.999771 0.0213785i \(-0.00680549\pi\)
0.481371 + 0.876517i \(0.340139\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −8.00000 13.8564i −0.340195 0.589234i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.6985i 1.25837i 0.777258 + 0.629183i \(0.216610\pi\)
−0.777258 + 0.629183i \(0.783390\pi\)
\(558\) 0 0
\(559\) 32.0000i 1.35346i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.7990 + 34.2929i 0.834428 + 1.44527i 0.894495 + 0.447077i \(0.147535\pi\)
−0.0600674 + 0.998194i \(0.519132\pi\)
\(564\) 0 0
\(565\) 1.00000 1.73205i 0.0420703 0.0728679i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.8207 12.0208i −0.872848 0.503939i −0.00455411 0.999990i \(-0.501450\pi\)
−0.868293 + 0.496051i \(0.834783\pi\)
\(570\) 0 0
\(571\) 13.8564 8.00000i 0.579873 0.334790i −0.181210 0.983444i \(-0.558001\pi\)
0.761083 + 0.648655i \(0.224668\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.9706 −0.707721
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −19.5959 + 11.3137i −0.812976 + 0.469372i
\(582\) 0 0
\(583\) 20.7846 + 12.0000i 0.860811 + 0.496989i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.65685 + 9.79796i −0.233483 + 0.404405i −0.958831 0.283978i \(-0.908346\pi\)
0.725347 + 0.688383i \(0.241679\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 46.6690i 1.91647i 0.285985 + 0.958234i \(0.407679\pi\)
−0.285985 + 0.958234i \(0.592321\pi\)
\(594\) 0 0
\(595\) 24.0000i 0.983904i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −19.7990 34.2929i −0.808965 1.40117i −0.913582 0.406656i \(-0.866695\pi\)
0.104617 0.994513i \(-0.466638\pi\)
\(600\) 0 0
\(601\) 13.0000 22.5167i 0.530281 0.918474i −0.469095 0.883148i \(-0.655420\pi\)
0.999376 0.0353259i \(-0.0112469\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 25.7196 + 14.8492i 1.04565 + 0.603708i
\(606\) 0 0
\(607\) −24.2487 + 14.0000i −0.984225 + 0.568242i −0.903543 0.428497i \(-0.859043\pi\)
−0.0806818 + 0.996740i \(0.525710\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −22.6274 −0.915407
\(612\) 0 0
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.2702 13.4350i 0.936821 0.540874i 0.0478587 0.998854i \(-0.484760\pi\)
0.888962 + 0.457980i \(0.151427\pi\)
\(618\) 0 0
\(619\) −27.7128 16.0000i −1.11387 0.643094i −0.174042 0.984738i \(-0.555683\pi\)
−0.939829 + 0.341644i \(0.889016\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.48528 14.6969i 0.339956 0.588820i
\(624\) 0 0
\(625\) 0.500000 + 0.866025i 0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 25.4558i 1.01499i
\(630\) 0 0
\(631\) 12.0000i 0.477712i 0.971055 + 0.238856i \(0.0767725\pi\)
−0.971055 + 0.238856i \(0.923228\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.48528 + 14.6969i 0.336728 + 0.583230i
\(636\) 0 0
\(637\) 18.0000 31.1769i 0.713186 1.23527i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.12372 3.53553i −0.241873 0.139645i 0.374165 0.927362i \(-0.377930\pi\)
−0.616037 + 0.787717i \(0.711263\pi\)
\(642\) 0 0
\(643\) −6.92820 + 4.00000i −0.273222 + 0.157745i −0.630351 0.776310i \(-0.717089\pi\)
0.357129 + 0.934055i \(0.383756\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.9706 −0.667182 −0.333591 0.942718i \(-0.608260\pi\)
−0.333591 + 0.942718i \(0.608260\pi\)
\(648\) 0 0
\(649\) −64.0000 −2.51222
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15.9217 + 9.19239i −0.623064 + 0.359726i −0.778061 0.628189i \(-0.783796\pi\)
0.154997 + 0.987915i \(0.450463\pi\)
\(654\) 0 0
\(655\) −13.8564 8.00000i −0.541415 0.312586i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.65685 9.79796i 0.220360 0.381674i −0.734557 0.678546i \(-0.762610\pi\)
0.954917 + 0.296872i \(0.0959435\pi\)
\(660\) 0 0
\(661\) 11.0000 + 19.0526i 0.427850 + 0.741059i 0.996682 0.0813955i \(-0.0259377\pi\)
−0.568831 + 0.822454i \(0.692604\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.00000i 0.309761i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.65685 + 9.79796i 0.218380 + 0.378246i
\(672\) 0 0
\(673\) 7.00000 12.1244i 0.269830 0.467360i −0.698988 0.715134i \(-0.746366\pi\)
0.968818 + 0.247774i \(0.0796991\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −28.1691 16.2635i −1.08263 0.625055i −0.151024 0.988530i \(-0.548257\pi\)
−0.931604 + 0.363475i \(0.881590\pi\)
\(678\) 0 0
\(679\) −27.7128 + 16.0000i −1.06352 + 0.614024i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 16.9706 0.649361 0.324680 0.945824i \(-0.394743\pi\)
0.324680 + 0.945824i \(0.394743\pi\)
\(684\) 0 0
\(685\) 2.00000 0.0764161
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.6969 + 8.48528i −0.559909 + 0.323263i
\(690\) 0 0
\(691\) 6.92820 + 4.00000i 0.263561 + 0.152167i 0.625958 0.779857i \(-0.284708\pi\)
−0.362397 + 0.932024i \(0.618041\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.65685 + 9.79796i −0.214577 + 0.371658i
\(696\) 0 0
\(697\) −21.0000 36.3731i −0.795432 1.37773i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.7279i 0.480727i 0.970683 + 0.240363i \(0.0772666\pi\)
−0.970683 + 0.240363i \(0.922733\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −36.7696 63.6867i −1.38286 2.39519i
\(708\) 0 0
\(709\) −10.0000 + 17.3205i −0.375558 + 0.650485i −0.990410 0.138157i \(-0.955882\pi\)
0.614852 + 0.788642i \(0.289216\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 19.5959 + 11.3137i 0.733873 + 0.423702i
\(714\) 0 0
\(715\) −27.7128 + 16.0000i −1.03640 + 0.598366i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.9706 −0.632895 −0.316448 0.948610i \(-0.602490\pi\)
−0.316448 + 0.948610i \(0.602490\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.67423 2.12132i 0.136458 0.0787839i
\(726\) 0 0
\(727\) 3.46410 + 2.00000i 0.128476 + 0.0741759i 0.562861 0.826552i \(-0.309701\pi\)
−0.434384 + 0.900728i \(0.643034\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 16.9706 29.3939i 0.627679 1.08717i
\(732\) 0 0
\(733\) −2.00000 3.46410i −0.0738717 0.127950i 0.826723 0.562609i \(-0.190202\pi\)
−0.900595 + 0.434659i \(0.856869\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 45.2548i 1.66698i
\(738\) 0 0
\(739\) 16.0000i 0.588570i −0.955718 0.294285i \(-0.904919\pi\)
0.955718 0.294285i \(-0.0950814\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.65685 + 9.79796i 0.207530 + 0.359452i 0.950936 0.309388i \(-0.100124\pi\)
−0.743406 + 0.668840i \(0.766791\pi\)
\(744\) 0 0
\(745\) −1.00000 + 1.73205i −0.0366372 + 0.0634574i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 17.3205 10.0000i 0.632034 0.364905i −0.149505 0.988761i \(-0.547768\pi\)
0.781540 + 0.623856i \(0.214435\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 28.2843 1.02937
\(756\) 0 0
\(757\) 20.0000 0.726912 0.363456 0.931611i \(-0.381597\pi\)
0.363456 + 0.931611i \(0.381597\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.57321 4.94975i 0.310779 0.179428i −0.336496 0.941685i \(-0.609242\pi\)
0.647275 + 0.762257i \(0.275909\pi\)
\(762\) 0 0
\(763\) −41.5692 24.0000i −1.50491 0.868858i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22.6274 39.1918i 0.817029 1.41514i
\(768\) 0 0
\(769\) −1.00000 1.73205i −0.0360609 0.0624593i 0.847432 0.530904i \(-0.178148\pi\)
−0.883493 + 0.468445i \(0.844814\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.24264i 0.152597i −0.997085 0.0762986i \(-0.975690\pi\)
0.997085 0.0762986i \(-0.0243102\pi\)
\(774\) 0 0
\(775\) 12.0000i 0.431053i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −16.0000 + 27.7128i −0.572525 + 0.991642i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.44949 + 1.41421i 0.0874260 + 0.0504754i
\(786\) 0 0
\(787\) 27.7128 16.0000i 0.987855 0.570338i 0.0832226 0.996531i \(-0.473479\pi\)
0.904632 + 0.426193i \(0.140145\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.65685 0.201135
\(792\) 0 0
\(793\) −8.00000 −0.284088
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −6.12372 + 3.53553i −0.216913 + 0.125235i −0.604520 0.796590i \(-0.706635\pi\)
0.387607 + 0.921825i \(0.373302\pi\)
\(798\) 0 0
\(799\) −20.7846 12.0000i −0.735307 0.424529i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 16.0000 + 27.7128i 0.563926 + 0.976748i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 21.2132i 0.745817i 0.927868 + 0.372908i \(0.121639\pi\)
−0.927868 + 0.372908i \(0.878361\pi\)
\(810\) 0 0
\(811\) 48.0000i 1.68551i −0.538299 0.842754i \(-0.680933\pi\)
0.538299 0.842754i \(-0.319067\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −16.9706 29.3939i −0.594453 1.02962i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 35.5176 + 20.5061i 1.23957 + 0.715668i 0.969007 0.247034i \(-0.0794559\pi\)
0.270566 + 0.962701i \(0.412789\pi\)
\(822\) 0 0
\(823\) 45.0333 26.0000i 1.56976 0.906303i 0.573567 0.819159i \(-0.305559\pi\)
0.996196 0.0871445i \(-0.0277742\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33.9411 1.18025 0.590124 0.807312i \(-0.299079\pi\)
0.590124 + 0.807312i \(0.299079\pi\)
\(828\) 0 0
\(829\) 12.0000 0.416777 0.208389 0.978046i \(-0.433178\pi\)
0.208389 + 0.978046i \(0.433178\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 33.0681 19.0919i 1.14574 0.661495i
\(834\) 0 0
\(835\) −13.8564 8.00000i −0.479521 0.276851i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.82843 4.89898i 0.0976481 0.169132i −0.813063 0.582176i \(-0.802201\pi\)
0.910711 + 0.413045i \(0.135535\pi\)
\(840\) 0 0
\(841\) −13.5000 23.3827i −0.465517 0.806300i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.24264i 0.145951i
\(846\) 0 0
\(847\) 84.0000i 2.88627i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −16.9706 29.3939i −0.581743 1.00761i
\(852\) 0 0
\(853\) −5.00000 + 8.66025i −0.171197 + 0.296521i −0.938839 0.344358i \(-0.888097\pi\)
0.767642 + 0.640879i \(0.221430\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.8207 + 12.0208i 0.711220 + 0.410623i 0.811513 0.584335i \(-0.198644\pi\)
−0.100292 + 0.994958i \(0.531978\pi\)
\(858\) 0 0
\(859\) −6.92820 + 4.00000i −0.236387 + 0.136478i −0.613515 0.789683i \(-0.710245\pi\)
0.377128 + 0.926161i \(0.376912\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 33.9411 1.15537 0.577685 0.816260i \(-0.303956\pi\)
0.577685 + 0.816260i \(0.303956\pi\)
\(864\) 0 0
\(865\) 22.0000 0.748022
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −19.5959 + 11.3137i −0.664746 + 0.383791i
\(870\) 0 0
\(871\) 27.7128 + 16.0000i 0.939013 + 0.542139i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −22.6274 + 39.1918i −0.764946 + 1.32493i
\(876\) 0 0
\(877\) −23.0000 39.8372i −0.776655 1.34521i −0.933860 0.357640i \(-0.883582\pi\)
0.157205 0.987566i \(-0.449752\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.7279i 0.428815i 0.976744 + 0.214407i \(0.0687820\pi\)
−0.976744 + 0.214407i \(0.931218\pi\)
\(882\) 0 0
\(883\) 24.0000i 0.807664i −0.914833 0.403832i \(-0.867678\pi\)
0.914833 0.403832i \(-0.132322\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 28.2843 + 48.9898i 0.949693 + 1.64492i 0.746071 + 0.665867i \(0.231938\pi\)
0.203622 + 0.979050i \(0.434729\pi\)
\(888\) 0 0
\(889\) −24.0000 + 41.5692i −0.804934 + 1.39419i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.65685 −0.188667
\(900\) 0 0
\(901\) −18.0000 −0.599667
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −14.6969 + 8.48528i −0.488543 + 0.282060i
\(906\) 0 0
\(907\) 6.92820 + 4.00000i 0.230047 + 0.132818i 0.610594 0.791944i \(-0.290931\pi\)
−0.380547 + 0.924762i \(0.624264\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.65685 9.79796i 0.187420 0.324621i −0.756969 0.653450i \(-0.773321\pi\)
0.944389 + 0.328830i \(0.106654\pi\)
\(912\) 0 0
\(913\) 16.0000 + 27.7128i 0.529523 + 0.917160i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 45.2548i 1.49445i
\(918\) 0 0
\(919\) 36.0000i 1.18753i 0.804638 + 0.593765i \(0.202359\pi\)
−0.804638 + 0.593765i \(0.797641\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −11.3137 19.5959i −0.372395 0.645007i
\(924\) 0 0
\(925\) 9.00000 15.5885i 0.295918 0.512545i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 42.8661 + 24.7487i 1.40639 + 0.811980i 0.995038 0.0994967i \(-0.0317233\pi\)
0.411352 + 0.911476i \(0.365057\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −33.9411 −1.10999
\(936\) 0 0
\(937\) 6.00000 0.196011 0.0980057 0.995186i \(-0.468754\pi\)
0.0980057 + 0.995186i \(0.468754\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 35.5176 20.5061i 1.15784 0.668480i 0.207055 0.978329i \(-0.433612\pi\)
0.950786 + 0.309850i \(0.100279\pi\)
\(942\) 0 0
\(943\) 48.4974 + 28.0000i 1.57929 + 0.911805i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.65685 9.79796i 0.183823 0.318391i −0.759356 0.650675i \(-0.774486\pi\)
0.943179 + 0.332284i \(0.107819\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.2132i 0.687163i −0.939123 0.343582i \(-0.888360\pi\)
0.939123 0.343582i \(-0.111640\pi\)
\(954\) 0 0
\(955\) 16.0000i 0.517748i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.82843 + 4.89898i 0.0913347 + 0.158196i
\(960\) 0 0
\(961\) −7.50000 + 12.9904i −0.241935 + 0.419045i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.44949 1.41421i −0.0788519 0.0455251i
\(966\) 0 0
\(967\) 24.2487 14.0000i 0.779786 0.450210i −0.0565684 0.998399i \(-0.518016\pi\)
0.836354 + 0.548189i \(0.184683\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.65685 −0.181537 −0.0907685 0.995872i \(-0.528932\pi\)
−0.0907685 + 0.995872i \(0.528932\pi\)
\(972\) 0 0
\(973\) −32.0000 −1.02587
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −45.3156 + 26.1630i −1.44977 + 0.837027i −0.998467 0.0553424i \(-0.982375\pi\)
−0.451306 + 0.892369i \(0.649042\pi\)
\(978\) 0 0
\(979\) −20.7846 12.0000i −0.664279 0.383522i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −28.2843 + 48.9898i −0.902128 + 1.56253i −0.0774017 + 0.997000i \(0.524662\pi\)
−0.824726 + 0.565532i \(0.808671\pi\)
\(984\) 0 0
\(985\) 5.00000 + 8.66025i 0.159313 + 0.275939i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 45.2548i 1.43902i
\(990\) 0 0
\(991\) 12.0000i 0.381193i −0.981669 0.190596i \(-0.938958\pi\)
0.981669 0.190596i \(-0.0610421\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 14.1421 + 24.4949i 0.448336 + 0.776540i
\(996\) 0 0
\(997\) −19.0000 + 32.9090i −0.601736 + 1.04224i 0.390822 + 0.920466i \(0.372191\pi\)
−0.992558 + 0.121771i \(0.961143\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2592.2.s.d.1727.1 8
3.2 odd 2 inner 2592.2.s.d.1727.3 8
4.3 odd 2 inner 2592.2.s.d.1727.2 8
9.2 odd 6 288.2.c.a.287.4 yes 4
9.4 even 3 inner 2592.2.s.d.863.4 8
9.5 odd 6 inner 2592.2.s.d.863.2 8
9.7 even 3 288.2.c.a.287.2 yes 4
12.11 even 2 inner 2592.2.s.d.1727.4 8
36.7 odd 6 288.2.c.a.287.1 4
36.11 even 6 288.2.c.a.287.3 yes 4
36.23 even 6 inner 2592.2.s.d.863.1 8
36.31 odd 6 inner 2592.2.s.d.863.3 8
45.2 even 12 7200.2.o.a.7199.1 4
45.7 odd 12 7200.2.o.a.7199.3 4
45.29 odd 6 7200.2.h.d.1151.1 4
45.34 even 6 7200.2.h.d.1151.2 4
45.38 even 12 7200.2.o.n.7199.2 4
45.43 odd 12 7200.2.o.n.7199.4 4
72.11 even 6 576.2.c.c.575.1 4
72.29 odd 6 576.2.c.c.575.2 4
72.43 odd 6 576.2.c.c.575.3 4
72.61 even 6 576.2.c.c.575.4 4
144.11 even 12 2304.2.f.c.1151.2 4
144.29 odd 12 2304.2.f.c.1151.3 4
144.43 odd 12 2304.2.f.c.1151.4 4
144.61 even 12 2304.2.f.c.1151.1 4
144.83 even 12 2304.2.f.e.1151.4 4
144.101 odd 12 2304.2.f.e.1151.1 4
144.115 odd 12 2304.2.f.e.1151.2 4
144.133 even 12 2304.2.f.e.1151.3 4
180.7 even 12 7200.2.o.n.7199.1 4
180.43 even 12 7200.2.o.a.7199.2 4
180.47 odd 12 7200.2.o.n.7199.3 4
180.79 odd 6 7200.2.h.d.1151.3 4
180.83 odd 12 7200.2.o.a.7199.4 4
180.119 even 6 7200.2.h.d.1151.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.c.a.287.1 4 36.7 odd 6
288.2.c.a.287.2 yes 4 9.7 even 3
288.2.c.a.287.3 yes 4 36.11 even 6
288.2.c.a.287.4 yes 4 9.2 odd 6
576.2.c.c.575.1 4 72.11 even 6
576.2.c.c.575.2 4 72.29 odd 6
576.2.c.c.575.3 4 72.43 odd 6
576.2.c.c.575.4 4 72.61 even 6
2304.2.f.c.1151.1 4 144.61 even 12
2304.2.f.c.1151.2 4 144.11 even 12
2304.2.f.c.1151.3 4 144.29 odd 12
2304.2.f.c.1151.4 4 144.43 odd 12
2304.2.f.e.1151.1 4 144.101 odd 12
2304.2.f.e.1151.2 4 144.115 odd 12
2304.2.f.e.1151.3 4 144.133 even 12
2304.2.f.e.1151.4 4 144.83 even 12
2592.2.s.d.863.1 8 36.23 even 6 inner
2592.2.s.d.863.2 8 9.5 odd 6 inner
2592.2.s.d.863.3 8 36.31 odd 6 inner
2592.2.s.d.863.4 8 9.4 even 3 inner
2592.2.s.d.1727.1 8 1.1 even 1 trivial
2592.2.s.d.1727.2 8 4.3 odd 2 inner
2592.2.s.d.1727.3 8 3.2 odd 2 inner
2592.2.s.d.1727.4 8 12.11 even 2 inner
7200.2.h.d.1151.1 4 45.29 odd 6
7200.2.h.d.1151.2 4 45.34 even 6
7200.2.h.d.1151.3 4 180.79 odd 6
7200.2.h.d.1151.4 4 180.119 even 6
7200.2.o.a.7199.1 4 45.2 even 12
7200.2.o.a.7199.2 4 180.43 even 12
7200.2.o.a.7199.3 4 45.7 odd 12
7200.2.o.a.7199.4 4 180.83 odd 12
7200.2.o.n.7199.1 4 180.7 even 12
7200.2.o.n.7199.2 4 45.38 even 12
7200.2.o.n.7199.3 4 180.47 odd 12
7200.2.o.n.7199.4 4 45.43 odd 12