L(s) = 1 | + (−1.22 + 0.707i)5-s + (−3.46 − 2i)7-s + (−2.82 + 4.89i)11-s + (−2 − 3.46i)13-s − 4.24i·17-s + (2.82 + 4.89i)23-s + (−1.50 + 2.59i)25-s + (−1.22 − 0.707i)29-s + (3.46 − 2i)31-s + 5.65·35-s − 6·37-s + (8.57 − 4.94i)41-s + (6.92 + 4i)43-s + (2.82 − 4.89i)47-s + (4.49 + 7.79i)49-s + ⋯ |
L(s) = 1 | + (−0.547 + 0.316i)5-s + (−1.30 − 0.755i)7-s + (−0.852 + 1.47i)11-s + (−0.554 − 0.960i)13-s − 1.02i·17-s + (0.589 + 1.02i)23-s + (−0.300 + 0.519i)25-s + (−0.227 − 0.131i)29-s + (0.622 − 0.359i)31-s + 0.956·35-s − 0.986·37-s + (1.33 − 0.773i)41-s + (1.05 + 0.609i)43-s + (0.412 − 0.714i)47-s + (0.642 + 1.11i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 - 0.0871i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2592 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.996 - 0.0871i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9089664611\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9089664611\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (1.22 - 0.707i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (3.46 + 2i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (2.82 - 4.89i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2 + 3.46i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 4.24iT - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + (-2.82 - 4.89i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.22 + 0.707i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.46 + 2i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 6T + 37T^{2} \) |
| 41 | \( 1 + (-8.57 + 4.94i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-6.92 - 4i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.82 + 4.89i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 4.24iT - 53T^{2} \) |
| 59 | \( 1 + (-5.65 - 9.79i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 + 1.73i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (6.92 - 4i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 5.65T + 71T^{2} \) |
| 73 | \( 1 + 73T^{2} \) |
| 79 | \( 1 + (-3.46 - 2i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.82 + 4.89i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 4.24iT - 89T^{2} \) |
| 97 | \( 1 + (-4 + 6.92i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.098499128823278060174845813988, −7.70413542665282968771809498922, −7.38957759733281850635862519024, −6.94136876377116466900698716607, −5.73810332577250698005293603046, −4.96074944553709200276529476419, −3.99518700556117790613915316426, −3.16942193121370375865020008138, −2.38925882220809031849334686878, −0.58430327703161209269963136912,
0.55496544197686139230712650916, 2.34434482235121156757902127143, 3.10805822210596765374115347187, 3.98786445992822789473056402991, 4.95202032383105110986669775212, 6.00391088818686120730755592987, 6.33043114021776538443489196145, 7.38066093503607038487084289927, 8.314439922513576408238453633746, 8.786193988308417371193618735471