Properties

Label 2592.2.s.d.863.1
Level $2592$
Weight $2$
Character 2592.863
Analytic conductor $20.697$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2592,2,Mod(863,2592)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2592, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2592.863"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2592 = 2^{5} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2592.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,-16,0,0,0,0,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.6972242039\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 288)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 863.1
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 2592.863
Dual form 2592.2.s.d.1727.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 - 0.707107i) q^{5} +(-3.46410 + 2.00000i) q^{7} +(-2.82843 - 4.89898i) q^{11} +(-2.00000 + 3.46410i) q^{13} +4.24264i q^{17} +(2.82843 - 4.89898i) q^{23} +(-1.50000 - 2.59808i) q^{25} +(-1.22474 + 0.707107i) q^{29} +(3.46410 + 2.00000i) q^{31} +5.65685 q^{35} -6.00000 q^{37} +(8.57321 + 4.94975i) q^{41} +(6.92820 - 4.00000i) q^{43} +(2.82843 + 4.89898i) q^{47} +(4.50000 - 7.79423i) q^{49} +4.24264i q^{53} +8.00000i q^{55} +(5.65685 - 9.79796i) q^{59} +(1.00000 + 1.73205i) q^{61} +(4.89898 - 2.82843i) q^{65} +(-6.92820 - 4.00000i) q^{67} +5.65685 q^{71} +(19.5959 + 11.3137i) q^{77} +(3.46410 - 2.00000i) q^{79} +(2.82843 + 4.89898i) q^{83} +(3.00000 - 5.19615i) q^{85} -4.24264i q^{89} -16.0000i q^{91} +(4.00000 + 6.92820i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{13} - 12 q^{25} - 48 q^{37} + 36 q^{49} + 8 q^{61} + 24 q^{85} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(1217\) \(2431\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.22474 0.707107i −0.547723 0.316228i 0.200480 0.979698i \(-0.435750\pi\)
−0.748203 + 0.663470i \(0.769083\pi\)
\(6\) 0 0
\(7\) −3.46410 + 2.00000i −1.30931 + 0.755929i −0.981981 0.188982i \(-0.939481\pi\)
−0.327327 + 0.944911i \(0.606148\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.82843 4.89898i −0.852803 1.47710i −0.878668 0.477432i \(-0.841568\pi\)
0.0258656 0.999665i \(-0.491766\pi\)
\(12\) 0 0
\(13\) −2.00000 + 3.46410i −0.554700 + 0.960769i 0.443227 + 0.896410i \(0.353834\pi\)
−0.997927 + 0.0643593i \(0.979500\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.24264i 1.02899i 0.857493 + 0.514496i \(0.172021\pi\)
−0.857493 + 0.514496i \(0.827979\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.82843 4.89898i 0.589768 1.02151i −0.404495 0.914540i \(-0.632553\pi\)
0.994263 0.106967i \(-0.0341141\pi\)
\(24\) 0 0
\(25\) −1.50000 2.59808i −0.300000 0.519615i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.22474 + 0.707107i −0.227429 + 0.131306i −0.609386 0.792874i \(-0.708584\pi\)
0.381956 + 0.924180i \(0.375251\pi\)
\(30\) 0 0
\(31\) 3.46410 + 2.00000i 0.622171 + 0.359211i 0.777714 0.628619i \(-0.216379\pi\)
−0.155543 + 0.987829i \(0.549713\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.65685 0.956183
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 8.57321 + 4.94975i 1.33891 + 0.773021i 0.986646 0.162880i \(-0.0520782\pi\)
0.352265 + 0.935900i \(0.385412\pi\)
\(42\) 0 0
\(43\) 6.92820 4.00000i 1.05654 0.609994i 0.132068 0.991241i \(-0.457838\pi\)
0.924473 + 0.381246i \(0.124505\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.82843 + 4.89898i 0.412568 + 0.714590i 0.995170 0.0981685i \(-0.0312984\pi\)
−0.582601 + 0.812758i \(0.697965\pi\)
\(48\) 0 0
\(49\) 4.50000 7.79423i 0.642857 1.11346i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.24264i 0.582772i 0.956606 + 0.291386i \(0.0941163\pi\)
−0.956606 + 0.291386i \(0.905884\pi\)
\(54\) 0 0
\(55\) 8.00000i 1.07872i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.65685 9.79796i 0.736460 1.27559i −0.217620 0.976034i \(-0.569829\pi\)
0.954080 0.299552i \(-0.0968372\pi\)
\(60\) 0 0
\(61\) 1.00000 + 1.73205i 0.128037 + 0.221766i 0.922916 0.385002i \(-0.125799\pi\)
−0.794879 + 0.606768i \(0.792466\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.89898 2.82843i 0.607644 0.350823i
\(66\) 0 0
\(67\) −6.92820 4.00000i −0.846415 0.488678i 0.0130248 0.999915i \(-0.495854\pi\)
−0.859440 + 0.511237i \(0.829187\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.65685 0.671345 0.335673 0.941979i \(-0.391036\pi\)
0.335673 + 0.941979i \(0.391036\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 19.5959 + 11.3137i 2.23316 + 1.28932i
\(78\) 0 0
\(79\) 3.46410 2.00000i 0.389742 0.225018i −0.292306 0.956325i \(-0.594423\pi\)
0.682048 + 0.731307i \(0.261089\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.82843 + 4.89898i 0.310460 + 0.537733i 0.978462 0.206427i \(-0.0661835\pi\)
−0.668002 + 0.744160i \(0.732850\pi\)
\(84\) 0 0
\(85\) 3.00000 5.19615i 0.325396 0.563602i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.24264i 0.449719i −0.974391 0.224860i \(-0.927808\pi\)
0.974391 0.224860i \(-0.0721923\pi\)
\(90\) 0 0
\(91\) 16.0000i 1.67726i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.00000 + 6.92820i 0.406138 + 0.703452i 0.994453 0.105180i \(-0.0335417\pi\)
−0.588315 + 0.808632i \(0.700208\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.9217 9.19239i 1.58427 0.914677i 0.590040 0.807374i \(-0.299112\pi\)
0.994226 0.107303i \(-0.0342215\pi\)
\(102\) 0 0
\(103\) −3.46410 2.00000i −0.341328 0.197066i 0.319531 0.947576i \(-0.396475\pi\)
−0.660859 + 0.750510i \(0.729808\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.22474 0.707107i −0.115214 0.0665190i 0.441285 0.897367i \(-0.354523\pi\)
−0.556500 + 0.830848i \(0.687856\pi\)
\(114\) 0 0
\(115\) −6.92820 + 4.00000i −0.646058 + 0.373002i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −8.48528 14.6969i −0.777844 1.34727i
\(120\) 0 0
\(121\) −10.5000 + 18.1865i −0.954545 + 1.65332i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.3137i 1.01193i
\(126\) 0 0
\(127\) 12.0000i 1.06483i 0.846484 + 0.532414i \(0.178715\pi\)
−0.846484 + 0.532414i \(0.821285\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.65685 9.79796i 0.494242 0.856052i −0.505736 0.862688i \(-0.668779\pi\)
0.999978 + 0.00663646i \(0.00211246\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.22474 + 0.707107i −0.104637 + 0.0604122i −0.551405 0.834238i \(-0.685908\pi\)
0.446768 + 0.894650i \(0.352575\pi\)
\(138\) 0 0
\(139\) 6.92820 + 4.00000i 0.587643 + 0.339276i 0.764165 0.645021i \(-0.223151\pi\)
−0.176522 + 0.984297i \(0.556485\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 22.6274 1.89220
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.22474 + 0.707107i 0.100335 + 0.0579284i 0.549328 0.835607i \(-0.314884\pi\)
−0.448993 + 0.893535i \(0.648217\pi\)
\(150\) 0 0
\(151\) −17.3205 + 10.0000i −1.40952 + 0.813788i −0.995342 0.0964061i \(-0.969265\pi\)
−0.414181 + 0.910195i \(0.635932\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.82843 4.89898i −0.227185 0.393496i
\(156\) 0 0
\(157\) −1.00000 + 1.73205i −0.0798087 + 0.138233i −0.903167 0.429289i \(-0.858764\pi\)
0.823359 + 0.567521i \(0.192098\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 22.6274i 1.78329i
\(162\) 0 0
\(163\) 24.0000i 1.87983i −0.341415 0.939913i \(-0.610906\pi\)
0.341415 0.939913i \(-0.389094\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.65685 9.79796i 0.437741 0.758189i −0.559774 0.828645i \(-0.689112\pi\)
0.997515 + 0.0704563i \(0.0224455\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13.4722 + 7.77817i −1.02427 + 0.591364i −0.915338 0.402685i \(-0.868077\pi\)
−0.108933 + 0.994049i \(0.534744\pi\)
\(174\) 0 0
\(175\) 10.3923 + 6.00000i 0.785584 + 0.453557i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 12.0000 0.891953 0.445976 0.895045i \(-0.352856\pi\)
0.445976 + 0.895045i \(0.352856\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.34847 + 4.24264i 0.540270 + 0.311925i
\(186\) 0 0
\(187\) 20.7846 12.0000i 1.51992 0.877527i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.65685 9.79796i −0.409316 0.708955i 0.585498 0.810674i \(-0.300899\pi\)
−0.994813 + 0.101719i \(0.967566\pi\)
\(192\) 0 0
\(193\) 1.00000 1.73205i 0.0719816 0.124676i −0.827788 0.561041i \(-0.810401\pi\)
0.899770 + 0.436365i \(0.143734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.07107i 0.503793i 0.967754 + 0.251896i \(0.0810542\pi\)
−0.967754 + 0.251896i \(0.918946\pi\)
\(198\) 0 0
\(199\) 20.0000i 1.41776i 0.705328 + 0.708881i \(0.250800\pi\)
−0.705328 + 0.708881i \(0.749200\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.82843 4.89898i 0.198517 0.343841i
\(204\) 0 0
\(205\) −7.00000 12.1244i −0.488901 0.846802i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −6.92820 4.00000i −0.476957 0.275371i 0.242190 0.970229i \(-0.422134\pi\)
−0.719148 + 0.694857i \(0.755467\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −11.3137 −0.771589
\(216\) 0 0
\(217\) −16.0000 −1.08615
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −14.6969 8.48528i −0.988623 0.570782i
\(222\) 0 0
\(223\) −3.46410 + 2.00000i −0.231973 + 0.133930i −0.611482 0.791258i \(-0.709426\pi\)
0.379509 + 0.925188i \(0.376093\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.82843 4.89898i −0.187729 0.325157i 0.756764 0.653689i \(-0.226779\pi\)
−0.944493 + 0.328532i \(0.893446\pi\)
\(228\) 0 0
\(229\) 14.0000 24.2487i 0.925146 1.60240i 0.133820 0.991006i \(-0.457276\pi\)
0.791326 0.611394i \(-0.209391\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.07107i 0.463241i −0.972806 0.231621i \(-0.925597\pi\)
0.972806 0.231621i \(-0.0744028\pi\)
\(234\) 0 0
\(235\) 8.00000i 0.521862i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 11.3137 19.5959i 0.731823 1.26755i −0.224280 0.974525i \(-0.572003\pi\)
0.956103 0.293030i \(-0.0946635\pi\)
\(240\) 0 0
\(241\) −4.00000 6.92820i −0.257663 0.446285i 0.707953 0.706260i \(-0.249619\pi\)
−0.965615 + 0.259975i \(0.916286\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −11.0227 + 6.36396i −0.704215 + 0.406579i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.9706 1.07117 0.535586 0.844481i \(-0.320091\pi\)
0.535586 + 0.844481i \(0.320091\pi\)
\(252\) 0 0
\(253\) −32.0000 −2.01182
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 20.8207 + 12.0208i 1.29876 + 0.749838i 0.980189 0.198062i \(-0.0634648\pi\)
0.318568 + 0.947900i \(0.396798\pi\)
\(258\) 0 0
\(259\) 20.7846 12.0000i 1.29149 0.745644i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.65685 + 9.79796i 0.348817 + 0.604168i 0.986040 0.166511i \(-0.0532503\pi\)
−0.637223 + 0.770680i \(0.719917\pi\)
\(264\) 0 0
\(265\) 3.00000 5.19615i 0.184289 0.319197i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.2132i 1.29339i −0.762748 0.646696i \(-0.776150\pi\)
0.762748 0.646696i \(-0.223850\pi\)
\(270\) 0 0
\(271\) 12.0000i 0.728948i 0.931214 + 0.364474i \(0.118751\pi\)
−0.931214 + 0.364474i \(0.881249\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.48528 + 14.6969i −0.511682 + 0.886259i
\(276\) 0 0
\(277\) 2.00000 + 3.46410i 0.120168 + 0.208138i 0.919834 0.392308i \(-0.128323\pi\)
−0.799666 + 0.600446i \(0.794990\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.12372 3.53553i 0.365311 0.210912i −0.306097 0.952000i \(-0.599023\pi\)
0.671408 + 0.741088i \(0.265690\pi\)
\(282\) 0 0
\(283\) −13.8564 8.00000i −0.823678 0.475551i 0.0280052 0.999608i \(-0.491084\pi\)
−0.851683 + 0.524057i \(0.824418\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −39.5980 −2.33739
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.12372 + 3.53553i 0.357752 + 0.206548i 0.668094 0.744077i \(-0.267110\pi\)
−0.310342 + 0.950625i \(0.600444\pi\)
\(294\) 0 0
\(295\) −13.8564 + 8.00000i −0.806751 + 0.465778i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 11.3137 + 19.5959i 0.654289 + 1.13326i
\(300\) 0 0
\(301\) −16.0000 + 27.7128i −0.922225 + 1.59734i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 2.82843i 0.161955i
\(306\) 0 0
\(307\) 24.0000i 1.36975i 0.728659 + 0.684876i \(0.240144\pi\)
−0.728659 + 0.684876i \(0.759856\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −5.65685 + 9.79796i −0.320771 + 0.555591i −0.980647 0.195783i \(-0.937275\pi\)
0.659877 + 0.751374i \(0.270609\pi\)
\(312\) 0 0
\(313\) 11.0000 + 19.0526i 0.621757 + 1.07691i 0.989158 + 0.146852i \(0.0469141\pi\)
−0.367402 + 0.930062i \(0.619753\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.8207 12.0208i 1.16940 0.675156i 0.215865 0.976423i \(-0.430743\pi\)
0.953540 + 0.301267i \(0.0974095\pi\)
\(318\) 0 0
\(319\) 6.92820 + 4.00000i 0.387905 + 0.223957i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 12.0000 0.665640
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −19.5959 11.3137i −1.08036 0.623745i
\(330\) 0 0
\(331\) −6.92820 + 4.00000i −0.380808 + 0.219860i −0.678170 0.734905i \(-0.737227\pi\)
0.297361 + 0.954765i \(0.403893\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 5.65685 + 9.79796i 0.309067 + 0.535320i
\(336\) 0 0
\(337\) 8.00000 13.8564i 0.435788 0.754807i −0.561572 0.827428i \(-0.689803\pi\)
0.997360 + 0.0726214i \(0.0231365\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 22.6274i 1.22534i
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.1421 + 24.4949i −0.759190 + 1.31495i 0.184075 + 0.982912i \(0.441071\pi\)
−0.943264 + 0.332043i \(0.892262\pi\)
\(348\) 0 0
\(349\) 17.0000 + 29.4449i 0.909989 + 1.57615i 0.814076 + 0.580758i \(0.197244\pi\)
0.0959126 + 0.995390i \(0.469423\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8.57321 + 4.94975i −0.456306 + 0.263448i −0.710490 0.703707i \(-0.751527\pi\)
0.254184 + 0.967156i \(0.418193\pi\)
\(354\) 0 0
\(355\) −6.92820 4.00000i −0.367711 0.212298i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.9706 0.895672 0.447836 0.894116i \(-0.352195\pi\)
0.447836 + 0.894116i \(0.352195\pi\)
\(360\) 0 0
\(361\) 19.0000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −17.3205 + 10.0000i −0.904123 + 0.521996i −0.878536 0.477677i \(-0.841479\pi\)
−0.0255875 + 0.999673i \(0.508146\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.48528 14.6969i −0.440534 0.763027i
\(372\) 0 0
\(373\) −11.0000 + 19.0526i −0.569558 + 0.986504i 0.427051 + 0.904227i \(0.359552\pi\)
−0.996610 + 0.0822766i \(0.973781\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.65685i 0.291343i
\(378\) 0 0
\(379\) 16.0000i 0.821865i −0.911666 0.410932i \(-0.865203\pi\)
0.911666 0.410932i \(-0.134797\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.3137 + 19.5959i −0.578103 + 1.00130i 0.417593 + 0.908634i \(0.362874\pi\)
−0.995697 + 0.0926706i \(0.970460\pi\)
\(384\) 0 0
\(385\) −16.0000 27.7128i −0.815436 1.41238i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 8.57321 4.94975i 0.434679 0.250962i −0.266659 0.963791i \(-0.585920\pi\)
0.701338 + 0.712829i \(0.252586\pi\)
\(390\) 0 0
\(391\) 20.7846 + 12.0000i 1.05112 + 0.606866i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −5.65685 −0.284627
\(396\) 0 0
\(397\) −18.0000 −0.903394 −0.451697 0.892171i \(-0.649181\pi\)
−0.451697 + 0.892171i \(0.649181\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −13.4722 7.77817i −0.672769 0.388424i 0.124356 0.992238i \(-0.460314\pi\)
−0.797125 + 0.603814i \(0.793647\pi\)
\(402\) 0 0
\(403\) −13.8564 + 8.00000i −0.690237 + 0.398508i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.9706 + 29.3939i 0.841200 + 1.45700i
\(408\) 0 0
\(409\) −4.00000 + 6.92820i −0.197787 + 0.342578i −0.947811 0.318834i \(-0.896709\pi\)
0.750023 + 0.661411i \(0.230042\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 45.2548i 2.22684i
\(414\) 0 0
\(415\) 8.00000i 0.392705i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.82843 4.89898i 0.138178 0.239331i −0.788629 0.614869i \(-0.789209\pi\)
0.926807 + 0.375538i \(0.122542\pi\)
\(420\) 0 0
\(421\) −14.0000 24.2487i −0.682318 1.18181i −0.974272 0.225377i \(-0.927639\pi\)
0.291953 0.956433i \(-0.405695\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 11.0227 6.36396i 0.534680 0.308697i
\(426\) 0 0
\(427\) −6.92820 4.00000i −0.335279 0.193574i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.9706 0.817443 0.408722 0.912659i \(-0.365975\pi\)
0.408722 + 0.912659i \(0.365975\pi\)
\(432\) 0 0
\(433\) 30.0000 1.44171 0.720854 0.693087i \(-0.243750\pi\)
0.720854 + 0.693087i \(0.243750\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 24.2487 14.0000i 1.15733 0.668184i 0.206666 0.978412i \(-0.433739\pi\)
0.950662 + 0.310228i \(0.100405\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.82843 + 4.89898i 0.134383 + 0.232758i 0.925361 0.379086i \(-0.123762\pi\)
−0.790979 + 0.611844i \(0.790428\pi\)
\(444\) 0 0
\(445\) −3.00000 + 5.19615i −0.142214 + 0.246321i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 38.1838i 1.80200i −0.433816 0.901002i \(-0.642833\pi\)
0.433816 0.901002i \(-0.357167\pi\)
\(450\) 0 0
\(451\) 56.0000i 2.63694i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −11.3137 + 19.5959i −0.530395 + 0.918671i
\(456\) 0 0
\(457\) 4.00000 + 6.92820i 0.187112 + 0.324088i 0.944286 0.329125i \(-0.106754\pi\)
−0.757174 + 0.653213i \(0.773421\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −15.9217 + 9.19239i −0.741547 + 0.428132i −0.822631 0.568575i \(-0.807495\pi\)
0.0810847 + 0.996707i \(0.474162\pi\)
\(462\) 0 0
\(463\) −17.3205 10.0000i −0.804952 0.464739i 0.0402476 0.999190i \(-0.487185\pi\)
−0.845200 + 0.534450i \(0.820519\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −16.9706 −0.785304 −0.392652 0.919687i \(-0.628442\pi\)
−0.392652 + 0.919687i \(0.628442\pi\)
\(468\) 0 0
\(469\) 32.0000 1.47762
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −39.1918 22.6274i −1.80204 1.04041i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −19.7990 34.2929i −0.904639 1.56688i −0.821401 0.570351i \(-0.806807\pi\)
−0.0832378 0.996530i \(-0.526526\pi\)
\(480\) 0 0
\(481\) 12.0000 20.7846i 0.547153 0.947697i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11.3137i 0.513729i
\(486\) 0 0
\(487\) 12.0000i 0.543772i −0.962329 0.271886i \(-0.912353\pi\)
0.962329 0.271886i \(-0.0876473\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −11.3137 + 19.5959i −0.510581 + 0.884351i 0.489344 + 0.872091i \(0.337236\pi\)
−0.999925 + 0.0122607i \(0.996097\pi\)
\(492\) 0 0
\(493\) −3.00000 5.19615i −0.135113 0.234023i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −19.5959 + 11.3137i −0.878997 + 0.507489i
\(498\) 0 0
\(499\) 27.7128 + 16.0000i 1.24060 + 0.716258i 0.969216 0.246214i \(-0.0791865\pi\)
0.271380 + 0.962472i \(0.412520\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5.65685 −0.252227 −0.126113 0.992016i \(-0.540250\pi\)
−0.126113 + 0.992016i \(0.540250\pi\)
\(504\) 0 0
\(505\) −26.0000 −1.15698
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −28.1691 16.2635i −1.24857 0.720865i −0.277750 0.960653i \(-0.589589\pi\)
−0.970825 + 0.239788i \(0.922922\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2.82843 + 4.89898i 0.124635 + 0.215875i
\(516\) 0 0
\(517\) 16.0000 27.7128i 0.703679 1.21881i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 32.5269i 1.42503i 0.701657 + 0.712515i \(0.252444\pi\)
−0.701657 + 0.712515i \(0.747556\pi\)
\(522\) 0 0
\(523\) 16.0000i 0.699631i 0.936819 + 0.349816i \(0.113756\pi\)
−0.936819 + 0.349816i \(0.886244\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.48528 + 14.6969i −0.369625 + 0.640209i
\(528\) 0 0
\(529\) −4.50000 7.79423i −0.195652 0.338880i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −34.2929 + 19.7990i −1.48539 + 0.857589i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −50.9117 −2.19292
\(540\) 0 0
\(541\) −20.0000 −0.859867 −0.429934 0.902861i \(-0.641463\pi\)
−0.429934 + 0.902861i \(0.641463\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.6969 8.48528i −0.629548 0.363470i
\(546\) 0 0
\(547\) 34.6410 20.0000i 1.48114 0.855138i 0.481371 0.876517i \(-0.340139\pi\)
0.999771 + 0.0213785i \(0.00680549\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −8.00000 + 13.8564i −0.340195 + 0.589234i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.6985i 1.25837i −0.777258 0.629183i \(-0.783390\pi\)
0.777258 0.629183i \(-0.216610\pi\)
\(558\) 0 0
\(559\) 32.0000i 1.35346i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 19.7990 34.2929i 0.834428 1.44527i −0.0600674 0.998194i \(-0.519132\pi\)
0.894495 0.447077i \(-0.147535\pi\)
\(564\) 0 0
\(565\) 1.00000 + 1.73205i 0.0420703 + 0.0728679i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.8207 + 12.0208i −0.872848 + 0.503939i −0.868293 0.496051i \(-0.834783\pi\)
−0.00455411 + 0.999990i \(0.501450\pi\)
\(570\) 0 0
\(571\) 13.8564 + 8.00000i 0.579873 + 0.334790i 0.761083 0.648655i \(-0.224668\pi\)
−0.181210 + 0.983444i \(0.558001\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.9706 −0.707721
\(576\) 0 0
\(577\) 18.0000 0.749350 0.374675 0.927156i \(-0.377754\pi\)
0.374675 + 0.927156i \(0.377754\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −19.5959 11.3137i −0.812976 0.469372i
\(582\) 0 0
\(583\) 20.7846 12.0000i 0.860811 0.496989i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −5.65685 9.79796i −0.233483 0.404405i 0.725347 0.688383i \(-0.241679\pi\)
−0.958831 + 0.283978i \(0.908346\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 46.6690i 1.91647i −0.285985 0.958234i \(-0.592321\pi\)
0.285985 0.958234i \(-0.407679\pi\)
\(594\) 0 0
\(595\) 24.0000i 0.983904i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −19.7990 + 34.2929i −0.808965 + 1.40117i 0.104617 + 0.994513i \(0.466638\pi\)
−0.913582 + 0.406656i \(0.866695\pi\)
\(600\) 0 0
\(601\) 13.0000 + 22.5167i 0.530281 + 0.918474i 0.999376 + 0.0353259i \(0.0112469\pi\)
−0.469095 + 0.883148i \(0.655420\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 25.7196 14.8492i 1.04565 0.603708i
\(606\) 0 0
\(607\) −24.2487 14.0000i −0.984225 0.568242i −0.0806818 0.996740i \(-0.525710\pi\)
−0.903543 + 0.428497i \(0.859043\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −22.6274 −0.915407
\(612\) 0 0
\(613\) 6.00000 0.242338 0.121169 0.992632i \(-0.461336\pi\)
0.121169 + 0.992632i \(0.461336\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.2702 + 13.4350i 0.936821 + 0.540874i 0.888962 0.457980i \(-0.151427\pi\)
0.0478587 + 0.998854i \(0.484760\pi\)
\(618\) 0 0
\(619\) −27.7128 + 16.0000i −1.11387 + 0.643094i −0.939829 0.341644i \(-0.889016\pi\)
−0.174042 + 0.984738i \(0.555683\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.48528 + 14.6969i 0.339956 + 0.588820i
\(624\) 0 0
\(625\) 0.500000 0.866025i 0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 25.4558i 1.01499i
\(630\) 0 0
\(631\) 12.0000i 0.477712i −0.971055 0.238856i \(-0.923228\pi\)
0.971055 0.238856i \(-0.0767725\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.48528 14.6969i 0.336728 0.583230i
\(636\) 0 0
\(637\) 18.0000 + 31.1769i 0.713186 + 1.23527i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.12372 + 3.53553i −0.241873 + 0.139645i −0.616037 0.787717i \(-0.711263\pi\)
0.374165 + 0.927362i \(0.377930\pi\)
\(642\) 0 0
\(643\) −6.92820 4.00000i −0.273222 0.157745i 0.357129 0.934055i \(-0.383756\pi\)
−0.630351 + 0.776310i \(0.717089\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.9706 −0.667182 −0.333591 0.942718i \(-0.608260\pi\)
−0.333591 + 0.942718i \(0.608260\pi\)
\(648\) 0 0
\(649\) −64.0000 −2.51222
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15.9217 9.19239i −0.623064 0.359726i 0.154997 0.987915i \(-0.450463\pi\)
−0.778061 + 0.628189i \(0.783796\pi\)
\(654\) 0 0
\(655\) −13.8564 + 8.00000i −0.541415 + 0.312586i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.65685 + 9.79796i 0.220360 + 0.381674i 0.954917 0.296872i \(-0.0959435\pi\)
−0.734557 + 0.678546i \(0.762610\pi\)
\(660\) 0 0
\(661\) 11.0000 19.0526i 0.427850 0.741059i −0.568831 0.822454i \(-0.692604\pi\)
0.996682 + 0.0813955i \(0.0259377\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 8.00000i 0.309761i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.65685 9.79796i 0.218380 0.378246i
\(672\) 0 0
\(673\) 7.00000 + 12.1244i 0.269830 + 0.467360i 0.968818 0.247774i \(-0.0796991\pi\)
−0.698988 + 0.715134i \(0.746366\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −28.1691 + 16.2635i −1.08263 + 0.625055i −0.931604 0.363475i \(-0.881590\pi\)
−0.151024 + 0.988530i \(0.548257\pi\)
\(678\) 0 0
\(679\) −27.7128 16.0000i −1.06352 0.614024i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 16.9706 0.649361 0.324680 0.945824i \(-0.394743\pi\)
0.324680 + 0.945824i \(0.394743\pi\)
\(684\) 0 0
\(685\) 2.00000 0.0764161
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.6969 8.48528i −0.559909 0.323263i
\(690\) 0 0
\(691\) 6.92820 4.00000i 0.263561 0.152167i −0.362397 0.932024i \(-0.618041\pi\)
0.625958 + 0.779857i \(0.284708\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.65685 9.79796i −0.214577 0.371658i
\(696\) 0 0
\(697\) −21.0000 + 36.3731i −0.795432 + 1.37773i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.7279i 0.480727i −0.970683 0.240363i \(-0.922733\pi\)
0.970683 0.240363i \(-0.0772666\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −36.7696 + 63.6867i −1.38286 + 2.39519i
\(708\) 0 0
\(709\) −10.0000 17.3205i −0.375558 0.650485i 0.614852 0.788642i \(-0.289216\pi\)
−0.990410 + 0.138157i \(0.955882\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 19.5959 11.3137i 0.733873 0.423702i
\(714\) 0 0
\(715\) −27.7128 16.0000i −1.03640 0.598366i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −16.9706 −0.632895 −0.316448 0.948610i \(-0.602490\pi\)
−0.316448 + 0.948610i \(0.602490\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.67423 + 2.12132i 0.136458 + 0.0787839i
\(726\) 0 0
\(727\) 3.46410 2.00000i 0.128476 0.0741759i −0.434384 0.900728i \(-0.643034\pi\)
0.562861 + 0.826552i \(0.309701\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 16.9706 + 29.3939i 0.627679 + 1.08717i
\(732\) 0 0
\(733\) −2.00000 + 3.46410i −0.0738717 + 0.127950i −0.900595 0.434659i \(-0.856869\pi\)
0.826723 + 0.562609i \(0.190202\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 45.2548i 1.66698i
\(738\) 0 0
\(739\) 16.0000i 0.588570i 0.955718 + 0.294285i \(0.0950814\pi\)
−0.955718 + 0.294285i \(0.904919\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.65685 9.79796i 0.207530 0.359452i −0.743406 0.668840i \(-0.766791\pi\)
0.950936 + 0.309388i \(0.100124\pi\)
\(744\) 0 0
\(745\) −1.00000 1.73205i −0.0366372 0.0634574i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 17.3205 + 10.0000i 0.632034 + 0.364905i 0.781540 0.623856i \(-0.214435\pi\)
−0.149505 + 0.988761i \(0.547768\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 28.2843 1.02937
\(756\) 0 0
\(757\) 20.0000 0.726912 0.363456 0.931611i \(-0.381597\pi\)
0.363456 + 0.931611i \(0.381597\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.57321 + 4.94975i 0.310779 + 0.179428i 0.647275 0.762257i \(-0.275909\pi\)
−0.336496 + 0.941685i \(0.609242\pi\)
\(762\) 0 0
\(763\) −41.5692 + 24.0000i −1.50491 + 0.868858i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 22.6274 + 39.1918i 0.817029 + 1.41514i
\(768\) 0 0
\(769\) −1.00000 + 1.73205i −0.0360609 + 0.0624593i −0.883493 0.468445i \(-0.844814\pi\)
0.847432 + 0.530904i \(0.178148\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4.24264i 0.152597i 0.997085 + 0.0762986i \(0.0243102\pi\)
−0.997085 + 0.0762986i \(0.975690\pi\)
\(774\) 0 0
\(775\) 12.0000i 0.431053i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −16.0000 27.7128i −0.572525 0.991642i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.44949 1.41421i 0.0874260 0.0504754i
\(786\) 0 0
\(787\) 27.7128 + 16.0000i 0.987855 + 0.570338i 0.904632 0.426193i \(-0.140145\pi\)
0.0832226 + 0.996531i \(0.473479\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.65685 0.201135
\(792\) 0 0
\(793\) −8.00000 −0.284088
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −6.12372 3.53553i −0.216913 0.125235i 0.387607 0.921825i \(-0.373302\pi\)
−0.604520 + 0.796590i \(0.706635\pi\)
\(798\) 0 0
\(799\) −20.7846 + 12.0000i −0.735307 + 0.424529i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 16.0000 27.7128i 0.563926 0.976748i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 21.2132i 0.745817i −0.927868 0.372908i \(-0.878361\pi\)
0.927868 0.372908i \(-0.121639\pi\)
\(810\) 0 0
\(811\) 48.0000i 1.68551i 0.538299 + 0.842754i \(0.319067\pi\)
−0.538299 + 0.842754i \(0.680933\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −16.9706 + 29.3939i −0.594453 + 1.02962i
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 35.5176 20.5061i 1.23957 0.715668i 0.270566 0.962701i \(-0.412789\pi\)
0.969007 + 0.247034i \(0.0794559\pi\)
\(822\) 0 0
\(823\) 45.0333 + 26.0000i 1.56976 + 0.906303i 0.996196 + 0.0871445i \(0.0277742\pi\)
0.573567 + 0.819159i \(0.305559\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 33.9411 1.18025 0.590124 0.807312i \(-0.299079\pi\)
0.590124 + 0.807312i \(0.299079\pi\)
\(828\) 0 0
\(829\) 12.0000 0.416777 0.208389 0.978046i \(-0.433178\pi\)
0.208389 + 0.978046i \(0.433178\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 33.0681 + 19.0919i 1.14574 + 0.661495i
\(834\) 0 0
\(835\) −13.8564 + 8.00000i −0.479521 + 0.276851i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.82843 + 4.89898i 0.0976481 + 0.169132i 0.910711 0.413045i \(-0.135535\pi\)
−0.813063 + 0.582176i \(0.802201\pi\)
\(840\) 0 0
\(841\) −13.5000 + 23.3827i −0.465517 + 0.806300i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.24264i 0.145951i
\(846\) 0 0
\(847\) 84.0000i 2.88627i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −16.9706 + 29.3939i −0.581743 + 1.00761i
\(852\) 0 0
\(853\) −5.00000 8.66025i −0.171197 0.296521i 0.767642 0.640879i \(-0.221430\pi\)
−0.938839 + 0.344358i \(0.888097\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 20.8207 12.0208i 0.711220 0.410623i −0.100292 0.994958i \(-0.531978\pi\)
0.811513 + 0.584335i \(0.198644\pi\)
\(858\) 0 0
\(859\) −6.92820 4.00000i −0.236387 0.136478i 0.377128 0.926161i \(-0.376912\pi\)
−0.613515 + 0.789683i \(0.710245\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 33.9411 1.15537 0.577685 0.816260i \(-0.303956\pi\)
0.577685 + 0.816260i \(0.303956\pi\)
\(864\) 0 0
\(865\) 22.0000 0.748022
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −19.5959 11.3137i −0.664746 0.383791i
\(870\) 0 0
\(871\) 27.7128 16.0000i 0.939013 0.542139i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −22.6274 39.1918i −0.764946 1.32493i
\(876\) 0 0
\(877\) −23.0000 + 39.8372i −0.776655 + 1.34521i 0.157205 + 0.987566i \(0.449752\pi\)
−0.933860 + 0.357640i \(0.883582\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 12.7279i 0.428815i −0.976744 0.214407i \(-0.931218\pi\)
0.976744 0.214407i \(-0.0687820\pi\)
\(882\) 0 0
\(883\) 24.0000i 0.807664i 0.914833 + 0.403832i \(0.132322\pi\)
−0.914833 + 0.403832i \(0.867678\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 28.2843 48.9898i 0.949693 1.64492i 0.203622 0.979050i \(-0.434729\pi\)
0.746071 0.665867i \(-0.231938\pi\)
\(888\) 0 0
\(889\) −24.0000 41.5692i −0.804934 1.39419i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.65685 −0.188667
\(900\) 0 0
\(901\) −18.0000 −0.599667
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −14.6969 8.48528i −0.488543 0.282060i
\(906\) 0 0
\(907\) 6.92820 4.00000i 0.230047 0.132818i −0.380547 0.924762i \(-0.624264\pi\)
0.610594 + 0.791944i \(0.290931\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.65685 + 9.79796i 0.187420 + 0.324621i 0.944389 0.328830i \(-0.106654\pi\)
−0.756969 + 0.653450i \(0.773321\pi\)
\(912\) 0 0
\(913\) 16.0000 27.7128i 0.529523 0.917160i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 45.2548i 1.49445i
\(918\) 0 0
\(919\) 36.0000i 1.18753i −0.804638 0.593765i \(-0.797641\pi\)
0.804638 0.593765i \(-0.202359\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −11.3137 + 19.5959i −0.372395 + 0.645007i
\(924\) 0 0
\(925\) 9.00000 + 15.5885i 0.295918 + 0.512545i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 42.8661 24.7487i 1.40639 0.811980i 0.411352 0.911476i \(-0.365057\pi\)
0.995038 + 0.0994967i \(0.0317233\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −33.9411 −1.10999
\(936\) 0 0
\(937\) 6.00000 0.196011 0.0980057 0.995186i \(-0.468754\pi\)
0.0980057 + 0.995186i \(0.468754\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 35.5176 + 20.5061i 1.15784 + 0.668480i 0.950786 0.309850i \(-0.100279\pi\)
0.207055 + 0.978329i \(0.433612\pi\)
\(942\) 0 0
\(943\) 48.4974 28.0000i 1.57929 0.911805i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.65685 + 9.79796i 0.183823 + 0.318391i 0.943179 0.332284i \(-0.107819\pi\)
−0.759356 + 0.650675i \(0.774486\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.2132i 0.687163i 0.939123 + 0.343582i \(0.111640\pi\)
−0.939123 + 0.343582i \(0.888360\pi\)
\(954\) 0 0
\(955\) 16.0000i 0.517748i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.82843 4.89898i 0.0913347 0.158196i
\(960\) 0 0
\(961\) −7.50000 12.9904i −0.241935 0.419045i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −2.44949 + 1.41421i −0.0788519 + 0.0455251i
\(966\) 0 0
\(967\) 24.2487 + 14.0000i 0.779786 + 0.450210i 0.836354 0.548189i \(-0.184683\pi\)
−0.0565684 + 0.998399i \(0.518016\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −5.65685 −0.181537 −0.0907685 0.995872i \(-0.528932\pi\)
−0.0907685 + 0.995872i \(0.528932\pi\)
\(972\) 0 0
\(973\) −32.0000 −1.02587
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −45.3156 26.1630i −1.44977 0.837027i −0.451306 0.892369i \(-0.649042\pi\)
−0.998467 + 0.0553424i \(0.982375\pi\)
\(978\) 0 0
\(979\) −20.7846 + 12.0000i −0.664279 + 0.383522i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −28.2843 48.9898i −0.902128 1.56253i −0.824726 0.565532i \(-0.808671\pi\)
−0.0774017 0.997000i \(-0.524662\pi\)
\(984\) 0 0
\(985\) 5.00000 8.66025i 0.159313 0.275939i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 45.2548i 1.43902i
\(990\) 0 0
\(991\) 12.0000i 0.381193i 0.981669 + 0.190596i \(0.0610421\pi\)
−0.981669 + 0.190596i \(0.938958\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 14.1421 24.4949i 0.448336 0.776540i
\(996\) 0 0
\(997\) −19.0000 32.9090i −0.601736 1.04224i −0.992558 0.121771i \(-0.961143\pi\)
0.390822 0.920466i \(-0.372191\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2592.2.s.d.863.1 8
3.2 odd 2 inner 2592.2.s.d.863.3 8
4.3 odd 2 inner 2592.2.s.d.863.2 8
9.2 odd 6 inner 2592.2.s.d.1727.2 8
9.4 even 3 288.2.c.a.287.3 yes 4
9.5 odd 6 288.2.c.a.287.1 4
9.7 even 3 inner 2592.2.s.d.1727.4 8
12.11 even 2 inner 2592.2.s.d.863.4 8
36.7 odd 6 inner 2592.2.s.d.1727.3 8
36.11 even 6 inner 2592.2.s.d.1727.1 8
36.23 even 6 288.2.c.a.287.2 yes 4
36.31 odd 6 288.2.c.a.287.4 yes 4
45.4 even 6 7200.2.h.d.1151.4 4
45.13 odd 12 7200.2.o.a.7199.4 4
45.14 odd 6 7200.2.h.d.1151.3 4
45.22 odd 12 7200.2.o.n.7199.3 4
45.23 even 12 7200.2.o.a.7199.2 4
45.32 even 12 7200.2.o.n.7199.1 4
72.5 odd 6 576.2.c.c.575.3 4
72.13 even 6 576.2.c.c.575.1 4
72.59 even 6 576.2.c.c.575.4 4
72.67 odd 6 576.2.c.c.575.2 4
144.5 odd 12 2304.2.f.c.1151.4 4
144.13 even 12 2304.2.f.e.1151.4 4
144.59 even 12 2304.2.f.e.1151.3 4
144.67 odd 12 2304.2.f.c.1151.3 4
144.77 odd 12 2304.2.f.e.1151.2 4
144.85 even 12 2304.2.f.c.1151.2 4
144.131 even 12 2304.2.f.c.1151.1 4
144.139 odd 12 2304.2.f.e.1151.1 4
180.23 odd 12 7200.2.o.n.7199.4 4
180.59 even 6 7200.2.h.d.1151.2 4
180.67 even 12 7200.2.o.a.7199.1 4
180.103 even 12 7200.2.o.n.7199.2 4
180.139 odd 6 7200.2.h.d.1151.1 4
180.167 odd 12 7200.2.o.a.7199.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.c.a.287.1 4 9.5 odd 6
288.2.c.a.287.2 yes 4 36.23 even 6
288.2.c.a.287.3 yes 4 9.4 even 3
288.2.c.a.287.4 yes 4 36.31 odd 6
576.2.c.c.575.1 4 72.13 even 6
576.2.c.c.575.2 4 72.67 odd 6
576.2.c.c.575.3 4 72.5 odd 6
576.2.c.c.575.4 4 72.59 even 6
2304.2.f.c.1151.1 4 144.131 even 12
2304.2.f.c.1151.2 4 144.85 even 12
2304.2.f.c.1151.3 4 144.67 odd 12
2304.2.f.c.1151.4 4 144.5 odd 12
2304.2.f.e.1151.1 4 144.139 odd 12
2304.2.f.e.1151.2 4 144.77 odd 12
2304.2.f.e.1151.3 4 144.59 even 12
2304.2.f.e.1151.4 4 144.13 even 12
2592.2.s.d.863.1 8 1.1 even 1 trivial
2592.2.s.d.863.2 8 4.3 odd 2 inner
2592.2.s.d.863.3 8 3.2 odd 2 inner
2592.2.s.d.863.4 8 12.11 even 2 inner
2592.2.s.d.1727.1 8 36.11 even 6 inner
2592.2.s.d.1727.2 8 9.2 odd 6 inner
2592.2.s.d.1727.3 8 36.7 odd 6 inner
2592.2.s.d.1727.4 8 9.7 even 3 inner
7200.2.h.d.1151.1 4 180.139 odd 6
7200.2.h.d.1151.2 4 180.59 even 6
7200.2.h.d.1151.3 4 45.14 odd 6
7200.2.h.d.1151.4 4 45.4 even 6
7200.2.o.a.7199.1 4 180.67 even 12
7200.2.o.a.7199.2 4 45.23 even 12
7200.2.o.a.7199.3 4 180.167 odd 12
7200.2.o.a.7199.4 4 45.13 odd 12
7200.2.o.n.7199.1 4 45.32 even 12
7200.2.o.n.7199.2 4 180.103 even 12
7200.2.o.n.7199.3 4 45.22 odd 12
7200.2.o.n.7199.4 4 180.23 odd 12