Properties

Label 256.12.a.q.1.2
Level $256$
Weight $12$
Character 256.1
Self dual yes
Analytic conductor $196.696$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [256,12,Mod(1,256)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("256.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(256, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 256 = 2^{8} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 256.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(196.695854223\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} - 51211 x^{10} + 256110 x^{9} + 921161404 x^{8} - 3686182342 x^{7} + \cdots + 37\!\cdots\!47 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{126}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 128)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-139.567\) of defining polynomial
Character \(\chi\) \(=\) 256.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-784.336 q^{3} +11907.7 q^{5} +21148.3 q^{7} +438037. q^{9} -561003. q^{11} -1.10728e6 q^{13} -9.33962e6 q^{15} +5.37054e6 q^{17} +8.72557e6 q^{19} -1.65874e7 q^{21} -2.29090e7 q^{23} +9.29644e7 q^{25} -2.04625e8 q^{27} +1.74228e8 q^{29} +2.58795e8 q^{31} +4.40015e8 q^{33} +2.51827e8 q^{35} -3.35460e8 q^{37} +8.68483e8 q^{39} +4.92499e8 q^{41} +7.74649e8 q^{43} +5.21599e9 q^{45} -1.19986e9 q^{47} -1.53008e9 q^{49} -4.21231e9 q^{51} -1.79948e9 q^{53} -6.68023e9 q^{55} -6.84378e9 q^{57} -9.05069e8 q^{59} +9.99168e9 q^{61} +9.26374e9 q^{63} -1.31852e10 q^{65} -1.13658e10 q^{67} +1.79684e10 q^{69} +2.40027e10 q^{71} +5.92056e9 q^{73} -7.29153e10 q^{75} -1.18643e10 q^{77} -1.80146e10 q^{79} +8.28982e10 q^{81} -2.45012e10 q^{83} +6.39506e10 q^{85} -1.36654e11 q^{87} +8.73556e10 q^{89} -2.34172e10 q^{91} -2.02982e11 q^{93} +1.03901e11 q^{95} -1.35707e11 q^{97} -2.45740e11 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 1152028 q^{9} + 26470216 q^{17} + 207502500 q^{25} + 935847712 q^{33} + 2031735176 q^{41} - 2342764308 q^{49} - 23753487776 q^{57} - 39461105920 q^{65} + 43591631448 q^{73} + 232401225292 q^{81}+ \cdots - 285441034488 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −784.336 −1.86353 −0.931763 0.363067i \(-0.881730\pi\)
−0.931763 + 0.363067i \(0.881730\pi\)
\(4\) 0 0
\(5\) 11907.7 1.70409 0.852043 0.523472i \(-0.175363\pi\)
0.852043 + 0.523472i \(0.175363\pi\)
\(6\) 0 0
\(7\) 21148.3 0.475594 0.237797 0.971315i \(-0.423575\pi\)
0.237797 + 0.971315i \(0.423575\pi\)
\(8\) 0 0
\(9\) 438037. 2.47273
\(10\) 0 0
\(11\) −561003. −1.05028 −0.525140 0.851016i \(-0.675987\pi\)
−0.525140 + 0.851016i \(0.675987\pi\)
\(12\) 0 0
\(13\) −1.10728e6 −0.827124 −0.413562 0.910476i \(-0.635715\pi\)
−0.413562 + 0.910476i \(0.635715\pi\)
\(14\) 0 0
\(15\) −9.33962e6 −3.17561
\(16\) 0 0
\(17\) 5.37054e6 0.917379 0.458689 0.888597i \(-0.348319\pi\)
0.458689 + 0.888597i \(0.348319\pi\)
\(18\) 0 0
\(19\) 8.72557e6 0.808442 0.404221 0.914661i \(-0.367543\pi\)
0.404221 + 0.914661i \(0.367543\pi\)
\(20\) 0 0
\(21\) −1.65874e7 −0.886282
\(22\) 0 0
\(23\) −2.29090e7 −0.742171 −0.371085 0.928599i \(-0.621014\pi\)
−0.371085 + 0.928599i \(0.621014\pi\)
\(24\) 0 0
\(25\) 9.29644e7 1.90391
\(26\) 0 0
\(27\) −2.04625e8 −2.74447
\(28\) 0 0
\(29\) 1.74228e8 1.57736 0.788678 0.614806i \(-0.210766\pi\)
0.788678 + 0.614806i \(0.210766\pi\)
\(30\) 0 0
\(31\) 2.58795e8 1.62355 0.811777 0.583968i \(-0.198501\pi\)
0.811777 + 0.583968i \(0.198501\pi\)
\(32\) 0 0
\(33\) 4.40015e8 1.95723
\(34\) 0 0
\(35\) 2.51827e8 0.810453
\(36\) 0 0
\(37\) −3.35460e8 −0.795302 −0.397651 0.917537i \(-0.630174\pi\)
−0.397651 + 0.917537i \(0.630174\pi\)
\(38\) 0 0
\(39\) 8.68483e8 1.54137
\(40\) 0 0
\(41\) 4.92499e8 0.663888 0.331944 0.943299i \(-0.392296\pi\)
0.331944 + 0.943299i \(0.392296\pi\)
\(42\) 0 0
\(43\) 7.74649e8 0.803579 0.401789 0.915732i \(-0.368388\pi\)
0.401789 + 0.915732i \(0.368388\pi\)
\(44\) 0 0
\(45\) 5.21599e9 4.21375
\(46\) 0 0
\(47\) −1.19986e9 −0.763118 −0.381559 0.924344i \(-0.624613\pi\)
−0.381559 + 0.924344i \(0.624613\pi\)
\(48\) 0 0
\(49\) −1.53008e9 −0.773810
\(50\) 0 0
\(51\) −4.21231e9 −1.70956
\(52\) 0 0
\(53\) −1.79948e9 −0.591058 −0.295529 0.955334i \(-0.595496\pi\)
−0.295529 + 0.955334i \(0.595496\pi\)
\(54\) 0 0
\(55\) −6.68023e9 −1.78977
\(56\) 0 0
\(57\) −6.84378e9 −1.50655
\(58\) 0 0
\(59\) −9.05069e8 −0.164815 −0.0824073 0.996599i \(-0.526261\pi\)
−0.0824073 + 0.996599i \(0.526261\pi\)
\(60\) 0 0
\(61\) 9.99168e9 1.51469 0.757346 0.653014i \(-0.226496\pi\)
0.757346 + 0.653014i \(0.226496\pi\)
\(62\) 0 0
\(63\) 9.26374e9 1.17602
\(64\) 0 0
\(65\) −1.31852e10 −1.40949
\(66\) 0 0
\(67\) −1.13658e10 −1.02846 −0.514230 0.857652i \(-0.671922\pi\)
−0.514230 + 0.857652i \(0.671922\pi\)
\(68\) 0 0
\(69\) 1.79684e10 1.38305
\(70\) 0 0
\(71\) 2.40027e10 1.57884 0.789421 0.613852i \(-0.210381\pi\)
0.789421 + 0.613852i \(0.210381\pi\)
\(72\) 0 0
\(73\) 5.92056e9 0.334262 0.167131 0.985935i \(-0.446550\pi\)
0.167131 + 0.985935i \(0.446550\pi\)
\(74\) 0 0
\(75\) −7.29153e10 −3.54799
\(76\) 0 0
\(77\) −1.18643e10 −0.499507
\(78\) 0 0
\(79\) −1.80146e10 −0.658682 −0.329341 0.944211i \(-0.606827\pi\)
−0.329341 + 0.944211i \(0.606827\pi\)
\(80\) 0 0
\(81\) 8.28982e10 2.64166
\(82\) 0 0
\(83\) −2.45012e10 −0.682743 −0.341372 0.939928i \(-0.610891\pi\)
−0.341372 + 0.939928i \(0.610891\pi\)
\(84\) 0 0
\(85\) 6.39506e10 1.56329
\(86\) 0 0
\(87\) −1.36654e11 −2.93944
\(88\) 0 0
\(89\) 8.73556e10 1.65823 0.829117 0.559075i \(-0.188844\pi\)
0.829117 + 0.559075i \(0.188844\pi\)
\(90\) 0 0
\(91\) −2.34172e10 −0.393375
\(92\) 0 0
\(93\) −2.02982e11 −3.02553
\(94\) 0 0
\(95\) 1.03901e11 1.37765
\(96\) 0 0
\(97\) −1.35707e11 −1.60456 −0.802281 0.596947i \(-0.796380\pi\)
−0.802281 + 0.596947i \(0.796380\pi\)
\(98\) 0 0
\(99\) −2.45740e11 −2.59706
\(100\) 0 0
\(101\) −1.17395e11 −1.11143 −0.555716 0.831372i \(-0.687556\pi\)
−0.555716 + 0.831372i \(0.687556\pi\)
\(102\) 0 0
\(103\) 1.84106e10 0.156481 0.0782407 0.996934i \(-0.475070\pi\)
0.0782407 + 0.996934i \(0.475070\pi\)
\(104\) 0 0
\(105\) −1.97517e11 −1.51030
\(106\) 0 0
\(107\) −1.08175e11 −0.745616 −0.372808 0.927909i \(-0.621605\pi\)
−0.372808 + 0.927909i \(0.621605\pi\)
\(108\) 0 0
\(109\) −1.80324e9 −0.0112256 −0.00561279 0.999984i \(-0.501787\pi\)
−0.00561279 + 0.999984i \(0.501787\pi\)
\(110\) 0 0
\(111\) 2.63114e11 1.48207
\(112\) 0 0
\(113\) 1.50400e11 0.767921 0.383960 0.923350i \(-0.374560\pi\)
0.383960 + 0.923350i \(0.374560\pi\)
\(114\) 0 0
\(115\) −2.72793e11 −1.26472
\(116\) 0 0
\(117\) −4.85031e11 −2.04525
\(118\) 0 0
\(119\) 1.13578e11 0.436300
\(120\) 0 0
\(121\) 2.94126e10 0.103089
\(122\) 0 0
\(123\) −3.86285e11 −1.23717
\(124\) 0 0
\(125\) 5.25560e11 1.54034
\(126\) 0 0
\(127\) 4.09141e11 1.09888 0.549442 0.835532i \(-0.314840\pi\)
0.549442 + 0.835532i \(0.314840\pi\)
\(128\) 0 0
\(129\) −6.07585e11 −1.49749
\(130\) 0 0
\(131\) 2.82610e11 0.640023 0.320012 0.947414i \(-0.396313\pi\)
0.320012 + 0.947414i \(0.396313\pi\)
\(132\) 0 0
\(133\) 1.84531e11 0.384490
\(134\) 0 0
\(135\) −2.43661e12 −4.67682
\(136\) 0 0
\(137\) 5.04027e9 0.00892258 0.00446129 0.999990i \(-0.498580\pi\)
0.00446129 + 0.999990i \(0.498580\pi\)
\(138\) 0 0
\(139\) −5.20421e11 −0.850695 −0.425347 0.905030i \(-0.639848\pi\)
−0.425347 + 0.905030i \(0.639848\pi\)
\(140\) 0 0
\(141\) 9.41093e11 1.42209
\(142\) 0 0
\(143\) 6.21189e11 0.868712
\(144\) 0 0
\(145\) 2.07465e12 2.68795
\(146\) 0 0
\(147\) 1.20009e12 1.44202
\(148\) 0 0
\(149\) −3.21703e11 −0.358865 −0.179432 0.983770i \(-0.557426\pi\)
−0.179432 + 0.983770i \(0.557426\pi\)
\(150\) 0 0
\(151\) 6.64644e11 0.688995 0.344497 0.938787i \(-0.388049\pi\)
0.344497 + 0.938787i \(0.388049\pi\)
\(152\) 0 0
\(153\) 2.35249e12 2.26843
\(154\) 0 0
\(155\) 3.08164e12 2.76668
\(156\) 0 0
\(157\) −1.91656e11 −0.160352 −0.0801760 0.996781i \(-0.525548\pi\)
−0.0801760 + 0.996781i \(0.525548\pi\)
\(158\) 0 0
\(159\) 1.41140e12 1.10145
\(160\) 0 0
\(161\) −4.84488e11 −0.352972
\(162\) 0 0
\(163\) 1.19385e12 0.812679 0.406339 0.913722i \(-0.366805\pi\)
0.406339 + 0.913722i \(0.366805\pi\)
\(164\) 0 0
\(165\) 5.23955e12 3.33528
\(166\) 0 0
\(167\) 3.53708e11 0.210719 0.105360 0.994434i \(-0.466401\pi\)
0.105360 + 0.994434i \(0.466401\pi\)
\(168\) 0 0
\(169\) −5.66083e11 −0.315866
\(170\) 0 0
\(171\) 3.82212e12 1.99906
\(172\) 0 0
\(173\) −2.41578e12 −1.18523 −0.592617 0.805484i \(-0.701905\pi\)
−0.592617 + 0.805484i \(0.701905\pi\)
\(174\) 0 0
\(175\) 1.96604e12 0.905488
\(176\) 0 0
\(177\) 7.09879e11 0.307136
\(178\) 0 0
\(179\) −2.07221e12 −0.842834 −0.421417 0.906867i \(-0.638467\pi\)
−0.421417 + 0.906867i \(0.638467\pi\)
\(180\) 0 0
\(181\) −8.77418e11 −0.335718 −0.167859 0.985811i \(-0.553685\pi\)
−0.167859 + 0.985811i \(0.553685\pi\)
\(182\) 0 0
\(183\) −7.83684e12 −2.82267
\(184\) 0 0
\(185\) −3.99455e12 −1.35526
\(186\) 0 0
\(187\) −3.01289e12 −0.963505
\(188\) 0 0
\(189\) −4.32748e12 −1.30525
\(190\) 0 0
\(191\) 2.74196e12 0.780510 0.390255 0.920707i \(-0.372387\pi\)
0.390255 + 0.920707i \(0.372387\pi\)
\(192\) 0 0
\(193\) 5.39488e11 0.145016 0.0725081 0.997368i \(-0.476900\pi\)
0.0725081 + 0.997368i \(0.476900\pi\)
\(194\) 0 0
\(195\) 1.03416e13 2.62662
\(196\) 0 0
\(197\) −6.83190e11 −0.164050 −0.0820252 0.996630i \(-0.526139\pi\)
−0.0820252 + 0.996630i \(0.526139\pi\)
\(198\) 0 0
\(199\) 4.65463e12 1.05729 0.528644 0.848843i \(-0.322701\pi\)
0.528644 + 0.848843i \(0.322701\pi\)
\(200\) 0 0
\(201\) 8.91459e12 1.91656
\(202\) 0 0
\(203\) 3.68463e12 0.750181
\(204\) 0 0
\(205\) 5.86452e12 1.13132
\(206\) 0 0
\(207\) −1.00350e13 −1.83519
\(208\) 0 0
\(209\) −4.89507e12 −0.849091
\(210\) 0 0
\(211\) 2.06896e12 0.340565 0.170282 0.985395i \(-0.445532\pi\)
0.170282 + 0.985395i \(0.445532\pi\)
\(212\) 0 0
\(213\) −1.88262e13 −2.94221
\(214\) 0 0
\(215\) 9.22426e12 1.36937
\(216\) 0 0
\(217\) 5.47308e12 0.772153
\(218\) 0 0
\(219\) −4.64371e12 −0.622906
\(220\) 0 0
\(221\) −5.94671e12 −0.758786
\(222\) 0 0
\(223\) 4.03814e12 0.490348 0.245174 0.969479i \(-0.421155\pi\)
0.245174 + 0.969479i \(0.421155\pi\)
\(224\) 0 0
\(225\) 4.07218e13 4.70786
\(226\) 0 0
\(227\) −1.10735e13 −1.21939 −0.609694 0.792637i \(-0.708708\pi\)
−0.609694 + 0.792637i \(0.708708\pi\)
\(228\) 0 0
\(229\) −1.38640e12 −0.145477 −0.0727383 0.997351i \(-0.523174\pi\)
−0.0727383 + 0.997351i \(0.523174\pi\)
\(230\) 0 0
\(231\) 9.30557e12 0.930845
\(232\) 0 0
\(233\) 1.76073e13 1.67972 0.839859 0.542805i \(-0.182638\pi\)
0.839859 + 0.542805i \(0.182638\pi\)
\(234\) 0 0
\(235\) −1.42875e13 −1.30042
\(236\) 0 0
\(237\) 1.41295e13 1.22747
\(238\) 0 0
\(239\) −4.02394e11 −0.0333782 −0.0166891 0.999861i \(-0.505313\pi\)
−0.0166891 + 0.999861i \(0.505313\pi\)
\(240\) 0 0
\(241\) −6.87906e12 −0.545049 −0.272524 0.962149i \(-0.587859\pi\)
−0.272524 + 0.962149i \(0.587859\pi\)
\(242\) 0 0
\(243\) −2.87713e13 −2.17834
\(244\) 0 0
\(245\) −1.82196e13 −1.31864
\(246\) 0 0
\(247\) −9.66168e12 −0.668681
\(248\) 0 0
\(249\) 1.92172e13 1.27231
\(250\) 0 0
\(251\) 2.50600e13 1.58772 0.793862 0.608097i \(-0.208067\pi\)
0.793862 + 0.608097i \(0.208067\pi\)
\(252\) 0 0
\(253\) 1.28520e13 0.779488
\(254\) 0 0
\(255\) −5.01588e13 −2.91324
\(256\) 0 0
\(257\) 2.61595e12 0.145545 0.0727724 0.997349i \(-0.476815\pi\)
0.0727724 + 0.997349i \(0.476815\pi\)
\(258\) 0 0
\(259\) −7.09442e12 −0.378241
\(260\) 0 0
\(261\) 7.63184e13 3.90038
\(262\) 0 0
\(263\) −1.35684e12 −0.0664924 −0.0332462 0.999447i \(-0.510585\pi\)
−0.0332462 + 0.999447i \(0.510585\pi\)
\(264\) 0 0
\(265\) −2.14276e13 −1.00721
\(266\) 0 0
\(267\) −6.85162e13 −3.09016
\(268\) 0 0
\(269\) 6.55358e12 0.283688 0.141844 0.989889i \(-0.454697\pi\)
0.141844 + 0.989889i \(0.454697\pi\)
\(270\) 0 0
\(271\) −2.39710e13 −0.996220 −0.498110 0.867114i \(-0.665972\pi\)
−0.498110 + 0.867114i \(0.665972\pi\)
\(272\) 0 0
\(273\) 1.83669e13 0.733065
\(274\) 0 0
\(275\) −5.21533e13 −1.99964
\(276\) 0 0
\(277\) 2.54063e13 0.936058 0.468029 0.883713i \(-0.344964\pi\)
0.468029 + 0.883713i \(0.344964\pi\)
\(278\) 0 0
\(279\) 1.13362e14 4.01461
\(280\) 0 0
\(281\) 9.10879e12 0.310153 0.155076 0.987902i \(-0.450438\pi\)
0.155076 + 0.987902i \(0.450438\pi\)
\(282\) 0 0
\(283\) −3.57642e13 −1.17118 −0.585589 0.810608i \(-0.699137\pi\)
−0.585589 + 0.810608i \(0.699137\pi\)
\(284\) 0 0
\(285\) −8.14934e13 −2.56730
\(286\) 0 0
\(287\) 1.04155e13 0.315741
\(288\) 0 0
\(289\) −5.42922e12 −0.158416
\(290\) 0 0
\(291\) 1.06440e14 2.99014
\(292\) 0 0
\(293\) 8.24513e11 0.0223062 0.0111531 0.999938i \(-0.496450\pi\)
0.0111531 + 0.999938i \(0.496450\pi\)
\(294\) 0 0
\(295\) −1.07773e13 −0.280858
\(296\) 0 0
\(297\) 1.14795e14 2.88246
\(298\) 0 0
\(299\) 2.53668e13 0.613867
\(300\) 0 0
\(301\) 1.63825e13 0.382177
\(302\) 0 0
\(303\) 9.20774e13 2.07118
\(304\) 0 0
\(305\) 1.18978e14 2.58117
\(306\) 0 0
\(307\) −2.09611e13 −0.438685 −0.219342 0.975648i \(-0.570391\pi\)
−0.219342 + 0.975648i \(0.570391\pi\)
\(308\) 0 0
\(309\) −1.44401e13 −0.291607
\(310\) 0 0
\(311\) −7.82526e13 −1.52516 −0.762582 0.646892i \(-0.776069\pi\)
−0.762582 + 0.646892i \(0.776069\pi\)
\(312\) 0 0
\(313\) 3.47387e13 0.653611 0.326806 0.945092i \(-0.394028\pi\)
0.326806 + 0.945092i \(0.394028\pi\)
\(314\) 0 0
\(315\) 1.10309e14 2.00403
\(316\) 0 0
\(317\) 9.15418e13 1.60618 0.803088 0.595860i \(-0.203189\pi\)
0.803088 + 0.595860i \(0.203189\pi\)
\(318\) 0 0
\(319\) −9.77426e13 −1.65667
\(320\) 0 0
\(321\) 8.48454e13 1.38947
\(322\) 0 0
\(323\) 4.68610e13 0.741647
\(324\) 0 0
\(325\) −1.02938e14 −1.57477
\(326\) 0 0
\(327\) 1.41435e12 0.0209192
\(328\) 0 0
\(329\) −2.53750e13 −0.362935
\(330\) 0 0
\(331\) 3.51219e13 0.485875 0.242937 0.970042i \(-0.421889\pi\)
0.242937 + 0.970042i \(0.421889\pi\)
\(332\) 0 0
\(333\) −1.46944e14 −1.96657
\(334\) 0 0
\(335\) −1.35340e14 −1.75259
\(336\) 0 0
\(337\) 5.42414e13 0.679777 0.339889 0.940466i \(-0.389611\pi\)
0.339889 + 0.940466i \(0.389611\pi\)
\(338\) 0 0
\(339\) −1.17964e14 −1.43104
\(340\) 0 0
\(341\) −1.45185e14 −1.70519
\(342\) 0 0
\(343\) −7.41756e13 −0.843614
\(344\) 0 0
\(345\) 2.13962e14 2.35684
\(346\) 0 0
\(347\) 1.38780e14 1.48086 0.740430 0.672134i \(-0.234622\pi\)
0.740430 + 0.672134i \(0.234622\pi\)
\(348\) 0 0
\(349\) 1.70059e14 1.75816 0.879080 0.476674i \(-0.158158\pi\)
0.879080 + 0.476674i \(0.158158\pi\)
\(350\) 0 0
\(351\) 2.26578e14 2.27002
\(352\) 0 0
\(353\) −1.71901e14 −1.66924 −0.834620 0.550826i \(-0.814313\pi\)
−0.834620 + 0.550826i \(0.814313\pi\)
\(354\) 0 0
\(355\) 2.85816e14 2.69048
\(356\) 0 0
\(357\) −8.90832e13 −0.813056
\(358\) 0 0
\(359\) 1.27135e14 1.12524 0.562619 0.826716i \(-0.309794\pi\)
0.562619 + 0.826716i \(0.309794\pi\)
\(360\) 0 0
\(361\) −4.03548e13 −0.346422
\(362\) 0 0
\(363\) −2.30694e13 −0.192110
\(364\) 0 0
\(365\) 7.05000e13 0.569611
\(366\) 0 0
\(367\) 2.04239e14 1.60131 0.800656 0.599124i \(-0.204485\pi\)
0.800656 + 0.599124i \(0.204485\pi\)
\(368\) 0 0
\(369\) 2.15733e14 1.64161
\(370\) 0 0
\(371\) −3.80560e13 −0.281104
\(372\) 0 0
\(373\) 1.16113e14 0.832688 0.416344 0.909207i \(-0.363311\pi\)
0.416344 + 0.909207i \(0.363311\pi\)
\(374\) 0 0
\(375\) −4.12216e14 −2.87047
\(376\) 0 0
\(377\) −1.92920e14 −1.30467
\(378\) 0 0
\(379\) 3.86376e13 0.253802 0.126901 0.991915i \(-0.459497\pi\)
0.126901 + 0.991915i \(0.459497\pi\)
\(380\) 0 0
\(381\) −3.20904e14 −2.04780
\(382\) 0 0
\(383\) 2.83128e14 1.75545 0.877727 0.479161i \(-0.159059\pi\)
0.877727 + 0.479161i \(0.159059\pi\)
\(384\) 0 0
\(385\) −1.41276e14 −0.851203
\(386\) 0 0
\(387\) 3.39325e14 1.98703
\(388\) 0 0
\(389\) −5.49647e13 −0.312868 −0.156434 0.987688i \(-0.550000\pi\)
−0.156434 + 0.987688i \(0.550000\pi\)
\(390\) 0 0
\(391\) −1.23034e14 −0.680852
\(392\) 0 0
\(393\) −2.21661e14 −1.19270
\(394\) 0 0
\(395\) −2.14512e14 −1.12245
\(396\) 0 0
\(397\) 2.00590e14 1.02085 0.510423 0.859923i \(-0.329489\pi\)
0.510423 + 0.859923i \(0.329489\pi\)
\(398\) 0 0
\(399\) −1.44734e14 −0.716508
\(400\) 0 0
\(401\) −2.05103e14 −0.987819 −0.493910 0.869513i \(-0.664433\pi\)
−0.493910 + 0.869513i \(0.664433\pi\)
\(402\) 0 0
\(403\) −2.86560e14 −1.34288
\(404\) 0 0
\(405\) 9.87124e14 4.50162
\(406\) 0 0
\(407\) 1.88194e14 0.835290
\(408\) 0 0
\(409\) 4.18830e14 1.80950 0.904751 0.425940i \(-0.140057\pi\)
0.904751 + 0.425940i \(0.140057\pi\)
\(410\) 0 0
\(411\) −3.95326e12 −0.0166275
\(412\) 0 0
\(413\) −1.91407e13 −0.0783849
\(414\) 0 0
\(415\) −2.91752e14 −1.16345
\(416\) 0 0
\(417\) 4.08185e14 1.58529
\(418\) 0 0
\(419\) 2.95630e14 1.11833 0.559166 0.829056i \(-0.311121\pi\)
0.559166 + 0.829056i \(0.311121\pi\)
\(420\) 0 0
\(421\) 7.24565e13 0.267009 0.133504 0.991048i \(-0.457377\pi\)
0.133504 + 0.991048i \(0.457377\pi\)
\(422\) 0 0
\(423\) −5.25582e14 −1.88699
\(424\) 0 0
\(425\) 4.99269e14 1.74661
\(426\) 0 0
\(427\) 2.11307e14 0.720379
\(428\) 0 0
\(429\) −4.87221e14 −1.61887
\(430\) 0 0
\(431\) 4.24283e14 1.37414 0.687069 0.726592i \(-0.258897\pi\)
0.687069 + 0.726592i \(0.258897\pi\)
\(432\) 0 0
\(433\) 1.62175e14 0.512038 0.256019 0.966672i \(-0.417589\pi\)
0.256019 + 0.966672i \(0.417589\pi\)
\(434\) 0 0
\(435\) −1.62723e15 −5.00907
\(436\) 0 0
\(437\) −1.99894e14 −0.600002
\(438\) 0 0
\(439\) 6.41896e14 1.87893 0.939464 0.342648i \(-0.111324\pi\)
0.939464 + 0.342648i \(0.111324\pi\)
\(440\) 0 0
\(441\) −6.70229e14 −1.91342
\(442\) 0 0
\(443\) −4.43845e14 −1.23598 −0.617989 0.786187i \(-0.712052\pi\)
−0.617989 + 0.786187i \(0.712052\pi\)
\(444\) 0 0
\(445\) 1.04020e15 2.82577
\(446\) 0 0
\(447\) 2.52323e14 0.668754
\(448\) 0 0
\(449\) 3.08017e14 0.796562 0.398281 0.917263i \(-0.369607\pi\)
0.398281 + 0.917263i \(0.369607\pi\)
\(450\) 0 0
\(451\) −2.76294e14 −0.697268
\(452\) 0 0
\(453\) −5.21304e14 −1.28396
\(454\) 0 0
\(455\) −2.78844e14 −0.670345
\(456\) 0 0
\(457\) −2.49484e14 −0.585469 −0.292734 0.956194i \(-0.594565\pi\)
−0.292734 + 0.956194i \(0.594565\pi\)
\(458\) 0 0
\(459\) −1.09895e15 −2.51772
\(460\) 0 0
\(461\) −2.25843e14 −0.505186 −0.252593 0.967573i \(-0.581283\pi\)
−0.252593 + 0.967573i \(0.581283\pi\)
\(462\) 0 0
\(463\) 4.88011e14 1.06594 0.532971 0.846133i \(-0.321075\pi\)
0.532971 + 0.846133i \(0.321075\pi\)
\(464\) 0 0
\(465\) −2.41705e15 −5.15577
\(466\) 0 0
\(467\) 4.26504e14 0.888547 0.444274 0.895891i \(-0.353462\pi\)
0.444274 + 0.895891i \(0.353462\pi\)
\(468\) 0 0
\(469\) −2.40367e14 −0.489130
\(470\) 0 0
\(471\) 1.50323e14 0.298820
\(472\) 0 0
\(473\) −4.34580e14 −0.843983
\(474\) 0 0
\(475\) 8.11167e14 1.53920
\(476\) 0 0
\(477\) −7.88238e14 −1.46153
\(478\) 0 0
\(479\) −8.00213e14 −1.44997 −0.724987 0.688762i \(-0.758154\pi\)
−0.724987 + 0.688762i \(0.758154\pi\)
\(480\) 0 0
\(481\) 3.71450e14 0.657813
\(482\) 0 0
\(483\) 3.80001e14 0.657773
\(484\) 0 0
\(485\) −1.61595e15 −2.73431
\(486\) 0 0
\(487\) 2.70351e14 0.447217 0.223608 0.974679i \(-0.428216\pi\)
0.223608 + 0.974679i \(0.428216\pi\)
\(488\) 0 0
\(489\) −9.36382e14 −1.51445
\(490\) 0 0
\(491\) −1.09128e15 −1.72578 −0.862892 0.505388i \(-0.831349\pi\)
−0.862892 + 0.505388i \(0.831349\pi\)
\(492\) 0 0
\(493\) 9.35700e14 1.44703
\(494\) 0 0
\(495\) −2.92619e15 −4.42561
\(496\) 0 0
\(497\) 5.07616e14 0.750888
\(498\) 0 0
\(499\) 5.65887e14 0.818798 0.409399 0.912355i \(-0.365738\pi\)
0.409399 + 0.912355i \(0.365738\pi\)
\(500\) 0 0
\(501\) −2.77426e14 −0.392681
\(502\) 0 0
\(503\) 3.29370e14 0.456100 0.228050 0.973649i \(-0.426765\pi\)
0.228050 + 0.973649i \(0.426765\pi\)
\(504\) 0 0
\(505\) −1.39790e15 −1.89398
\(506\) 0 0
\(507\) 4.44000e14 0.588625
\(508\) 0 0
\(509\) 1.64942e14 0.213985 0.106992 0.994260i \(-0.465878\pi\)
0.106992 + 0.994260i \(0.465878\pi\)
\(510\) 0 0
\(511\) 1.25210e14 0.158973
\(512\) 0 0
\(513\) −1.78547e15 −2.21874
\(514\) 0 0
\(515\) 2.19227e14 0.266658
\(516\) 0 0
\(517\) 6.73124e14 0.801488
\(518\) 0 0
\(519\) 1.89479e15 2.20871
\(520\) 0 0
\(521\) 2.94308e14 0.335888 0.167944 0.985797i \(-0.446287\pi\)
0.167944 + 0.985797i \(0.446287\pi\)
\(522\) 0 0
\(523\) 6.57551e14 0.734802 0.367401 0.930063i \(-0.380248\pi\)
0.367401 + 0.930063i \(0.380248\pi\)
\(524\) 0 0
\(525\) −1.54204e15 −1.68740
\(526\) 0 0
\(527\) 1.38987e15 1.48941
\(528\) 0 0
\(529\) −4.27985e14 −0.449182
\(530\) 0 0
\(531\) −3.96454e14 −0.407542
\(532\) 0 0
\(533\) −5.45337e14 −0.549117
\(534\) 0 0
\(535\) −1.28811e15 −1.27059
\(536\) 0 0
\(537\) 1.62531e15 1.57064
\(538\) 0 0
\(539\) 8.58377e14 0.812718
\(540\) 0 0
\(541\) 4.39506e14 0.407736 0.203868 0.978998i \(-0.434649\pi\)
0.203868 + 0.978998i \(0.434649\pi\)
\(542\) 0 0
\(543\) 6.88191e14 0.625619
\(544\) 0 0
\(545\) −2.14724e13 −0.0191294
\(546\) 0 0
\(547\) 3.67457e14 0.320831 0.160416 0.987050i \(-0.448717\pi\)
0.160416 + 0.987050i \(0.448717\pi\)
\(548\) 0 0
\(549\) 4.37672e15 3.74543
\(550\) 0 0
\(551\) 1.52024e15 1.27520
\(552\) 0 0
\(553\) −3.80979e14 −0.313265
\(554\) 0 0
\(555\) 3.13307e15 2.52557
\(556\) 0 0
\(557\) −3.41815e13 −0.0270139 −0.0135070 0.999909i \(-0.504300\pi\)
−0.0135070 + 0.999909i \(0.504300\pi\)
\(558\) 0 0
\(559\) −8.57756e14 −0.664659
\(560\) 0 0
\(561\) 2.36312e15 1.79552
\(562\) 0 0
\(563\) 1.57295e15 1.17198 0.585988 0.810320i \(-0.300707\pi\)
0.585988 + 0.810320i \(0.300707\pi\)
\(564\) 0 0
\(565\) 1.79091e15 1.30860
\(566\) 0 0
\(567\) 1.75316e15 1.25636
\(568\) 0 0
\(569\) −4.74133e14 −0.333260 −0.166630 0.986020i \(-0.553289\pi\)
−0.166630 + 0.986020i \(0.553289\pi\)
\(570\) 0 0
\(571\) −2.54823e14 −0.175687 −0.0878436 0.996134i \(-0.527998\pi\)
−0.0878436 + 0.996134i \(0.527998\pi\)
\(572\) 0 0
\(573\) −2.15062e15 −1.45450
\(574\) 0 0
\(575\) −2.12972e15 −1.41303
\(576\) 0 0
\(577\) −1.70605e15 −1.11051 −0.555257 0.831679i \(-0.687380\pi\)
−0.555257 + 0.831679i \(0.687380\pi\)
\(578\) 0 0
\(579\) −4.23140e14 −0.270241
\(580\) 0 0
\(581\) −5.18158e14 −0.324709
\(582\) 0 0
\(583\) 1.00951e15 0.620776
\(584\) 0 0
\(585\) −5.77559e15 −3.48529
\(586\) 0 0
\(587\) 2.17525e15 1.28825 0.644123 0.764922i \(-0.277222\pi\)
0.644123 + 0.764922i \(0.277222\pi\)
\(588\) 0 0
\(589\) 2.25813e15 1.31255
\(590\) 0 0
\(591\) 5.35851e14 0.305712
\(592\) 0 0
\(593\) −3.32178e15 −1.86025 −0.930123 0.367249i \(-0.880300\pi\)
−0.930123 + 0.367249i \(0.880300\pi\)
\(594\) 0 0
\(595\) 1.35245e15 0.743493
\(596\) 0 0
\(597\) −3.65080e15 −1.97028
\(598\) 0 0
\(599\) −3.39864e15 −1.80077 −0.900384 0.435096i \(-0.856715\pi\)
−0.900384 + 0.435096i \(0.856715\pi\)
\(600\) 0 0
\(601\) 2.62640e15 1.36632 0.683159 0.730269i \(-0.260605\pi\)
0.683159 + 0.730269i \(0.260605\pi\)
\(602\) 0 0
\(603\) −4.97863e15 −2.54311
\(604\) 0 0
\(605\) 3.50235e14 0.175673
\(606\) 0 0
\(607\) −3.25639e15 −1.60398 −0.801989 0.597339i \(-0.796225\pi\)
−0.801989 + 0.597339i \(0.796225\pi\)
\(608\) 0 0
\(609\) −2.88999e15 −1.39798
\(610\) 0 0
\(611\) 1.32858e15 0.631193
\(612\) 0 0
\(613\) 3.86533e15 1.80366 0.901829 0.432092i \(-0.142224\pi\)
0.901829 + 0.432092i \(0.142224\pi\)
\(614\) 0 0
\(615\) −4.59976e15 −2.10825
\(616\) 0 0
\(617\) −2.76303e14 −0.124399 −0.0621994 0.998064i \(-0.519811\pi\)
−0.0621994 + 0.998064i \(0.519811\pi\)
\(618\) 0 0
\(619\) −1.13832e15 −0.503463 −0.251731 0.967797i \(-0.581000\pi\)
−0.251731 + 0.967797i \(0.581000\pi\)
\(620\) 0 0
\(621\) 4.68777e15 2.03687
\(622\) 0 0
\(623\) 1.84742e15 0.788646
\(624\) 0 0
\(625\) 1.71891e15 0.720964
\(626\) 0 0
\(627\) 3.83938e15 1.58230
\(628\) 0 0
\(629\) −1.80160e15 −0.729593
\(630\) 0 0
\(631\) 1.38413e15 0.550828 0.275414 0.961326i \(-0.411185\pi\)
0.275414 + 0.961326i \(0.411185\pi\)
\(632\) 0 0
\(633\) −1.62276e15 −0.634651
\(634\) 0 0
\(635\) 4.87191e15 1.87259
\(636\) 0 0
\(637\) 1.69423e15 0.640037
\(638\) 0 0
\(639\) 1.05141e16 3.90405
\(640\) 0 0
\(641\) 1.75717e15 0.641351 0.320675 0.947189i \(-0.396090\pi\)
0.320675 + 0.947189i \(0.396090\pi\)
\(642\) 0 0
\(643\) −2.92244e15 −1.04854 −0.524271 0.851552i \(-0.675662\pi\)
−0.524271 + 0.851552i \(0.675662\pi\)
\(644\) 0 0
\(645\) −7.23492e15 −2.55185
\(646\) 0 0
\(647\) −2.78639e15 −0.966203 −0.483102 0.875564i \(-0.660490\pi\)
−0.483102 + 0.875564i \(0.660490\pi\)
\(648\) 0 0
\(649\) 5.07746e14 0.173102
\(650\) 0 0
\(651\) −4.29273e15 −1.43893
\(652\) 0 0
\(653\) −4.07215e15 −1.34215 −0.671075 0.741390i \(-0.734167\pi\)
−0.671075 + 0.741390i \(0.734167\pi\)
\(654\) 0 0
\(655\) 3.36523e15 1.09065
\(656\) 0 0
\(657\) 2.59342e15 0.826539
\(658\) 0 0
\(659\) −3.54311e15 −1.11049 −0.555246 0.831686i \(-0.687376\pi\)
−0.555246 + 0.831686i \(0.687376\pi\)
\(660\) 0 0
\(661\) −3.95683e15 −1.21966 −0.609831 0.792531i \(-0.708763\pi\)
−0.609831 + 0.792531i \(0.708763\pi\)
\(662\) 0 0
\(663\) 4.66422e15 1.41402
\(664\) 0 0
\(665\) 2.19733e15 0.655204
\(666\) 0 0
\(667\) −3.99140e15 −1.17067
\(668\) 0 0
\(669\) −3.16726e15 −0.913777
\(670\) 0 0
\(671\) −5.60536e15 −1.59085
\(672\) 0 0
\(673\) −6.68109e14 −0.186537 −0.0932684 0.995641i \(-0.529731\pi\)
−0.0932684 + 0.995641i \(0.529731\pi\)
\(674\) 0 0
\(675\) −1.90229e16 −5.22523
\(676\) 0 0
\(677\) 1.84247e15 0.497924 0.248962 0.968513i \(-0.419911\pi\)
0.248962 + 0.968513i \(0.419911\pi\)
\(678\) 0 0
\(679\) −2.86996e15 −0.763120
\(680\) 0 0
\(681\) 8.68534e15 2.27236
\(682\) 0 0
\(683\) 3.44924e15 0.887993 0.443997 0.896028i \(-0.353560\pi\)
0.443997 + 0.896028i \(0.353560\pi\)
\(684\) 0 0
\(685\) 6.00178e13 0.0152048
\(686\) 0 0
\(687\) 1.08740e15 0.271099
\(688\) 0 0
\(689\) 1.99254e15 0.488878
\(690\) 0 0
\(691\) 6.31976e15 1.52606 0.763030 0.646363i \(-0.223711\pi\)
0.763030 + 0.646363i \(0.223711\pi\)
\(692\) 0 0
\(693\) −5.19698e15 −1.23515
\(694\) 0 0
\(695\) −6.19700e15 −1.44966
\(696\) 0 0
\(697\) 2.64499e15 0.609036
\(698\) 0 0
\(699\) −1.38101e16 −3.13020
\(700\) 0 0
\(701\) −4.54606e15 −1.01435 −0.507173 0.861844i \(-0.669310\pi\)
−0.507173 + 0.861844i \(0.669310\pi\)
\(702\) 0 0
\(703\) −2.92708e15 −0.642955
\(704\) 0 0
\(705\) 1.12062e16 2.42337
\(706\) 0 0
\(707\) −2.48271e15 −0.528591
\(708\) 0 0
\(709\) 5.71404e15 1.19781 0.598906 0.800819i \(-0.295602\pi\)
0.598906 + 0.800819i \(0.295602\pi\)
\(710\) 0 0
\(711\) −7.89106e15 −1.62874
\(712\) 0 0
\(713\) −5.92875e15 −1.20495
\(714\) 0 0
\(715\) 7.39692e15 1.48036
\(716\) 0 0
\(717\) 3.15612e14 0.0622012
\(718\) 0 0
\(719\) 3.36530e15 0.653153 0.326577 0.945171i \(-0.394105\pi\)
0.326577 + 0.945171i \(0.394105\pi\)
\(720\) 0 0
\(721\) 3.89353e14 0.0744217
\(722\) 0 0
\(723\) 5.39550e15 1.01571
\(724\) 0 0
\(725\) 1.61970e16 3.00314
\(726\) 0 0
\(727\) 5.08263e14 0.0928216 0.0464108 0.998922i \(-0.485222\pi\)
0.0464108 + 0.998922i \(0.485222\pi\)
\(728\) 0 0
\(729\) 7.88123e15 1.41773
\(730\) 0 0
\(731\) 4.16028e15 0.737186
\(732\) 0 0
\(733\) −8.76006e15 −1.52910 −0.764548 0.644566i \(-0.777038\pi\)
−0.764548 + 0.644566i \(0.777038\pi\)
\(734\) 0 0
\(735\) 1.42903e16 2.45732
\(736\) 0 0
\(737\) 6.37623e15 1.08017
\(738\) 0 0
\(739\) 2.63072e15 0.439066 0.219533 0.975605i \(-0.429547\pi\)
0.219533 + 0.975605i \(0.429547\pi\)
\(740\) 0 0
\(741\) 7.57801e15 1.24611
\(742\) 0 0
\(743\) 9.60892e15 1.55681 0.778406 0.627761i \(-0.216029\pi\)
0.778406 + 0.627761i \(0.216029\pi\)
\(744\) 0 0
\(745\) −3.83073e15 −0.611536
\(746\) 0 0
\(747\) −1.07324e16 −1.68824
\(748\) 0 0
\(749\) −2.28771e15 −0.354611
\(750\) 0 0
\(751\) 1.83390e15 0.280128 0.140064 0.990142i \(-0.455269\pi\)
0.140064 + 0.990142i \(0.455269\pi\)
\(752\) 0 0
\(753\) −1.96555e16 −2.95877
\(754\) 0 0
\(755\) 7.91436e15 1.17411
\(756\) 0 0
\(757\) −3.59036e14 −0.0524942 −0.0262471 0.999655i \(-0.508356\pi\)
−0.0262471 + 0.999655i \(0.508356\pi\)
\(758\) 0 0
\(759\) −1.00803e16 −1.45260
\(760\) 0 0
\(761\) 6.83481e15 0.970757 0.485379 0.874304i \(-0.338682\pi\)
0.485379 + 0.874304i \(0.338682\pi\)
\(762\) 0 0
\(763\) −3.81356e13 −0.00533882
\(764\) 0 0
\(765\) 2.80127e16 3.86560
\(766\) 0 0
\(767\) 1.00217e15 0.136322
\(768\) 0 0
\(769\) 4.00775e15 0.537410 0.268705 0.963223i \(-0.413404\pi\)
0.268705 + 0.963223i \(0.413404\pi\)
\(770\) 0 0
\(771\) −2.05178e15 −0.271227
\(772\) 0 0
\(773\) −6.76108e15 −0.881108 −0.440554 0.897726i \(-0.645218\pi\)
−0.440554 + 0.897726i \(0.645218\pi\)
\(774\) 0 0
\(775\) 2.40587e16 3.09110
\(776\) 0 0
\(777\) 5.56441e15 0.704862
\(778\) 0 0
\(779\) 4.29734e15 0.536715
\(780\) 0 0
\(781\) −1.34656e16 −1.65823
\(782\) 0 0
\(783\) −3.56515e16 −4.32901
\(784\) 0 0
\(785\) −2.28218e15 −0.273254
\(786\) 0 0
\(787\) 1.39564e16 1.64783 0.823915 0.566714i \(-0.191785\pi\)
0.823915 + 0.566714i \(0.191785\pi\)
\(788\) 0 0
\(789\) 1.06422e15 0.123910
\(790\) 0 0
\(791\) 3.18070e15 0.365218
\(792\) 0 0
\(793\) −1.10636e16 −1.25284
\(794\) 0 0
\(795\) 1.68065e16 1.87697
\(796\) 0 0
\(797\) 1.39940e16 1.54143 0.770713 0.637183i \(-0.219900\pi\)
0.770713 + 0.637183i \(0.219900\pi\)
\(798\) 0 0
\(799\) −6.44389e15 −0.700069
\(800\) 0 0
\(801\) 3.82650e16 4.10036
\(802\) 0 0
\(803\) −3.32145e15 −0.351069
\(804\) 0 0
\(805\) −5.76912e15 −0.601495
\(806\) 0 0
\(807\) −5.14021e15 −0.528660
\(808\) 0 0
\(809\) 7.03097e13 0.00713343 0.00356671 0.999994i \(-0.498865\pi\)
0.00356671 + 0.999994i \(0.498865\pi\)
\(810\) 0 0
\(811\) 1.76449e16 1.76605 0.883026 0.469324i \(-0.155502\pi\)
0.883026 + 0.469324i \(0.155502\pi\)
\(812\) 0 0
\(813\) 1.88013e16 1.85648
\(814\) 0 0
\(815\) 1.42160e16 1.38487
\(816\) 0 0
\(817\) 6.75925e15 0.649647
\(818\) 0 0
\(819\) −1.02576e16 −0.972711
\(820\) 0 0
\(821\) 5.86886e15 0.549118 0.274559 0.961570i \(-0.411468\pi\)
0.274559 + 0.961570i \(0.411468\pi\)
\(822\) 0 0
\(823\) −9.75691e15 −0.900769 −0.450384 0.892835i \(-0.648713\pi\)
−0.450384 + 0.892835i \(0.648713\pi\)
\(824\) 0 0
\(825\) 4.09057e16 3.72638
\(826\) 0 0
\(827\) 4.32365e15 0.388661 0.194330 0.980936i \(-0.437747\pi\)
0.194330 + 0.980936i \(0.437747\pi\)
\(828\) 0 0
\(829\) −1.50130e16 −1.33174 −0.665868 0.746069i \(-0.731939\pi\)
−0.665868 + 0.746069i \(0.731939\pi\)
\(830\) 0 0
\(831\) −1.99271e16 −1.74437
\(832\) 0 0
\(833\) −8.21733e15 −0.709877
\(834\) 0 0
\(835\) 4.21184e15 0.359084
\(836\) 0 0
\(837\) −5.29560e16 −4.45580
\(838\) 0 0
\(839\) −1.30045e16 −1.07995 −0.539974 0.841681i \(-0.681566\pi\)
−0.539974 + 0.841681i \(0.681566\pi\)
\(840\) 0 0
\(841\) 1.81550e16 1.48805
\(842\) 0 0
\(843\) −7.14435e15 −0.577978
\(844\) 0 0
\(845\) −6.74073e15 −0.538263
\(846\) 0 0
\(847\) 6.22026e14 0.0490287
\(848\) 0 0
\(849\) 2.80512e16 2.18252
\(850\) 0 0
\(851\) 7.68508e15 0.590250
\(852\) 0 0
\(853\) 1.16924e16 0.886510 0.443255 0.896395i \(-0.353824\pi\)
0.443255 + 0.896395i \(0.353824\pi\)
\(854\) 0 0
\(855\) 4.55125e16 3.40657
\(856\) 0 0
\(857\) 6.40223e15 0.473083 0.236541 0.971621i \(-0.423986\pi\)
0.236541 + 0.971621i \(0.423986\pi\)
\(858\) 0 0
\(859\) 1.33379e16 0.973030 0.486515 0.873672i \(-0.338268\pi\)
0.486515 + 0.873672i \(0.338268\pi\)
\(860\) 0 0
\(861\) −8.16928e15 −0.588392
\(862\) 0 0
\(863\) 1.01919e16 0.724759 0.362380 0.932031i \(-0.381964\pi\)
0.362380 + 0.932031i \(0.381964\pi\)
\(864\) 0 0
\(865\) −2.87663e16 −2.01974
\(866\) 0 0
\(867\) 4.25833e15 0.295212
\(868\) 0 0
\(869\) 1.01062e16 0.691801
\(870\) 0 0
\(871\) 1.25851e16 0.850664
\(872\) 0 0
\(873\) −5.94445e16 −3.96765
\(874\) 0 0
\(875\) 1.11147e16 0.732577
\(876\) 0 0
\(877\) 1.14838e16 0.747460 0.373730 0.927537i \(-0.378079\pi\)
0.373730 + 0.927537i \(0.378079\pi\)
\(878\) 0 0
\(879\) −6.46695e14 −0.0415682
\(880\) 0 0
\(881\) −1.96603e15 −0.124802 −0.0624011 0.998051i \(-0.519876\pi\)
−0.0624011 + 0.998051i \(0.519876\pi\)
\(882\) 0 0
\(883\) 2.77835e16 1.74182 0.870910 0.491442i \(-0.163530\pi\)
0.870910 + 0.491442i \(0.163530\pi\)
\(884\) 0 0
\(885\) 8.45300e15 0.523387
\(886\) 0 0
\(887\) 2.98288e16 1.82413 0.912064 0.410048i \(-0.134488\pi\)
0.912064 + 0.410048i \(0.134488\pi\)
\(888\) 0 0
\(889\) 8.65263e15 0.522623
\(890\) 0 0
\(891\) −4.65061e16 −2.77449
\(892\) 0 0
\(893\) −1.04694e16 −0.616937
\(894\) 0 0
\(895\) −2.46752e16 −1.43626
\(896\) 0 0
\(897\) −1.98961e16 −1.14396
\(898\) 0 0
\(899\) 4.50894e16 2.56092
\(900\) 0 0
\(901\) −9.66418e15 −0.542224
\(902\) 0 0
\(903\) −1.28494e16 −0.712197
\(904\) 0 0
\(905\) −1.04480e16 −0.572092
\(906\) 0 0
\(907\) 6.55702e15 0.354704 0.177352 0.984147i \(-0.443247\pi\)
0.177352 + 0.984147i \(0.443247\pi\)
\(908\) 0 0
\(909\) −5.14234e16 −2.74827
\(910\) 0 0
\(911\) −6.38239e14 −0.0337002 −0.0168501 0.999858i \(-0.505364\pi\)
−0.0168501 + 0.999858i \(0.505364\pi\)
\(912\) 0 0
\(913\) 1.37452e16 0.717072
\(914\) 0 0
\(915\) −9.33185e16 −4.81007
\(916\) 0 0
\(917\) 5.97673e15 0.304391
\(918\) 0 0
\(919\) 7.76358e15 0.390685 0.195343 0.980735i \(-0.437418\pi\)
0.195343 + 0.980735i \(0.437418\pi\)
\(920\) 0 0
\(921\) 1.64405e16 0.817500
\(922\) 0 0
\(923\) −2.65778e16 −1.30590
\(924\) 0 0
\(925\) −3.11859e16 −1.51418
\(926\) 0 0
\(927\) 8.06451e15 0.386936
\(928\) 0 0
\(929\) −1.74081e16 −0.825399 −0.412699 0.910867i \(-0.635414\pi\)
−0.412699 + 0.910867i \(0.635414\pi\)
\(930\) 0 0
\(931\) −1.33508e16 −0.625581
\(932\) 0 0
\(933\) 6.13763e16 2.84218
\(934\) 0 0
\(935\) −3.58765e16 −1.64190
\(936\) 0 0
\(937\) −2.93626e16 −1.32809 −0.664043 0.747694i \(-0.731161\pi\)
−0.664043 + 0.747694i \(0.731161\pi\)
\(938\) 0 0
\(939\) −2.72468e16 −1.21802
\(940\) 0 0
\(941\) 8.19312e15 0.361998 0.180999 0.983483i \(-0.442067\pi\)
0.180999 + 0.983483i \(0.442067\pi\)
\(942\) 0 0
\(943\) −1.12827e16 −0.492718
\(944\) 0 0
\(945\) −5.15302e16 −2.22427
\(946\) 0 0
\(947\) −2.85510e13 −0.00121814 −0.000609070 1.00000i \(-0.500194\pi\)
−0.000609070 1.00000i \(0.500194\pi\)
\(948\) 0 0
\(949\) −6.55574e15 −0.276476
\(950\) 0 0
\(951\) −7.17996e16 −2.99315
\(952\) 0 0
\(953\) 1.18686e16 0.489090 0.244545 0.969638i \(-0.421361\pi\)
0.244545 + 0.969638i \(0.421361\pi\)
\(954\) 0 0
\(955\) 3.26504e16 1.33006
\(956\) 0 0
\(957\) 7.66631e16 3.08724
\(958\) 0 0
\(959\) 1.06593e14 0.00424353
\(960\) 0 0
\(961\) 4.15664e16 1.63593
\(962\) 0 0
\(963\) −4.73845e16 −1.84371
\(964\) 0 0
\(965\) 6.42404e15 0.247120
\(966\) 0 0
\(967\) 1.82443e16 0.693877 0.346939 0.937888i \(-0.387221\pi\)
0.346939 + 0.937888i \(0.387221\pi\)
\(968\) 0 0
\(969\) −3.67548e16 −1.38208
\(970\) 0 0
\(971\) −4.17627e16 −1.55268 −0.776342 0.630312i \(-0.782927\pi\)
−0.776342 + 0.630312i \(0.782927\pi\)
\(972\) 0 0
\(973\) −1.10060e16 −0.404585
\(974\) 0 0
\(975\) 8.07380e16 2.93462
\(976\) 0 0
\(977\) 3.92505e16 1.41067 0.705335 0.708874i \(-0.250797\pi\)
0.705335 + 0.708874i \(0.250797\pi\)
\(978\) 0 0
\(979\) −4.90068e16 −1.74161
\(980\) 0 0
\(981\) −7.89887e14 −0.0277578
\(982\) 0 0
\(983\) −4.75481e16 −1.65230 −0.826150 0.563451i \(-0.809473\pi\)
−0.826150 + 0.563451i \(0.809473\pi\)
\(984\) 0 0
\(985\) −8.13519e15 −0.279556
\(986\) 0 0
\(987\) 1.99025e16 0.676338
\(988\) 0 0
\(989\) −1.77465e16 −0.596393
\(990\) 0 0
\(991\) −2.53768e16 −0.843396 −0.421698 0.906736i \(-0.638566\pi\)
−0.421698 + 0.906736i \(0.638566\pi\)
\(992\) 0 0
\(993\) −2.75474e16 −0.905440
\(994\) 0 0
\(995\) 5.54258e16 1.80171
\(996\) 0 0
\(997\) −4.92972e16 −1.58489 −0.792444 0.609944i \(-0.791192\pi\)
−0.792444 + 0.609944i \(0.791192\pi\)
\(998\) 0 0
\(999\) 6.86437e16 2.18268
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 256.12.a.q.1.2 12
4.3 odd 2 inner 256.12.a.q.1.12 12
8.3 odd 2 inner 256.12.a.q.1.1 12
8.5 even 2 inner 256.12.a.q.1.11 12
16.3 odd 4 128.12.b.e.65.11 yes 12
16.5 even 4 128.12.b.e.65.12 yes 12
16.11 odd 4 128.12.b.e.65.2 yes 12
16.13 even 4 128.12.b.e.65.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.12.b.e.65.1 12 16.13 even 4
128.12.b.e.65.2 yes 12 16.11 odd 4
128.12.b.e.65.11 yes 12 16.3 odd 4
128.12.b.e.65.12 yes 12 16.5 even 4
256.12.a.q.1.1 12 8.3 odd 2 inner
256.12.a.q.1.2 12 1.1 even 1 trivial
256.12.a.q.1.11 12 8.5 even 2 inner
256.12.a.q.1.12 12 4.3 odd 2 inner