Properties

Label 128.12.b.e.65.1
Level $128$
Weight $12$
Character 128.65
Analytic conductor $98.348$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [128,12,Mod(65,128)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("128.65"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(128, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 128 = 2^{7} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 128.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-1152028] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(98.3479271116\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 102428 x^{10} + 3685567675 x^{8} + 57536665921720 x^{6} + \cdots + 24\!\cdots\!21 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{123}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 65.1
Root \(-0.707107 + 196.084i\) of defining polynomial
Character \(\chi\) \(=\) 128.65
Dual form 128.12.b.e.65.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-784.336i q^{3} -11907.7i q^{5} -21148.3 q^{7} -438037. q^{9} +561003. i q^{11} -1.10728e6i q^{13} -9.33962e6 q^{15} +5.37054e6 q^{17} +8.72557e6i q^{19} +1.65874e7i q^{21} +2.29090e7 q^{23} -9.29644e7 q^{25} +2.04625e8i q^{27} +1.74228e8i q^{29} +2.58795e8 q^{31} +4.40015e8 q^{33} +2.51827e8i q^{35} +3.35460e8i q^{37} -8.68483e8 q^{39} -4.92499e8 q^{41} -7.74649e8i q^{43} +5.21599e9i q^{45} -1.19986e9 q^{47} -1.53008e9 q^{49} -4.21231e9i q^{51} +1.79948e9i q^{53} +6.68023e9 q^{55} +6.84378e9 q^{57} +9.05069e8i q^{59} +9.99168e9i q^{61} +9.26374e9 q^{63} -1.31852e10 q^{65} -1.13658e10i q^{67} -1.79684e10i q^{69} -2.40027e10 q^{71} -5.92056e9 q^{73} +7.29153e10i q^{75} -1.18643e10i q^{77} -1.80146e10 q^{79} +8.28982e10 q^{81} -2.45012e10i q^{83} -6.39506e10i q^{85} +1.36654e11 q^{87} -8.73556e10 q^{89} +2.34172e10i q^{91} -2.02982e11i q^{93} +1.03901e11 q^{95} -1.35707e11 q^{97} -2.45740e11i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 1152028 q^{9} + 26470216 q^{17} - 207502500 q^{25} + 935847712 q^{33} - 2031735176 q^{41} - 2342764308 q^{49} + 23753487776 q^{57} - 39461105920 q^{65} - 43591631448 q^{73} + 232401225292 q^{81}+ \cdots - 285441034488 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/128\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 784.336i − 1.86353i −0.363067 0.931763i \(-0.618270\pi\)
0.363067 0.931763i \(-0.381730\pi\)
\(4\) 0 0
\(5\) − 11907.7i − 1.70409i −0.523472 0.852043i \(-0.675363\pi\)
0.523472 0.852043i \(-0.324637\pi\)
\(6\) 0 0
\(7\) −21148.3 −0.475594 −0.237797 0.971315i \(-0.576425\pi\)
−0.237797 + 0.971315i \(0.576425\pi\)
\(8\) 0 0
\(9\) −438037. −2.47273
\(10\) 0 0
\(11\) 561003.i 1.05028i 0.851016 + 0.525140i \(0.175987\pi\)
−0.851016 + 0.525140i \(0.824013\pi\)
\(12\) 0 0
\(13\) − 1.10728e6i − 0.827124i −0.910476 0.413562i \(-0.864285\pi\)
0.910476 0.413562i \(-0.135715\pi\)
\(14\) 0 0
\(15\) −9.33962e6 −3.17561
\(16\) 0 0
\(17\) 5.37054e6 0.917379 0.458689 0.888597i \(-0.348319\pi\)
0.458689 + 0.888597i \(0.348319\pi\)
\(18\) 0 0
\(19\) 8.72557e6i 0.808442i 0.914661 + 0.404221i \(0.132457\pi\)
−0.914661 + 0.404221i \(0.867543\pi\)
\(20\) 0 0
\(21\) 1.65874e7i 0.886282i
\(22\) 0 0
\(23\) 2.29090e7 0.742171 0.371085 0.928599i \(-0.378986\pi\)
0.371085 + 0.928599i \(0.378986\pi\)
\(24\) 0 0
\(25\) −9.29644e7 −1.90391
\(26\) 0 0
\(27\) 2.04625e8i 2.74447i
\(28\) 0 0
\(29\) 1.74228e8i 1.57736i 0.614806 + 0.788678i \(0.289234\pi\)
−0.614806 + 0.788678i \(0.710766\pi\)
\(30\) 0 0
\(31\) 2.58795e8 1.62355 0.811777 0.583968i \(-0.198501\pi\)
0.811777 + 0.583968i \(0.198501\pi\)
\(32\) 0 0
\(33\) 4.40015e8 1.95723
\(34\) 0 0
\(35\) 2.51827e8i 0.810453i
\(36\) 0 0
\(37\) 3.35460e8i 0.795302i 0.917537 + 0.397651i \(0.130174\pi\)
−0.917537 + 0.397651i \(0.869826\pi\)
\(38\) 0 0
\(39\) −8.68483e8 −1.54137
\(40\) 0 0
\(41\) −4.92499e8 −0.663888 −0.331944 0.943299i \(-0.607704\pi\)
−0.331944 + 0.943299i \(0.607704\pi\)
\(42\) 0 0
\(43\) − 7.74649e8i − 0.803579i −0.915732 0.401789i \(-0.868388\pi\)
0.915732 0.401789i \(-0.131612\pi\)
\(44\) 0 0
\(45\) 5.21599e9i 4.21375i
\(46\) 0 0
\(47\) −1.19986e9 −0.763118 −0.381559 0.924344i \(-0.624613\pi\)
−0.381559 + 0.924344i \(0.624613\pi\)
\(48\) 0 0
\(49\) −1.53008e9 −0.773810
\(50\) 0 0
\(51\) − 4.21231e9i − 1.70956i
\(52\) 0 0
\(53\) 1.79948e9i 0.591058i 0.955334 + 0.295529i \(0.0954958\pi\)
−0.955334 + 0.295529i \(0.904504\pi\)
\(54\) 0 0
\(55\) 6.68023e9 1.78977
\(56\) 0 0
\(57\) 6.84378e9 1.50655
\(58\) 0 0
\(59\) 9.05069e8i 0.164815i 0.996599 + 0.0824073i \(0.0262608\pi\)
−0.996599 + 0.0824073i \(0.973739\pi\)
\(60\) 0 0
\(61\) 9.99168e9i 1.51469i 0.653014 + 0.757346i \(0.273504\pi\)
−0.653014 + 0.757346i \(0.726496\pi\)
\(62\) 0 0
\(63\) 9.26374e9 1.17602
\(64\) 0 0
\(65\) −1.31852e10 −1.40949
\(66\) 0 0
\(67\) − 1.13658e10i − 1.02846i −0.857652 0.514230i \(-0.828078\pi\)
0.857652 0.514230i \(-0.171922\pi\)
\(68\) 0 0
\(69\) − 1.79684e10i − 1.38305i
\(70\) 0 0
\(71\) −2.40027e10 −1.57884 −0.789421 0.613852i \(-0.789619\pi\)
−0.789421 + 0.613852i \(0.789619\pi\)
\(72\) 0 0
\(73\) −5.92056e9 −0.334262 −0.167131 0.985935i \(-0.553450\pi\)
−0.167131 + 0.985935i \(0.553450\pi\)
\(74\) 0 0
\(75\) 7.29153e10i 3.54799i
\(76\) 0 0
\(77\) − 1.18643e10i − 0.499507i
\(78\) 0 0
\(79\) −1.80146e10 −0.658682 −0.329341 0.944211i \(-0.606827\pi\)
−0.329341 + 0.944211i \(0.606827\pi\)
\(80\) 0 0
\(81\) 8.28982e10 2.64166
\(82\) 0 0
\(83\) − 2.45012e10i − 0.682743i −0.939928 0.341372i \(-0.889109\pi\)
0.939928 0.341372i \(-0.110891\pi\)
\(84\) 0 0
\(85\) − 6.39506e10i − 1.56329i
\(86\) 0 0
\(87\) 1.36654e11 2.93944
\(88\) 0 0
\(89\) −8.73556e10 −1.65823 −0.829117 0.559075i \(-0.811156\pi\)
−0.829117 + 0.559075i \(0.811156\pi\)
\(90\) 0 0
\(91\) 2.34172e10i 0.393375i
\(92\) 0 0
\(93\) − 2.02982e11i − 3.02553i
\(94\) 0 0
\(95\) 1.03901e11 1.37765
\(96\) 0 0
\(97\) −1.35707e11 −1.60456 −0.802281 0.596947i \(-0.796380\pi\)
−0.802281 + 0.596947i \(0.796380\pi\)
\(98\) 0 0
\(99\) − 2.45740e11i − 2.59706i
\(100\) 0 0
\(101\) 1.17395e11i 1.11143i 0.831372 + 0.555716i \(0.187556\pi\)
−0.831372 + 0.555716i \(0.812444\pi\)
\(102\) 0 0
\(103\) −1.84106e10 −0.156481 −0.0782407 0.996934i \(-0.524930\pi\)
−0.0782407 + 0.996934i \(0.524930\pi\)
\(104\) 0 0
\(105\) 1.97517e11 1.51030
\(106\) 0 0
\(107\) 1.08175e11i 0.745616i 0.927909 + 0.372808i \(0.121605\pi\)
−0.927909 + 0.372808i \(0.878395\pi\)
\(108\) 0 0
\(109\) − 1.80324e9i − 0.0112256i −0.999984 0.00561279i \(-0.998213\pi\)
0.999984 0.00561279i \(-0.00178662\pi\)
\(110\) 0 0
\(111\) 2.63114e11 1.48207
\(112\) 0 0
\(113\) 1.50400e11 0.767921 0.383960 0.923350i \(-0.374560\pi\)
0.383960 + 0.923350i \(0.374560\pi\)
\(114\) 0 0
\(115\) − 2.72793e11i − 1.26472i
\(116\) 0 0
\(117\) 4.85031e11i 2.04525i
\(118\) 0 0
\(119\) −1.13578e11 −0.436300
\(120\) 0 0
\(121\) −2.94126e10 −0.103089
\(122\) 0 0
\(123\) 3.86285e11i 1.23717i
\(124\) 0 0
\(125\) 5.25560e11i 1.54034i
\(126\) 0 0
\(127\) 4.09141e11 1.09888 0.549442 0.835532i \(-0.314840\pi\)
0.549442 + 0.835532i \(0.314840\pi\)
\(128\) 0 0
\(129\) −6.07585e11 −1.49749
\(130\) 0 0
\(131\) 2.82610e11i 0.640023i 0.947414 + 0.320012i \(0.103687\pi\)
−0.947414 + 0.320012i \(0.896313\pi\)
\(132\) 0 0
\(133\) − 1.84531e11i − 0.384490i
\(134\) 0 0
\(135\) 2.43661e12 4.67682
\(136\) 0 0
\(137\) −5.04027e9 −0.00892258 −0.00446129 0.999990i \(-0.501420\pi\)
−0.00446129 + 0.999990i \(0.501420\pi\)
\(138\) 0 0
\(139\) 5.20421e11i 0.850695i 0.905030 + 0.425347i \(0.139848\pi\)
−0.905030 + 0.425347i \(0.860152\pi\)
\(140\) 0 0
\(141\) 9.41093e11i 1.42209i
\(142\) 0 0
\(143\) 6.21189e11 0.868712
\(144\) 0 0
\(145\) 2.07465e12 2.68795
\(146\) 0 0
\(147\) 1.20009e12i 1.44202i
\(148\) 0 0
\(149\) 3.21703e11i 0.358865i 0.983770 + 0.179432i \(0.0574261\pi\)
−0.983770 + 0.179432i \(0.942574\pi\)
\(150\) 0 0
\(151\) −6.64644e11 −0.688995 −0.344497 0.938787i \(-0.611951\pi\)
−0.344497 + 0.938787i \(0.611951\pi\)
\(152\) 0 0
\(153\) −2.35249e12 −2.26843
\(154\) 0 0
\(155\) − 3.08164e12i − 2.76668i
\(156\) 0 0
\(157\) − 1.91656e11i − 0.160352i −0.996781 0.0801760i \(-0.974452\pi\)
0.996781 0.0801760i \(-0.0255482\pi\)
\(158\) 0 0
\(159\) 1.41140e12 1.10145
\(160\) 0 0
\(161\) −4.84488e11 −0.352972
\(162\) 0 0
\(163\) 1.19385e12i 0.812679i 0.913722 + 0.406339i \(0.133195\pi\)
−0.913722 + 0.406339i \(0.866805\pi\)
\(164\) 0 0
\(165\) − 5.23955e12i − 3.33528i
\(166\) 0 0
\(167\) −3.53708e11 −0.210719 −0.105360 0.994434i \(-0.533599\pi\)
−0.105360 + 0.994434i \(0.533599\pi\)
\(168\) 0 0
\(169\) 5.66083e11 0.315866
\(170\) 0 0
\(171\) − 3.82212e12i − 1.99906i
\(172\) 0 0
\(173\) − 2.41578e12i − 1.18523i −0.805484 0.592617i \(-0.798095\pi\)
0.805484 0.592617i \(-0.201905\pi\)
\(174\) 0 0
\(175\) 1.96604e12 0.905488
\(176\) 0 0
\(177\) 7.09879e11 0.307136
\(178\) 0 0
\(179\) − 2.07221e12i − 0.842834i −0.906867 0.421417i \(-0.861533\pi\)
0.906867 0.421417i \(-0.138467\pi\)
\(180\) 0 0
\(181\) 8.77418e11i 0.335718i 0.985811 + 0.167859i \(0.0536853\pi\)
−0.985811 + 0.167859i \(0.946315\pi\)
\(182\) 0 0
\(183\) 7.83684e12 2.82267
\(184\) 0 0
\(185\) 3.99455e12 1.35526
\(186\) 0 0
\(187\) 3.01289e12i 0.963505i
\(188\) 0 0
\(189\) − 4.32748e12i − 1.30525i
\(190\) 0 0
\(191\) 2.74196e12 0.780510 0.390255 0.920707i \(-0.372387\pi\)
0.390255 + 0.920707i \(0.372387\pi\)
\(192\) 0 0
\(193\) 5.39488e11 0.145016 0.0725081 0.997368i \(-0.476900\pi\)
0.0725081 + 0.997368i \(0.476900\pi\)
\(194\) 0 0
\(195\) 1.03416e13i 2.62662i
\(196\) 0 0
\(197\) 6.83190e11i 0.164050i 0.996630 + 0.0820252i \(0.0261388\pi\)
−0.996630 + 0.0820252i \(0.973861\pi\)
\(198\) 0 0
\(199\) −4.65463e12 −1.05729 −0.528644 0.848843i \(-0.677299\pi\)
−0.528644 + 0.848843i \(0.677299\pi\)
\(200\) 0 0
\(201\) −8.91459e12 −1.91656
\(202\) 0 0
\(203\) − 3.68463e12i − 0.750181i
\(204\) 0 0
\(205\) 5.86452e12i 1.13132i
\(206\) 0 0
\(207\) −1.00350e13 −1.83519
\(208\) 0 0
\(209\) −4.89507e12 −0.849091
\(210\) 0 0
\(211\) 2.06896e12i 0.340565i 0.985395 + 0.170282i \(0.0544680\pi\)
−0.985395 + 0.170282i \(0.945532\pi\)
\(212\) 0 0
\(213\) 1.88262e13i 2.94221i
\(214\) 0 0
\(215\) −9.22426e12 −1.36937
\(216\) 0 0
\(217\) −5.47308e12 −0.772153
\(218\) 0 0
\(219\) 4.64371e12i 0.622906i
\(220\) 0 0
\(221\) − 5.94671e12i − 0.758786i
\(222\) 0 0
\(223\) 4.03814e12 0.490348 0.245174 0.969479i \(-0.421155\pi\)
0.245174 + 0.969479i \(0.421155\pi\)
\(224\) 0 0
\(225\) 4.07218e13 4.70786
\(226\) 0 0
\(227\) − 1.10735e13i − 1.21939i −0.792637 0.609694i \(-0.791292\pi\)
0.792637 0.609694i \(-0.208708\pi\)
\(228\) 0 0
\(229\) 1.38640e12i 0.145477i 0.997351 + 0.0727383i \(0.0231738\pi\)
−0.997351 + 0.0727383i \(0.976826\pi\)
\(230\) 0 0
\(231\) −9.30557e12 −0.930845
\(232\) 0 0
\(233\) −1.76073e13 −1.67972 −0.839859 0.542805i \(-0.817362\pi\)
−0.839859 + 0.542805i \(0.817362\pi\)
\(234\) 0 0
\(235\) 1.42875e13i 1.30042i
\(236\) 0 0
\(237\) 1.41295e13i 1.22747i
\(238\) 0 0
\(239\) −4.02394e11 −0.0333782 −0.0166891 0.999861i \(-0.505313\pi\)
−0.0166891 + 0.999861i \(0.505313\pi\)
\(240\) 0 0
\(241\) −6.87906e12 −0.545049 −0.272524 0.962149i \(-0.587859\pi\)
−0.272524 + 0.962149i \(0.587859\pi\)
\(242\) 0 0
\(243\) − 2.87713e13i − 2.17834i
\(244\) 0 0
\(245\) 1.82196e13i 1.31864i
\(246\) 0 0
\(247\) 9.66168e12 0.668681
\(248\) 0 0
\(249\) −1.92172e13 −1.27231
\(250\) 0 0
\(251\) − 2.50600e13i − 1.58772i −0.608097 0.793862i \(-0.708067\pi\)
0.608097 0.793862i \(-0.291933\pi\)
\(252\) 0 0
\(253\) 1.28520e13i 0.779488i
\(254\) 0 0
\(255\) −5.01588e13 −2.91324
\(256\) 0 0
\(257\) 2.61595e12 0.145545 0.0727724 0.997349i \(-0.476815\pi\)
0.0727724 + 0.997349i \(0.476815\pi\)
\(258\) 0 0
\(259\) − 7.09442e12i − 0.378241i
\(260\) 0 0
\(261\) − 7.63184e13i − 3.90038i
\(262\) 0 0
\(263\) 1.35684e12 0.0664924 0.0332462 0.999447i \(-0.489415\pi\)
0.0332462 + 0.999447i \(0.489415\pi\)
\(264\) 0 0
\(265\) 2.14276e13 1.00721
\(266\) 0 0
\(267\) 6.85162e13i 3.09016i
\(268\) 0 0
\(269\) 6.55358e12i 0.283688i 0.989889 + 0.141844i \(0.0453032\pi\)
−0.989889 + 0.141844i \(0.954697\pi\)
\(270\) 0 0
\(271\) −2.39710e13 −0.996220 −0.498110 0.867114i \(-0.665972\pi\)
−0.498110 + 0.867114i \(0.665972\pi\)
\(272\) 0 0
\(273\) 1.83669e13 0.733065
\(274\) 0 0
\(275\) − 5.21533e13i − 1.99964i
\(276\) 0 0
\(277\) − 2.54063e13i − 0.936058i −0.883713 0.468029i \(-0.844964\pi\)
0.883713 0.468029i \(-0.155036\pi\)
\(278\) 0 0
\(279\) −1.13362e14 −4.01461
\(280\) 0 0
\(281\) −9.10879e12 −0.310153 −0.155076 0.987902i \(-0.549562\pi\)
−0.155076 + 0.987902i \(0.549562\pi\)
\(282\) 0 0
\(283\) 3.57642e13i 1.17118i 0.810608 + 0.585589i \(0.199137\pi\)
−0.810608 + 0.585589i \(0.800863\pi\)
\(284\) 0 0
\(285\) − 8.14934e13i − 2.56730i
\(286\) 0 0
\(287\) 1.04155e13 0.315741
\(288\) 0 0
\(289\) −5.42922e12 −0.158416
\(290\) 0 0
\(291\) 1.06440e14i 2.99014i
\(292\) 0 0
\(293\) − 8.24513e11i − 0.0223062i −0.999938 0.0111531i \(-0.996450\pi\)
0.999938 0.0111531i \(-0.00355021\pi\)
\(294\) 0 0
\(295\) 1.07773e13 0.280858
\(296\) 0 0
\(297\) −1.14795e14 −2.88246
\(298\) 0 0
\(299\) − 2.53668e13i − 0.613867i
\(300\) 0 0
\(301\) 1.63825e13i 0.382177i
\(302\) 0 0
\(303\) 9.20774e13 2.07118
\(304\) 0 0
\(305\) 1.18978e14 2.58117
\(306\) 0 0
\(307\) − 2.09611e13i − 0.438685i −0.975648 0.219342i \(-0.929609\pi\)
0.975648 0.219342i \(-0.0703911\pi\)
\(308\) 0 0
\(309\) 1.44401e13i 0.291607i
\(310\) 0 0
\(311\) 7.82526e13 1.52516 0.762582 0.646892i \(-0.223931\pi\)
0.762582 + 0.646892i \(0.223931\pi\)
\(312\) 0 0
\(313\) −3.47387e13 −0.653611 −0.326806 0.945092i \(-0.605972\pi\)
−0.326806 + 0.945092i \(0.605972\pi\)
\(314\) 0 0
\(315\) − 1.10309e14i − 2.00403i
\(316\) 0 0
\(317\) 9.15418e13i 1.60618i 0.595860 + 0.803088i \(0.296811\pi\)
−0.595860 + 0.803088i \(0.703189\pi\)
\(318\) 0 0
\(319\) −9.77426e13 −1.65667
\(320\) 0 0
\(321\) 8.48454e13 1.38947
\(322\) 0 0
\(323\) 4.68610e13i 0.741647i
\(324\) 0 0
\(325\) 1.02938e14i 1.57477i
\(326\) 0 0
\(327\) −1.41435e12 −0.0209192
\(328\) 0 0
\(329\) 2.53750e13 0.362935
\(330\) 0 0
\(331\) − 3.51219e13i − 0.485875i −0.970042 0.242937i \(-0.921889\pi\)
0.970042 0.242937i \(-0.0781109\pi\)
\(332\) 0 0
\(333\) − 1.46944e14i − 1.96657i
\(334\) 0 0
\(335\) −1.35340e14 −1.75259
\(336\) 0 0
\(337\) 5.42414e13 0.679777 0.339889 0.940466i \(-0.389611\pi\)
0.339889 + 0.940466i \(0.389611\pi\)
\(338\) 0 0
\(339\) − 1.17964e14i − 1.43104i
\(340\) 0 0
\(341\) 1.45185e14i 1.70519i
\(342\) 0 0
\(343\) 7.41756e13 0.843614
\(344\) 0 0
\(345\) −2.13962e14 −2.35684
\(346\) 0 0
\(347\) − 1.38780e14i − 1.48086i −0.672134 0.740430i \(-0.734622\pi\)
0.672134 0.740430i \(-0.265378\pi\)
\(348\) 0 0
\(349\) 1.70059e14i 1.75816i 0.476674 + 0.879080i \(0.341842\pi\)
−0.476674 + 0.879080i \(0.658158\pi\)
\(350\) 0 0
\(351\) 2.26578e14 2.27002
\(352\) 0 0
\(353\) −1.71901e14 −1.66924 −0.834620 0.550826i \(-0.814313\pi\)
−0.834620 + 0.550826i \(0.814313\pi\)
\(354\) 0 0
\(355\) 2.85816e14i 2.69048i
\(356\) 0 0
\(357\) 8.90832e13i 0.813056i
\(358\) 0 0
\(359\) −1.27135e14 −1.12524 −0.562619 0.826716i \(-0.690206\pi\)
−0.562619 + 0.826716i \(0.690206\pi\)
\(360\) 0 0
\(361\) 4.03548e13 0.346422
\(362\) 0 0
\(363\) 2.30694e13i 0.192110i
\(364\) 0 0
\(365\) 7.05000e13i 0.569611i
\(366\) 0 0
\(367\) 2.04239e14 1.60131 0.800656 0.599124i \(-0.204485\pi\)
0.800656 + 0.599124i \(0.204485\pi\)
\(368\) 0 0
\(369\) 2.15733e14 1.64161
\(370\) 0 0
\(371\) − 3.80560e13i − 0.281104i
\(372\) 0 0
\(373\) − 1.16113e14i − 0.832688i −0.909207 0.416344i \(-0.863311\pi\)
0.909207 0.416344i \(-0.136689\pi\)
\(374\) 0 0
\(375\) 4.12216e14 2.87047
\(376\) 0 0
\(377\) 1.92920e14 1.30467
\(378\) 0 0
\(379\) − 3.86376e13i − 0.253802i −0.991915 0.126901i \(-0.959497\pi\)
0.991915 0.126901i \(-0.0405030\pi\)
\(380\) 0 0
\(381\) − 3.20904e14i − 2.04780i
\(382\) 0 0
\(383\) 2.83128e14 1.75545 0.877727 0.479161i \(-0.159059\pi\)
0.877727 + 0.479161i \(0.159059\pi\)
\(384\) 0 0
\(385\) −1.41276e14 −0.851203
\(386\) 0 0
\(387\) 3.39325e14i 1.98703i
\(388\) 0 0
\(389\) 5.49647e13i 0.312868i 0.987688 + 0.156434i \(0.0499998\pi\)
−0.987688 + 0.156434i \(0.950000\pi\)
\(390\) 0 0
\(391\) 1.23034e14 0.680852
\(392\) 0 0
\(393\) 2.21661e14 1.19270
\(394\) 0 0
\(395\) 2.14512e14i 1.12245i
\(396\) 0 0
\(397\) 2.00590e14i 1.02085i 0.859923 + 0.510423i \(0.170511\pi\)
−0.859923 + 0.510423i \(0.829489\pi\)
\(398\) 0 0
\(399\) −1.44734e14 −0.716508
\(400\) 0 0
\(401\) −2.05103e14 −0.987819 −0.493910 0.869513i \(-0.664433\pi\)
−0.493910 + 0.869513i \(0.664433\pi\)
\(402\) 0 0
\(403\) − 2.86560e14i − 1.34288i
\(404\) 0 0
\(405\) − 9.87124e14i − 4.50162i
\(406\) 0 0
\(407\) −1.88194e14 −0.835290
\(408\) 0 0
\(409\) −4.18830e14 −1.80950 −0.904751 0.425940i \(-0.859943\pi\)
−0.904751 + 0.425940i \(0.859943\pi\)
\(410\) 0 0
\(411\) 3.95326e12i 0.0166275i
\(412\) 0 0
\(413\) − 1.91407e13i − 0.0783849i
\(414\) 0 0
\(415\) −2.91752e14 −1.16345
\(416\) 0 0
\(417\) 4.08185e14 1.58529
\(418\) 0 0
\(419\) 2.95630e14i 1.11833i 0.829056 + 0.559166i \(0.188879\pi\)
−0.829056 + 0.559166i \(0.811121\pi\)
\(420\) 0 0
\(421\) − 7.24565e13i − 0.267009i −0.991048 0.133504i \(-0.957377\pi\)
0.991048 0.133504i \(-0.0426231\pi\)
\(422\) 0 0
\(423\) 5.25582e14 1.88699
\(424\) 0 0
\(425\) −4.99269e14 −1.74661
\(426\) 0 0
\(427\) − 2.11307e14i − 0.720379i
\(428\) 0 0
\(429\) − 4.87221e14i − 1.61887i
\(430\) 0 0
\(431\) 4.24283e14 1.37414 0.687069 0.726592i \(-0.258897\pi\)
0.687069 + 0.726592i \(0.258897\pi\)
\(432\) 0 0
\(433\) 1.62175e14 0.512038 0.256019 0.966672i \(-0.417589\pi\)
0.256019 + 0.966672i \(0.417589\pi\)
\(434\) 0 0
\(435\) − 1.62723e15i − 5.00907i
\(436\) 0 0
\(437\) 1.99894e14i 0.600002i
\(438\) 0 0
\(439\) −6.41896e14 −1.87893 −0.939464 0.342648i \(-0.888676\pi\)
−0.939464 + 0.342648i \(0.888676\pi\)
\(440\) 0 0
\(441\) 6.70229e14 1.91342
\(442\) 0 0
\(443\) 4.43845e14i 1.23598i 0.786187 + 0.617989i \(0.212052\pi\)
−0.786187 + 0.617989i \(0.787948\pi\)
\(444\) 0 0
\(445\) 1.04020e15i 2.82577i
\(446\) 0 0
\(447\) 2.52323e14 0.668754
\(448\) 0 0
\(449\) 3.08017e14 0.796562 0.398281 0.917263i \(-0.369607\pi\)
0.398281 + 0.917263i \(0.369607\pi\)
\(450\) 0 0
\(451\) − 2.76294e14i − 0.697268i
\(452\) 0 0
\(453\) 5.21304e14i 1.28396i
\(454\) 0 0
\(455\) 2.78844e14 0.670345
\(456\) 0 0
\(457\) 2.49484e14 0.585469 0.292734 0.956194i \(-0.405435\pi\)
0.292734 + 0.956194i \(0.405435\pi\)
\(458\) 0 0
\(459\) 1.09895e15i 2.51772i
\(460\) 0 0
\(461\) − 2.25843e14i − 0.505186i −0.967573 0.252593i \(-0.918717\pi\)
0.967573 0.252593i \(-0.0812833\pi\)
\(462\) 0 0
\(463\) 4.88011e14 1.06594 0.532971 0.846133i \(-0.321075\pi\)
0.532971 + 0.846133i \(0.321075\pi\)
\(464\) 0 0
\(465\) −2.41705e15 −5.15577
\(466\) 0 0
\(467\) 4.26504e14i 0.888547i 0.895891 + 0.444274i \(0.146538\pi\)
−0.895891 + 0.444274i \(0.853462\pi\)
\(468\) 0 0
\(469\) 2.40367e14i 0.489130i
\(470\) 0 0
\(471\) −1.50323e14 −0.298820
\(472\) 0 0
\(473\) 4.34580e14 0.843983
\(474\) 0 0
\(475\) − 8.11167e14i − 1.53920i
\(476\) 0 0
\(477\) − 7.88238e14i − 1.46153i
\(478\) 0 0
\(479\) −8.00213e14 −1.44997 −0.724987 0.688762i \(-0.758154\pi\)
−0.724987 + 0.688762i \(0.758154\pi\)
\(480\) 0 0
\(481\) 3.71450e14 0.657813
\(482\) 0 0
\(483\) 3.80001e14i 0.657773i
\(484\) 0 0
\(485\) 1.61595e15i 2.73431i
\(486\) 0 0
\(487\) −2.70351e14 −0.447217 −0.223608 0.974679i \(-0.571784\pi\)
−0.223608 + 0.974679i \(0.571784\pi\)
\(488\) 0 0
\(489\) 9.36382e14 1.51445
\(490\) 0 0
\(491\) 1.09128e15i 1.72578i 0.505388 + 0.862892i \(0.331349\pi\)
−0.505388 + 0.862892i \(0.668651\pi\)
\(492\) 0 0
\(493\) 9.35700e14i 1.44703i
\(494\) 0 0
\(495\) −2.92619e15 −4.42561
\(496\) 0 0
\(497\) 5.07616e14 0.750888
\(498\) 0 0
\(499\) 5.65887e14i 0.818798i 0.912355 + 0.409399i \(0.134262\pi\)
−0.912355 + 0.409399i \(0.865738\pi\)
\(500\) 0 0
\(501\) 2.77426e14i 0.392681i
\(502\) 0 0
\(503\) −3.29370e14 −0.456100 −0.228050 0.973649i \(-0.573235\pi\)
−0.228050 + 0.973649i \(0.573235\pi\)
\(504\) 0 0
\(505\) 1.39790e15 1.89398
\(506\) 0 0
\(507\) − 4.44000e14i − 0.588625i
\(508\) 0 0
\(509\) 1.64942e14i 0.213985i 0.994260 + 0.106992i \(0.0341221\pi\)
−0.994260 + 0.106992i \(0.965878\pi\)
\(510\) 0 0
\(511\) 1.25210e14 0.158973
\(512\) 0 0
\(513\) −1.78547e15 −2.21874
\(514\) 0 0
\(515\) 2.19227e14i 0.266658i
\(516\) 0 0
\(517\) − 6.73124e14i − 0.801488i
\(518\) 0 0
\(519\) −1.89479e15 −2.20871
\(520\) 0 0
\(521\) −2.94308e14 −0.335888 −0.167944 0.985797i \(-0.553713\pi\)
−0.167944 + 0.985797i \(0.553713\pi\)
\(522\) 0 0
\(523\) − 6.57551e14i − 0.734802i −0.930063 0.367401i \(-0.880248\pi\)
0.930063 0.367401i \(-0.119752\pi\)
\(524\) 0 0
\(525\) − 1.54204e15i − 1.68740i
\(526\) 0 0
\(527\) 1.38987e15 1.48941
\(528\) 0 0
\(529\) −4.27985e14 −0.449182
\(530\) 0 0
\(531\) − 3.96454e14i − 0.407542i
\(532\) 0 0
\(533\) 5.45337e14i 0.549117i
\(534\) 0 0
\(535\) 1.28811e15 1.27059
\(536\) 0 0
\(537\) −1.62531e15 −1.57064
\(538\) 0 0
\(539\) − 8.58377e14i − 0.812718i
\(540\) 0 0
\(541\) 4.39506e14i 0.407736i 0.978998 + 0.203868i \(0.0653514\pi\)
−0.978998 + 0.203868i \(0.934649\pi\)
\(542\) 0 0
\(543\) 6.88191e14 0.625619
\(544\) 0 0
\(545\) −2.14724e13 −0.0191294
\(546\) 0 0
\(547\) 3.67457e14i 0.320831i 0.987050 + 0.160416i \(0.0512835\pi\)
−0.987050 + 0.160416i \(0.948717\pi\)
\(548\) 0 0
\(549\) − 4.37672e15i − 3.74543i
\(550\) 0 0
\(551\) −1.52024e15 −1.27520
\(552\) 0 0
\(553\) 3.80979e14 0.313265
\(554\) 0 0
\(555\) − 3.13307e15i − 2.52557i
\(556\) 0 0
\(557\) − 3.41815e13i − 0.0270139i −0.999909 0.0135070i \(-0.995700\pi\)
0.999909 0.0135070i \(-0.00429953\pi\)
\(558\) 0 0
\(559\) −8.57756e14 −0.664659
\(560\) 0 0
\(561\) 2.36312e15 1.79552
\(562\) 0 0
\(563\) 1.57295e15i 1.17198i 0.810320 + 0.585988i \(0.199293\pi\)
−0.810320 + 0.585988i \(0.800707\pi\)
\(564\) 0 0
\(565\) − 1.79091e15i − 1.30860i
\(566\) 0 0
\(567\) −1.75316e15 −1.25636
\(568\) 0 0
\(569\) 4.74133e14 0.333260 0.166630 0.986020i \(-0.446711\pi\)
0.166630 + 0.986020i \(0.446711\pi\)
\(570\) 0 0
\(571\) 2.54823e14i 0.175687i 0.996134 + 0.0878436i \(0.0279976\pi\)
−0.996134 + 0.0878436i \(0.972002\pi\)
\(572\) 0 0
\(573\) − 2.15062e15i − 1.45450i
\(574\) 0 0
\(575\) −2.12972e15 −1.41303
\(576\) 0 0
\(577\) −1.70605e15 −1.11051 −0.555257 0.831679i \(-0.687380\pi\)
−0.555257 + 0.831679i \(0.687380\pi\)
\(578\) 0 0
\(579\) − 4.23140e14i − 0.270241i
\(580\) 0 0
\(581\) 5.18158e14i 0.324709i
\(582\) 0 0
\(583\) −1.00951e15 −0.620776
\(584\) 0 0
\(585\) 5.77559e15 3.48529
\(586\) 0 0
\(587\) − 2.17525e15i − 1.28825i −0.764922 0.644123i \(-0.777222\pi\)
0.764922 0.644123i \(-0.222778\pi\)
\(588\) 0 0
\(589\) 2.25813e15i 1.31255i
\(590\) 0 0
\(591\) 5.35851e14 0.305712
\(592\) 0 0
\(593\) −3.32178e15 −1.86025 −0.930123 0.367249i \(-0.880300\pi\)
−0.930123 + 0.367249i \(0.880300\pi\)
\(594\) 0 0
\(595\) 1.35245e15i 0.743493i
\(596\) 0 0
\(597\) 3.65080e15i 1.97028i
\(598\) 0 0
\(599\) 3.39864e15 1.80077 0.900384 0.435096i \(-0.143285\pi\)
0.900384 + 0.435096i \(0.143285\pi\)
\(600\) 0 0
\(601\) −2.62640e15 −1.36632 −0.683159 0.730269i \(-0.739395\pi\)
−0.683159 + 0.730269i \(0.739395\pi\)
\(602\) 0 0
\(603\) 4.97863e15i 2.54311i
\(604\) 0 0
\(605\) 3.50235e14i 0.175673i
\(606\) 0 0
\(607\) −3.25639e15 −1.60398 −0.801989 0.597339i \(-0.796225\pi\)
−0.801989 + 0.597339i \(0.796225\pi\)
\(608\) 0 0
\(609\) −2.88999e15 −1.39798
\(610\) 0 0
\(611\) 1.32858e15i 0.631193i
\(612\) 0 0
\(613\) − 3.86533e15i − 1.80366i −0.432092 0.901829i \(-0.642224\pi\)
0.432092 0.901829i \(-0.357776\pi\)
\(614\) 0 0
\(615\) 4.59976e15 2.10825
\(616\) 0 0
\(617\) 2.76303e14 0.124399 0.0621994 0.998064i \(-0.480189\pi\)
0.0621994 + 0.998064i \(0.480189\pi\)
\(618\) 0 0
\(619\) 1.13832e15i 0.503463i 0.967797 + 0.251731i \(0.0810000\pi\)
−0.967797 + 0.251731i \(0.919000\pi\)
\(620\) 0 0
\(621\) 4.68777e15i 2.03687i
\(622\) 0 0
\(623\) 1.84742e15 0.788646
\(624\) 0 0
\(625\) 1.71891e15 0.720964
\(626\) 0 0
\(627\) 3.83938e15i 1.58230i
\(628\) 0 0
\(629\) 1.80160e15i 0.729593i
\(630\) 0 0
\(631\) −1.38413e15 −0.550828 −0.275414 0.961326i \(-0.588815\pi\)
−0.275414 + 0.961326i \(0.588815\pi\)
\(632\) 0 0
\(633\) 1.62276e15 0.634651
\(634\) 0 0
\(635\) − 4.87191e15i − 1.87259i
\(636\) 0 0
\(637\) 1.69423e15i 0.640037i
\(638\) 0 0
\(639\) 1.05141e16 3.90405
\(640\) 0 0
\(641\) 1.75717e15 0.641351 0.320675 0.947189i \(-0.396090\pi\)
0.320675 + 0.947189i \(0.396090\pi\)
\(642\) 0 0
\(643\) − 2.92244e15i − 1.04854i −0.851552 0.524271i \(-0.824338\pi\)
0.851552 0.524271i \(-0.175662\pi\)
\(644\) 0 0
\(645\) 7.23492e15i 2.55185i
\(646\) 0 0
\(647\) 2.78639e15 0.966203 0.483102 0.875564i \(-0.339510\pi\)
0.483102 + 0.875564i \(0.339510\pi\)
\(648\) 0 0
\(649\) −5.07746e14 −0.173102
\(650\) 0 0
\(651\) 4.29273e15i 1.43893i
\(652\) 0 0
\(653\) − 4.07215e15i − 1.34215i −0.741390 0.671075i \(-0.765833\pi\)
0.741390 0.671075i \(-0.234167\pi\)
\(654\) 0 0
\(655\) 3.36523e15 1.09065
\(656\) 0 0
\(657\) 2.59342e15 0.826539
\(658\) 0 0
\(659\) − 3.54311e15i − 1.11049i −0.831686 0.555246i \(-0.812624\pi\)
0.831686 0.555246i \(-0.187376\pi\)
\(660\) 0 0
\(661\) 3.95683e15i 1.21966i 0.792531 + 0.609831i \(0.208763\pi\)
−0.792531 + 0.609831i \(0.791237\pi\)
\(662\) 0 0
\(663\) −4.66422e15 −1.41402
\(664\) 0 0
\(665\) −2.19733e15 −0.655204
\(666\) 0 0
\(667\) 3.99140e15i 1.17067i
\(668\) 0 0
\(669\) − 3.16726e15i − 0.913777i
\(670\) 0 0
\(671\) −5.60536e15 −1.59085
\(672\) 0 0
\(673\) −6.68109e14 −0.186537 −0.0932684 0.995641i \(-0.529731\pi\)
−0.0932684 + 0.995641i \(0.529731\pi\)
\(674\) 0 0
\(675\) − 1.90229e16i − 5.22523i
\(676\) 0 0
\(677\) − 1.84247e15i − 0.497924i −0.968513 0.248962i \(-0.919911\pi\)
0.968513 0.248962i \(-0.0800895\pi\)
\(678\) 0 0
\(679\) 2.86996e15 0.763120
\(680\) 0 0
\(681\) −8.68534e15 −2.27236
\(682\) 0 0
\(683\) − 3.44924e15i − 0.887993i −0.896028 0.443997i \(-0.853560\pi\)
0.896028 0.443997i \(-0.146440\pi\)
\(684\) 0 0
\(685\) 6.00178e13i 0.0152048i
\(686\) 0 0
\(687\) 1.08740e15 0.271099
\(688\) 0 0
\(689\) 1.99254e15 0.488878
\(690\) 0 0
\(691\) 6.31976e15i 1.52606i 0.646363 + 0.763030i \(0.276289\pi\)
−0.646363 + 0.763030i \(0.723711\pi\)
\(692\) 0 0
\(693\) 5.19698e15i 1.23515i
\(694\) 0 0
\(695\) 6.19700e15 1.44966
\(696\) 0 0
\(697\) −2.64499e15 −0.609036
\(698\) 0 0
\(699\) 1.38101e16i 3.13020i
\(700\) 0 0
\(701\) − 4.54606e15i − 1.01435i −0.861844 0.507173i \(-0.830690\pi\)
0.861844 0.507173i \(-0.169310\pi\)
\(702\) 0 0
\(703\) −2.92708e15 −0.642955
\(704\) 0 0
\(705\) 1.12062e16 2.42337
\(706\) 0 0
\(707\) − 2.48271e15i − 0.528591i
\(708\) 0 0
\(709\) − 5.71404e15i − 1.19781i −0.800819 0.598906i \(-0.795602\pi\)
0.800819 0.598906i \(-0.204398\pi\)
\(710\) 0 0
\(711\) 7.89106e15 1.62874
\(712\) 0 0
\(713\) 5.92875e15 1.20495
\(714\) 0 0
\(715\) − 7.39692e15i − 1.48036i
\(716\) 0 0
\(717\) 3.15612e14i 0.0622012i
\(718\) 0 0
\(719\) 3.36530e15 0.653153 0.326577 0.945171i \(-0.394105\pi\)
0.326577 + 0.945171i \(0.394105\pi\)
\(720\) 0 0
\(721\) 3.89353e14 0.0744217
\(722\) 0 0
\(723\) 5.39550e15i 1.01571i
\(724\) 0 0
\(725\) − 1.61970e16i − 3.00314i
\(726\) 0 0
\(727\) −5.08263e14 −0.0928216 −0.0464108 0.998922i \(-0.514778\pi\)
−0.0464108 + 0.998922i \(0.514778\pi\)
\(728\) 0 0
\(729\) −7.88123e15 −1.41773
\(730\) 0 0
\(731\) − 4.16028e15i − 0.737186i
\(732\) 0 0
\(733\) − 8.76006e15i − 1.52910i −0.644566 0.764548i \(-0.722962\pi\)
0.644566 0.764548i \(-0.277038\pi\)
\(734\) 0 0
\(735\) 1.42903e16 2.45732
\(736\) 0 0
\(737\) 6.37623e15 1.08017
\(738\) 0 0
\(739\) 2.63072e15i 0.439066i 0.975605 + 0.219533i \(0.0704534\pi\)
−0.975605 + 0.219533i \(0.929547\pi\)
\(740\) 0 0
\(741\) − 7.57801e15i − 1.24611i
\(742\) 0 0
\(743\) −9.60892e15 −1.55681 −0.778406 0.627761i \(-0.783971\pi\)
−0.778406 + 0.627761i \(0.783971\pi\)
\(744\) 0 0
\(745\) 3.83073e15 0.611536
\(746\) 0 0
\(747\) 1.07324e16i 1.68824i
\(748\) 0 0
\(749\) − 2.28771e15i − 0.354611i
\(750\) 0 0
\(751\) 1.83390e15 0.280128 0.140064 0.990142i \(-0.455269\pi\)
0.140064 + 0.990142i \(0.455269\pi\)
\(752\) 0 0
\(753\) −1.96555e16 −2.95877
\(754\) 0 0
\(755\) 7.91436e15i 1.17411i
\(756\) 0 0
\(757\) 3.59036e14i 0.0524942i 0.999655 + 0.0262471i \(0.00835567\pi\)
−0.999655 + 0.0262471i \(0.991644\pi\)
\(758\) 0 0
\(759\) 1.00803e16 1.45260
\(760\) 0 0
\(761\) −6.83481e15 −0.970757 −0.485379 0.874304i \(-0.661318\pi\)
−0.485379 + 0.874304i \(0.661318\pi\)
\(762\) 0 0
\(763\) 3.81356e13i 0.00533882i
\(764\) 0 0
\(765\) 2.80127e16i 3.86560i
\(766\) 0 0
\(767\) 1.00217e15 0.136322
\(768\) 0 0
\(769\) 4.00775e15 0.537410 0.268705 0.963223i \(-0.413404\pi\)
0.268705 + 0.963223i \(0.413404\pi\)
\(770\) 0 0
\(771\) − 2.05178e15i − 0.271227i
\(772\) 0 0
\(773\) 6.76108e15i 0.881108i 0.897726 + 0.440554i \(0.145218\pi\)
−0.897726 + 0.440554i \(0.854782\pi\)
\(774\) 0 0
\(775\) −2.40587e16 −3.09110
\(776\) 0 0
\(777\) −5.56441e15 −0.704862
\(778\) 0 0
\(779\) − 4.29734e15i − 0.536715i
\(780\) 0 0
\(781\) − 1.34656e16i − 1.65823i
\(782\) 0 0
\(783\) −3.56515e16 −4.32901
\(784\) 0 0
\(785\) −2.28218e15 −0.273254
\(786\) 0 0
\(787\) 1.39564e16i 1.64783i 0.566714 + 0.823915i \(0.308215\pi\)
−0.566714 + 0.823915i \(0.691785\pi\)
\(788\) 0 0
\(789\) − 1.06422e15i − 0.123910i
\(790\) 0 0
\(791\) −3.18070e15 −0.365218
\(792\) 0 0
\(793\) 1.10636e16 1.25284
\(794\) 0 0
\(795\) − 1.68065e16i − 1.87697i
\(796\) 0 0
\(797\) 1.39940e16i 1.54143i 0.637183 + 0.770713i \(0.280100\pi\)
−0.637183 + 0.770713i \(0.719900\pi\)
\(798\) 0 0
\(799\) −6.44389e15 −0.700069
\(800\) 0 0
\(801\) 3.82650e16 4.10036
\(802\) 0 0
\(803\) − 3.32145e15i − 0.351069i
\(804\) 0 0
\(805\) 5.76912e15i 0.601495i
\(806\) 0 0
\(807\) 5.14021e15 0.528660
\(808\) 0 0
\(809\) −7.03097e13 −0.00713343 −0.00356671 0.999994i \(-0.501135\pi\)
−0.00356671 + 0.999994i \(0.501135\pi\)
\(810\) 0 0
\(811\) − 1.76449e16i − 1.76605i −0.469324 0.883026i \(-0.655502\pi\)
0.469324 0.883026i \(-0.344498\pi\)
\(812\) 0 0
\(813\) 1.88013e16i 1.85648i
\(814\) 0 0
\(815\) 1.42160e16 1.38487
\(816\) 0 0
\(817\) 6.75925e15 0.649647
\(818\) 0 0
\(819\) − 1.02576e16i − 0.972711i
\(820\) 0 0
\(821\) − 5.86886e15i − 0.549118i −0.961570 0.274559i \(-0.911468\pi\)
0.961570 0.274559i \(-0.0885319\pi\)
\(822\) 0 0
\(823\) 9.75691e15 0.900769 0.450384 0.892835i \(-0.351287\pi\)
0.450384 + 0.892835i \(0.351287\pi\)
\(824\) 0 0
\(825\) −4.09057e16 −3.72638
\(826\) 0 0
\(827\) − 4.32365e15i − 0.388661i −0.980936 0.194330i \(-0.937747\pi\)
0.980936 0.194330i \(-0.0622534\pi\)
\(828\) 0 0
\(829\) − 1.50130e16i − 1.33174i −0.746069 0.665868i \(-0.768061\pi\)
0.746069 0.665868i \(-0.231939\pi\)
\(830\) 0 0
\(831\) −1.99271e16 −1.74437
\(832\) 0 0
\(833\) −8.21733e15 −0.709877
\(834\) 0 0
\(835\) 4.21184e15i 0.359084i
\(836\) 0 0
\(837\) 5.29560e16i 4.45580i
\(838\) 0 0
\(839\) 1.30045e16 1.07995 0.539974 0.841681i \(-0.318434\pi\)
0.539974 + 0.841681i \(0.318434\pi\)
\(840\) 0 0
\(841\) −1.81550e16 −1.48805
\(842\) 0 0
\(843\) 7.14435e15i 0.577978i
\(844\) 0 0
\(845\) − 6.74073e15i − 0.538263i
\(846\) 0 0
\(847\) 6.22026e14 0.0490287
\(848\) 0 0
\(849\) 2.80512e16 2.18252
\(850\) 0 0
\(851\) 7.68508e15i 0.590250i
\(852\) 0 0
\(853\) − 1.16924e16i − 0.886510i −0.896395 0.443255i \(-0.853824\pi\)
0.896395 0.443255i \(-0.146176\pi\)
\(854\) 0 0
\(855\) −4.55125e16 −3.40657
\(856\) 0 0
\(857\) −6.40223e15 −0.473083 −0.236541 0.971621i \(-0.576014\pi\)
−0.236541 + 0.971621i \(0.576014\pi\)
\(858\) 0 0
\(859\) − 1.33379e16i − 0.973030i −0.873672 0.486515i \(-0.838268\pi\)
0.873672 0.486515i \(-0.161732\pi\)
\(860\) 0 0
\(861\) − 8.16928e15i − 0.588392i
\(862\) 0 0
\(863\) 1.01919e16 0.724759 0.362380 0.932031i \(-0.381964\pi\)
0.362380 + 0.932031i \(0.381964\pi\)
\(864\) 0 0
\(865\) −2.87663e16 −2.01974
\(866\) 0 0
\(867\) 4.25833e15i 0.295212i
\(868\) 0 0
\(869\) − 1.01062e16i − 0.691801i
\(870\) 0 0
\(871\) −1.25851e16 −0.850664
\(872\) 0 0
\(873\) 5.94445e16 3.96765
\(874\) 0 0
\(875\) − 1.11147e16i − 0.732577i
\(876\) 0 0
\(877\) 1.14838e16i 0.747460i 0.927537 + 0.373730i \(0.121921\pi\)
−0.927537 + 0.373730i \(0.878079\pi\)
\(878\) 0 0
\(879\) −6.46695e14 −0.0415682
\(880\) 0 0
\(881\) −1.96603e15 −0.124802 −0.0624011 0.998051i \(-0.519876\pi\)
−0.0624011 + 0.998051i \(0.519876\pi\)
\(882\) 0 0
\(883\) 2.77835e16i 1.74182i 0.491442 + 0.870910i \(0.336470\pi\)
−0.491442 + 0.870910i \(0.663530\pi\)
\(884\) 0 0
\(885\) − 8.45300e15i − 0.523387i
\(886\) 0 0
\(887\) −2.98288e16 −1.82413 −0.912064 0.410048i \(-0.865512\pi\)
−0.912064 + 0.410048i \(0.865512\pi\)
\(888\) 0 0
\(889\) −8.65263e15 −0.522623
\(890\) 0 0
\(891\) 4.65061e16i 2.77449i
\(892\) 0 0
\(893\) − 1.04694e16i − 0.616937i
\(894\) 0 0
\(895\) −2.46752e16 −1.43626
\(896\) 0 0
\(897\) −1.98961e16 −1.14396
\(898\) 0 0
\(899\) 4.50894e16i 2.56092i
\(900\) 0 0
\(901\) 9.66418e15i 0.542224i
\(902\) 0 0
\(903\) 1.28494e16 0.712197
\(904\) 0 0
\(905\) 1.04480e16 0.572092
\(906\) 0 0
\(907\) − 6.55702e15i − 0.354704i −0.984147 0.177352i \(-0.943247\pi\)
0.984147 0.177352i \(-0.0567531\pi\)
\(908\) 0 0
\(909\) − 5.14234e16i − 2.74827i
\(910\) 0 0
\(911\) −6.38239e14 −0.0337002 −0.0168501 0.999858i \(-0.505364\pi\)
−0.0168501 + 0.999858i \(0.505364\pi\)
\(912\) 0 0
\(913\) 1.37452e16 0.717072
\(914\) 0 0
\(915\) − 9.33185e16i − 4.81007i
\(916\) 0 0
\(917\) − 5.97673e15i − 0.304391i
\(918\) 0 0
\(919\) −7.76358e15 −0.390685 −0.195343 0.980735i \(-0.562582\pi\)
−0.195343 + 0.980735i \(0.562582\pi\)
\(920\) 0 0
\(921\) −1.64405e16 −0.817500
\(922\) 0 0
\(923\) 2.65778e16i 1.30590i
\(924\) 0 0
\(925\) − 3.11859e16i − 1.51418i
\(926\) 0 0
\(927\) 8.06451e15 0.386936
\(928\) 0 0
\(929\) −1.74081e16 −0.825399 −0.412699 0.910867i \(-0.635414\pi\)
−0.412699 + 0.910867i \(0.635414\pi\)
\(930\) 0 0
\(931\) − 1.33508e16i − 0.625581i
\(932\) 0 0
\(933\) − 6.13763e16i − 2.84218i
\(934\) 0 0
\(935\) 3.58765e16 1.64190
\(936\) 0 0
\(937\) 2.93626e16 1.32809 0.664043 0.747694i \(-0.268839\pi\)
0.664043 + 0.747694i \(0.268839\pi\)
\(938\) 0 0
\(939\) 2.72468e16i 1.21802i
\(940\) 0 0
\(941\) 8.19312e15i 0.361998i 0.983483 + 0.180999i \(0.0579331\pi\)
−0.983483 + 0.180999i \(0.942067\pi\)
\(942\) 0 0
\(943\) −1.12827e16 −0.492718
\(944\) 0 0
\(945\) −5.15302e16 −2.22427
\(946\) 0 0
\(947\) − 2.85510e13i − 0.00121814i −1.00000 0.000609070i \(-0.999806\pi\)
1.00000 0.000609070i \(-0.000193873\pi\)
\(948\) 0 0
\(949\) 6.55574e15i 0.276476i
\(950\) 0 0
\(951\) 7.17996e16 2.99315
\(952\) 0 0
\(953\) −1.18686e16 −0.489090 −0.244545 0.969638i \(-0.578639\pi\)
−0.244545 + 0.969638i \(0.578639\pi\)
\(954\) 0 0
\(955\) − 3.26504e16i − 1.33006i
\(956\) 0 0
\(957\) 7.66631e16i 3.08724i
\(958\) 0 0
\(959\) 1.06593e14 0.00424353
\(960\) 0 0
\(961\) 4.15664e16 1.63593
\(962\) 0 0
\(963\) − 4.73845e16i − 1.84371i
\(964\) 0 0
\(965\) − 6.42404e15i − 0.247120i
\(966\) 0 0
\(967\) −1.82443e16 −0.693877 −0.346939 0.937888i \(-0.612779\pi\)
−0.346939 + 0.937888i \(0.612779\pi\)
\(968\) 0 0
\(969\) 3.67548e16 1.38208
\(970\) 0 0
\(971\) 4.17627e16i 1.55268i 0.630312 + 0.776342i \(0.282927\pi\)
−0.630312 + 0.776342i \(0.717073\pi\)
\(972\) 0 0
\(973\) − 1.10060e16i − 0.404585i
\(974\) 0 0
\(975\) 8.07380e16 2.93462
\(976\) 0 0
\(977\) 3.92505e16 1.41067 0.705335 0.708874i \(-0.250797\pi\)
0.705335 + 0.708874i \(0.250797\pi\)
\(978\) 0 0
\(979\) − 4.90068e16i − 1.74161i
\(980\) 0 0
\(981\) 7.89887e14i 0.0277578i
\(982\) 0 0
\(983\) 4.75481e16 1.65230 0.826150 0.563451i \(-0.190527\pi\)
0.826150 + 0.563451i \(0.190527\pi\)
\(984\) 0 0
\(985\) 8.13519e15 0.279556
\(986\) 0 0
\(987\) − 1.99025e16i − 0.676338i
\(988\) 0 0
\(989\) − 1.77465e16i − 0.596393i
\(990\) 0 0
\(991\) −2.53768e16 −0.843396 −0.421698 0.906736i \(-0.638566\pi\)
−0.421698 + 0.906736i \(0.638566\pi\)
\(992\) 0 0
\(993\) −2.75474e16 −0.905440
\(994\) 0 0
\(995\) 5.54258e16i 1.80171i
\(996\) 0 0
\(997\) 4.92972e16i 1.58489i 0.609944 + 0.792444i \(0.291192\pi\)
−0.609944 + 0.792444i \(0.708808\pi\)
\(998\) 0 0
\(999\) −6.86437e16 −2.18268
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 128.12.b.e.65.1 12
4.3 odd 2 inner 128.12.b.e.65.11 yes 12
8.3 odd 2 inner 128.12.b.e.65.2 yes 12
8.5 even 2 inner 128.12.b.e.65.12 yes 12
16.3 odd 4 256.12.a.q.1.1 12
16.5 even 4 256.12.a.q.1.2 12
16.11 odd 4 256.12.a.q.1.12 12
16.13 even 4 256.12.a.q.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
128.12.b.e.65.1 12 1.1 even 1 trivial
128.12.b.e.65.2 yes 12 8.3 odd 2 inner
128.12.b.e.65.11 yes 12 4.3 odd 2 inner
128.12.b.e.65.12 yes 12 8.5 even 2 inner
256.12.a.q.1.1 12 16.3 odd 4
256.12.a.q.1.2 12 16.5 even 4
256.12.a.q.1.11 12 16.13 even 4
256.12.a.q.1.12 12 16.11 odd 4