Defining parameters
| Level: | \( N \) | = | \( 128 = 2^{7} \) |
| Weight: | \( k \) | = | \( 12 \) |
| Nonzero newspaces: | \( 5 \) | ||
| Sturm bound: | \(12288\) | ||
| Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(128))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 5712 | 3192 | 2520 |
| Cusp forms | 5552 | 3144 | 2408 |
| Eisenstein series | 160 | 48 | 112 |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(128))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
| Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
|---|---|---|---|---|
| 128.12.a | \(\chi_{128}(1, \cdot)\) | 128.12.a.a | 5 | 1 |
| 128.12.a.b | 5 | |||
| 128.12.a.c | 5 | |||
| 128.12.a.d | 5 | |||
| 128.12.a.e | 6 | |||
| 128.12.a.f | 6 | |||
| 128.12.a.g | 6 | |||
| 128.12.a.h | 6 | |||
| 128.12.b | \(\chi_{128}(65, \cdot)\) | 128.12.b.a | 2 | 1 |
| 128.12.b.b | 2 | |||
| 128.12.b.c | 8 | |||
| 128.12.b.d | 8 | |||
| 128.12.b.e | 12 | |||
| 128.12.b.f | 12 | |||
| 128.12.e | \(\chi_{128}(33, \cdot)\) | 128.12.e.a | 42 | 2 |
| 128.12.e.b | 42 | |||
| 128.12.g | \(\chi_{128}(17, \cdot)\) | n/a | 172 | 4 |
| 128.12.i | \(\chi_{128}(9, \cdot)\) | None | 0 | 8 |
| 128.12.k | \(\chi_{128}(5, \cdot)\) | n/a | 2800 | 16 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(128))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_1(128)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 7}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 5}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)