Properties

Label 128.12
Level 128
Weight 12
Dimension 3144
Nonzero newspaces 5
Sturm bound 12288
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 128 = 2^{7} \)
Weight: \( k \) = \( 12 \)
Nonzero newspaces: \( 5 \)
Sturm bound: \(12288\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_1(128))\).

Total New Old
Modular forms 5712 3192 2520
Cusp forms 5552 3144 2408
Eisenstein series 160 48 112

Trace form

\( 3144 q - 16 q^{2} - 12 q^{3} - 16 q^{4} - 16 q^{5} - 16 q^{6} - 12 q^{7} - 16 q^{8} - 20 q^{9} - 16 q^{10} - 12 q^{11} - 16 q^{12} - 16 q^{13} - 16 q^{14} - 16 q^{15} - 16 q^{16} - 24 q^{17} - 16 q^{18}+ \cdots - 378702509920 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_1(128))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
128.12.a \(\chi_{128}(1, \cdot)\) 128.12.a.a 5 1
128.12.a.b 5
128.12.a.c 5
128.12.a.d 5
128.12.a.e 6
128.12.a.f 6
128.12.a.g 6
128.12.a.h 6
128.12.b \(\chi_{128}(65, \cdot)\) 128.12.b.a 2 1
128.12.b.b 2
128.12.b.c 8
128.12.b.d 8
128.12.b.e 12
128.12.b.f 12
128.12.e \(\chi_{128}(33, \cdot)\) 128.12.e.a 42 2
128.12.e.b 42
128.12.g \(\chi_{128}(17, \cdot)\) n/a 172 4
128.12.i \(\chi_{128}(9, \cdot)\) None 0 8
128.12.k \(\chi_{128}(5, \cdot)\) n/a 2800 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_1(128))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_1(128)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 7}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 5}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 3}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)