Properties

Label 2-2e8-1.1-c11-0-28
Degree $2$
Conductor $256$
Sign $1$
Analytic cond. $196.695$
Root an. cond. $14.0248$
Motivic weight $11$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 784.·3-s + 1.19e4·5-s + 2.11e4·7-s + 4.38e5·9-s − 5.61e5·11-s − 1.10e6·13-s − 9.33e6·15-s + 5.37e6·17-s + 8.72e6·19-s − 1.65e7·21-s − 2.29e7·23-s + 9.29e7·25-s − 2.04e8·27-s + 1.74e8·29-s + 2.58e8·31-s + 4.40e8·33-s + 2.51e8·35-s − 3.35e8·37-s + 8.68e8·39-s + 4.92e8·41-s + 7.74e8·43-s + 5.21e9·45-s − 1.19e9·47-s − 1.53e9·49-s − 4.21e9·51-s − 1.79e9·53-s − 6.68e9·55-s + ⋯
L(s)  = 1  − 1.86·3-s + 1.70·5-s + 0.475·7-s + 2.47·9-s − 1.05·11-s − 0.827·13-s − 3.17·15-s + 0.917·17-s + 0.808·19-s − 0.886·21-s − 0.742·23-s + 1.90·25-s − 2.74·27-s + 1.57·29-s + 1.62·31-s + 1.95·33-s + 0.810·35-s − 0.795·37-s + 1.54·39-s + 0.663·41-s + 0.803·43-s + 4.21·45-s − 0.763·47-s − 0.773·49-s − 1.70·51-s − 0.591·53-s − 1.78·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 256 ^{s/2} \, \Gamma_{\C}(s+11/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(256\)    =    \(2^{8}\)
Sign: $1$
Analytic conductor: \(196.695\)
Root analytic conductor: \(14.0248\)
Motivic weight: \(11\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 256,\ (\ :11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(1.785449845\)
\(L(\frac12)\) \(\approx\) \(1.785449845\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + 784.T + 1.77e5T^{2} \)
5 \( 1 - 1.19e4T + 4.88e7T^{2} \)
7 \( 1 - 2.11e4T + 1.97e9T^{2} \)
11 \( 1 + 5.61e5T + 2.85e11T^{2} \)
13 \( 1 + 1.10e6T + 1.79e12T^{2} \)
17 \( 1 - 5.37e6T + 3.42e13T^{2} \)
19 \( 1 - 8.72e6T + 1.16e14T^{2} \)
23 \( 1 + 2.29e7T + 9.52e14T^{2} \)
29 \( 1 - 1.74e8T + 1.22e16T^{2} \)
31 \( 1 - 2.58e8T + 2.54e16T^{2} \)
37 \( 1 + 3.35e8T + 1.77e17T^{2} \)
41 \( 1 - 4.92e8T + 5.50e17T^{2} \)
43 \( 1 - 7.74e8T + 9.29e17T^{2} \)
47 \( 1 + 1.19e9T + 2.47e18T^{2} \)
53 \( 1 + 1.79e9T + 9.26e18T^{2} \)
59 \( 1 + 9.05e8T + 3.01e19T^{2} \)
61 \( 1 - 9.99e9T + 4.35e19T^{2} \)
67 \( 1 + 1.13e10T + 1.22e20T^{2} \)
71 \( 1 - 2.40e10T + 2.31e20T^{2} \)
73 \( 1 - 5.92e9T + 3.13e20T^{2} \)
79 \( 1 + 1.80e10T + 7.47e20T^{2} \)
83 \( 1 + 2.45e10T + 1.28e21T^{2} \)
89 \( 1 - 8.73e10T + 2.77e21T^{2} \)
97 \( 1 + 1.35e11T + 7.15e21T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.00415493602394800984919257680, −9.851772806256024382629474002494, −7.964937427750196591029580762693, −6.78785860907250990512025937141, −5.94981869893938509527314213788, −5.25087650768138650103878403950, −4.74145381938988460646316186884, −2.63314072112796378806592288887, −1.49431980557021181388184162026, −0.66429574693943635845046512276, 0.66429574693943635845046512276, 1.49431980557021181388184162026, 2.63314072112796378806592288887, 4.74145381938988460646316186884, 5.25087650768138650103878403950, 5.94981869893938509527314213788, 6.78785860907250990512025937141, 7.964937427750196591029580762693, 9.851772806256024382629474002494, 10.00415493602394800984919257680

Graph of the $Z$-function along the critical line