Properties

Label 2548.2.a.q.1.4
Level $2548$
Weight $2$
Character 2548.1
Self dual yes
Analytic conductor $20.346$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2548,2,Mod(1,2548)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2548.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2548, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,3,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.29268.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 9x^{2} + 5x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-2.43292\) of defining polynomial
Character \(\chi\) \(=\) 2548.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.43292 q^{3} +0.919111 q^{5} +8.78496 q^{9} +1.60425 q^{11} -1.00000 q^{13} +3.15524 q^{15} -2.72231 q^{17} -2.11806 q^{19} +5.43292 q^{23} -4.15524 q^{25} +19.8593 q^{27} -6.50727 q^{29} +5.66905 q^{31} +5.50727 q^{33} +9.43292 q^{37} -3.43292 q^{39} -2.35203 q^{41} -0.513812 q^{43} +8.07435 q^{45} +4.63187 q^{47} -9.34549 q^{51} +5.62972 q^{53} +1.47448 q^{55} -7.27114 q^{57} +7.33594 q^{59} -0.606405 q^{61} -0.919111 q^{65} -11.4518 q^{67} +18.6508 q^{69} -15.3476 q^{71} -10.1829 q^{73} -14.2646 q^{75} +8.52552 q^{79} +41.8206 q^{81} -13.0561 q^{83} -2.50211 q^{85} -22.3389 q^{87} -12.5306 q^{89} +19.4614 q^{93} -1.94673 q^{95} -7.21788 q^{97} +14.0933 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} - q^{5} + 9 q^{9} + 4 q^{11} - 4 q^{13} - 9 q^{15} + 11 q^{23} + 5 q^{25} + 27 q^{27} + 11 q^{29} - 5 q^{31} - 15 q^{33} + 27 q^{37} - 3 q^{39} + 6 q^{41} + 4 q^{43} + 6 q^{45} + 4 q^{47}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.43292 1.98200 0.990999 0.133867i \(-0.0427395\pi\)
0.990999 + 0.133867i \(0.0427395\pi\)
\(4\) 0 0
\(5\) 0.919111 0.411039 0.205519 0.978653i \(-0.434112\pi\)
0.205519 + 0.978653i \(0.434112\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 8.78496 2.92832
\(10\) 0 0
\(11\) 1.60425 0.483700 0.241850 0.970314i \(-0.422246\pi\)
0.241850 + 0.970314i \(0.422246\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 3.15524 0.814678
\(16\) 0 0
\(17\) −2.72231 −0.660258 −0.330129 0.943936i \(-0.607092\pi\)
−0.330129 + 0.943936i \(0.607092\pi\)
\(18\) 0 0
\(19\) −2.11806 −0.485917 −0.242958 0.970037i \(-0.578118\pi\)
−0.242958 + 0.970037i \(0.578118\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 5.43292 1.13284 0.566421 0.824116i \(-0.308328\pi\)
0.566421 + 0.824116i \(0.308328\pi\)
\(24\) 0 0
\(25\) −4.15524 −0.831047
\(26\) 0 0
\(27\) 19.8593 3.82192
\(28\) 0 0
\(29\) −6.50727 −1.20837 −0.604185 0.796844i \(-0.706501\pi\)
−0.604185 + 0.796844i \(0.706501\pi\)
\(30\) 0 0
\(31\) 5.66905 1.01819 0.509095 0.860710i \(-0.329980\pi\)
0.509095 + 0.860710i \(0.329980\pi\)
\(32\) 0 0
\(33\) 5.50727 0.958692
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9.43292 1.55076 0.775381 0.631493i \(-0.217558\pi\)
0.775381 + 0.631493i \(0.217558\pi\)
\(38\) 0 0
\(39\) −3.43292 −0.549708
\(40\) 0 0
\(41\) −2.35203 −0.367326 −0.183663 0.982989i \(-0.558795\pi\)
−0.183663 + 0.982989i \(0.558795\pi\)
\(42\) 0 0
\(43\) −0.513812 −0.0783555 −0.0391778 0.999232i \(-0.512474\pi\)
−0.0391778 + 0.999232i \(0.512474\pi\)
\(44\) 0 0
\(45\) 8.07435 1.20365
\(46\) 0 0
\(47\) 4.63187 0.675628 0.337814 0.941213i \(-0.390312\pi\)
0.337814 + 0.941213i \(0.390312\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −9.34549 −1.30863
\(52\) 0 0
\(53\) 5.62972 0.773301 0.386651 0.922226i \(-0.373632\pi\)
0.386651 + 0.922226i \(0.373632\pi\)
\(54\) 0 0
\(55\) 1.47448 0.198819
\(56\) 0 0
\(57\) −7.27114 −0.963087
\(58\) 0 0
\(59\) 7.33594 0.955058 0.477529 0.878616i \(-0.341533\pi\)
0.477529 + 0.878616i \(0.341533\pi\)
\(60\) 0 0
\(61\) −0.606405 −0.0776422 −0.0388211 0.999246i \(-0.512360\pi\)
−0.0388211 + 0.999246i \(0.512360\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.919111 −0.114002
\(66\) 0 0
\(67\) −11.4518 −1.39907 −0.699533 0.714600i \(-0.746609\pi\)
−0.699533 + 0.714600i \(0.746609\pi\)
\(68\) 0 0
\(69\) 18.6508 2.24529
\(70\) 0 0
\(71\) −15.3476 −1.82143 −0.910715 0.413035i \(-0.864469\pi\)
−0.910715 + 0.413035i \(0.864469\pi\)
\(72\) 0 0
\(73\) −10.1829 −1.19181 −0.595907 0.803054i \(-0.703207\pi\)
−0.595907 + 0.803054i \(0.703207\pi\)
\(74\) 0 0
\(75\) −14.2646 −1.64713
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.52552 0.959195 0.479598 0.877488i \(-0.340783\pi\)
0.479598 + 0.877488i \(0.340783\pi\)
\(80\) 0 0
\(81\) 41.8206 4.64673
\(82\) 0 0
\(83\) −13.0561 −1.43309 −0.716547 0.697539i \(-0.754278\pi\)
−0.716547 + 0.697539i \(0.754278\pi\)
\(84\) 0 0
\(85\) −2.50211 −0.271392
\(86\) 0 0
\(87\) −22.3389 −2.39499
\(88\) 0 0
\(89\) −12.5306 −1.32824 −0.664120 0.747626i \(-0.731193\pi\)
−0.664120 + 0.747626i \(0.731193\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 19.4614 2.01805
\(94\) 0 0
\(95\) −1.94673 −0.199731
\(96\) 0 0
\(97\) −7.21788 −0.732864 −0.366432 0.930445i \(-0.619421\pi\)
−0.366432 + 0.930445i \(0.619421\pi\)
\(98\) 0 0
\(99\) 14.0933 1.41643
\(100\) 0 0
\(101\) 0.757332 0.0753574 0.0376787 0.999290i \(-0.488004\pi\)
0.0376787 + 0.999290i \(0.488004\pi\)
\(102\) 0 0
\(103\) −0.330953 −0.0326098 −0.0163049 0.999867i \(-0.505190\pi\)
−0.0163049 + 0.999867i \(0.505190\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.2529 −0.991185 −0.495592 0.868555i \(-0.665049\pi\)
−0.495592 + 0.868555i \(0.665049\pi\)
\(108\) 0 0
\(109\) −7.97521 −0.763887 −0.381943 0.924186i \(-0.624745\pi\)
−0.381943 + 0.924186i \(0.624745\pi\)
\(110\) 0 0
\(111\) 32.3825 3.07361
\(112\) 0 0
\(113\) 14.8308 1.39517 0.697583 0.716504i \(-0.254259\pi\)
0.697583 + 0.716504i \(0.254259\pi\)
\(114\) 0 0
\(115\) 4.99346 0.465642
\(116\) 0 0
\(117\) −8.78496 −0.812169
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.42638 −0.766034
\(122\) 0 0
\(123\) −8.07435 −0.728039
\(124\) 0 0
\(125\) −8.41467 −0.752631
\(126\) 0 0
\(127\) 19.0102 1.68688 0.843442 0.537219i \(-0.180525\pi\)
0.843442 + 0.537219i \(0.180525\pi\)
\(128\) 0 0
\(129\) −1.76388 −0.155301
\(130\) 0 0
\(131\) 13.7850 1.20440 0.602199 0.798346i \(-0.294292\pi\)
0.602199 + 0.798346i \(0.294292\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 18.2529 1.57096
\(136\) 0 0
\(137\) 6.68299 0.570966 0.285483 0.958384i \(-0.407846\pi\)
0.285483 + 0.958384i \(0.407846\pi\)
\(138\) 0 0
\(139\) −1.25944 −0.106824 −0.0534121 0.998573i \(-0.517010\pi\)
−0.0534121 + 0.998573i \(0.517010\pi\)
\(140\) 0 0
\(141\) 15.9009 1.33909
\(142\) 0 0
\(143\) −1.60425 −0.134154
\(144\) 0 0
\(145\) −5.98090 −0.496687
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 5.26177 0.431061 0.215530 0.976497i \(-0.430852\pi\)
0.215530 + 0.976497i \(0.430852\pi\)
\(150\) 0 0
\(151\) 13.7754 1.12103 0.560513 0.828145i \(-0.310604\pi\)
0.560513 + 0.828145i \(0.310604\pi\)
\(152\) 0 0
\(153\) −23.9154 −1.93345
\(154\) 0 0
\(155\) 5.21048 0.418516
\(156\) 0 0
\(157\) 1.22675 0.0979052 0.0489526 0.998801i \(-0.484412\pi\)
0.0489526 + 0.998801i \(0.484412\pi\)
\(158\) 0 0
\(159\) 19.3264 1.53268
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −15.4562 −1.21062 −0.605310 0.795990i \(-0.706951\pi\)
−0.605310 + 0.795990i \(0.706951\pi\)
\(164\) 0 0
\(165\) 5.06179 0.394060
\(166\) 0 0
\(167\) −23.7091 −1.83466 −0.917331 0.398126i \(-0.869661\pi\)
−0.917331 + 0.398126i \(0.869661\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −18.6071 −1.42292
\(172\) 0 0
\(173\) −14.1763 −1.07781 −0.538903 0.842368i \(-0.681161\pi\)
−0.538903 + 0.842368i \(0.681161\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 25.1837 1.89292
\(178\) 0 0
\(179\) −6.46055 −0.482884 −0.241442 0.970415i \(-0.577620\pi\)
−0.241442 + 0.970415i \(0.577620\pi\)
\(180\) 0 0
\(181\) 11.9476 0.888057 0.444029 0.896013i \(-0.353549\pi\)
0.444029 + 0.896013i \(0.353549\pi\)
\(182\) 0 0
\(183\) −2.08174 −0.153887
\(184\) 0 0
\(185\) 8.66990 0.637424
\(186\) 0 0
\(187\) −4.36727 −0.319367
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.17855 0.157634 0.0788172 0.996889i \(-0.474886\pi\)
0.0788172 + 0.996889i \(0.474886\pi\)
\(192\) 0 0
\(193\) −20.2988 −1.46114 −0.730569 0.682839i \(-0.760745\pi\)
−0.730569 + 0.682839i \(0.760745\pi\)
\(194\) 0 0
\(195\) −3.15524 −0.225951
\(196\) 0 0
\(197\) −2.00938 −0.143162 −0.0715810 0.997435i \(-0.522804\pi\)
−0.0715810 + 0.997435i \(0.522804\pi\)
\(198\) 0 0
\(199\) −2.64142 −0.187246 −0.0936228 0.995608i \(-0.529845\pi\)
−0.0936228 + 0.995608i \(0.529845\pi\)
\(200\) 0 0
\(201\) −39.3133 −2.77295
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.16178 −0.150985
\(206\) 0 0
\(207\) 47.7280 3.31732
\(208\) 0 0
\(209\) −3.39790 −0.235038
\(210\) 0 0
\(211\) 9.92194 0.683055 0.341527 0.939872i \(-0.389056\pi\)
0.341527 + 0.939872i \(0.389056\pi\)
\(212\) 0 0
\(213\) −52.6873 −3.61007
\(214\) 0 0
\(215\) −0.472250 −0.0322072
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −34.9570 −2.36217
\(220\) 0 0
\(221\) 2.72231 0.183123
\(222\) 0 0
\(223\) −9.20402 −0.616347 −0.308173 0.951330i \(-0.599718\pi\)
−0.308173 + 0.951330i \(0.599718\pi\)
\(224\) 0 0
\(225\) −36.5036 −2.43357
\(226\) 0 0
\(227\) −20.5349 −1.36295 −0.681474 0.731842i \(-0.738661\pi\)
−0.681474 + 0.731842i \(0.738661\pi\)
\(228\) 0 0
\(229\) 1.79433 0.118573 0.0592864 0.998241i \(-0.481117\pi\)
0.0592864 + 0.998241i \(0.481117\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 21.8702 1.43276 0.716381 0.697710i \(-0.245797\pi\)
0.716381 + 0.697710i \(0.245797\pi\)
\(234\) 0 0
\(235\) 4.25720 0.277709
\(236\) 0 0
\(237\) 29.2674 1.90112
\(238\) 0 0
\(239\) 12.3468 0.798648 0.399324 0.916810i \(-0.369245\pi\)
0.399324 + 0.916810i \(0.369245\pi\)
\(240\) 0 0
\(241\) −13.9795 −0.900500 −0.450250 0.892903i \(-0.648665\pi\)
−0.450250 + 0.892903i \(0.648665\pi\)
\(242\) 0 0
\(243\) 83.9889 5.38789
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.11806 0.134769
\(248\) 0 0
\(249\) −44.8206 −2.84039
\(250\) 0 0
\(251\) −5.72231 −0.361189 −0.180595 0.983558i \(-0.557802\pi\)
−0.180595 + 0.983558i \(0.557802\pi\)
\(252\) 0 0
\(253\) 8.71577 0.547956
\(254\) 0 0
\(255\) −8.58954 −0.537898
\(256\) 0 0
\(257\) −8.88262 −0.554082 −0.277041 0.960858i \(-0.589354\pi\)
−0.277041 + 0.960858i \(0.589354\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −57.1661 −3.53849
\(262\) 0 0
\(263\) 16.9242 1.04359 0.521795 0.853071i \(-0.325263\pi\)
0.521795 + 0.853071i \(0.325263\pi\)
\(264\) 0 0
\(265\) 5.17434 0.317857
\(266\) 0 0
\(267\) −43.0165 −2.63257
\(268\) 0 0
\(269\) −1.89432 −0.115499 −0.0577494 0.998331i \(-0.518392\pi\)
−0.0577494 + 0.998331i \(0.518392\pi\)
\(270\) 0 0
\(271\) −10.4664 −0.635788 −0.317894 0.948126i \(-0.602976\pi\)
−0.317894 + 0.948126i \(0.602976\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.66604 −0.401977
\(276\) 0 0
\(277\) −11.2871 −0.678174 −0.339087 0.940755i \(-0.610118\pi\)
−0.339087 + 0.940755i \(0.610118\pi\)
\(278\) 0 0
\(279\) 49.8023 2.98159
\(280\) 0 0
\(281\) 14.5517 0.868079 0.434040 0.900894i \(-0.357088\pi\)
0.434040 + 0.900894i \(0.357088\pi\)
\(282\) 0 0
\(283\) 13.5357 0.804616 0.402308 0.915504i \(-0.368208\pi\)
0.402308 + 0.915504i \(0.368208\pi\)
\(284\) 0 0
\(285\) −6.68299 −0.395866
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.58901 −0.564059
\(290\) 0 0
\(291\) −24.7784 −1.45254
\(292\) 0 0
\(293\) 14.4816 0.846026 0.423013 0.906124i \(-0.360973\pi\)
0.423013 + 0.906124i \(0.360973\pi\)
\(294\) 0 0
\(295\) 6.74254 0.392566
\(296\) 0 0
\(297\) 31.8593 1.84866
\(298\) 0 0
\(299\) −5.43292 −0.314194
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.59986 0.149358
\(304\) 0 0
\(305\) −0.557353 −0.0319140
\(306\) 0 0
\(307\) −14.6530 −0.836288 −0.418144 0.908381i \(-0.637319\pi\)
−0.418144 + 0.908381i \(0.637319\pi\)
\(308\) 0 0
\(309\) −1.13614 −0.0646325
\(310\) 0 0
\(311\) −13.8265 −0.784030 −0.392015 0.919959i \(-0.628222\pi\)
−0.392015 + 0.919959i \(0.628222\pi\)
\(312\) 0 0
\(313\) 17.9658 1.01549 0.507744 0.861508i \(-0.330479\pi\)
0.507744 + 0.861508i \(0.330479\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.64057 0.204475 0.102237 0.994760i \(-0.467400\pi\)
0.102237 + 0.994760i \(0.467400\pi\)
\(318\) 0 0
\(319\) −10.4393 −0.584488
\(320\) 0 0
\(321\) −35.1974 −1.96453
\(322\) 0 0
\(323\) 5.76603 0.320830
\(324\) 0 0
\(325\) 4.15524 0.230491
\(326\) 0 0
\(327\) −27.3783 −1.51402
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 13.5625 0.745463 0.372732 0.927939i \(-0.378421\pi\)
0.372732 + 0.927939i \(0.378421\pi\)
\(332\) 0 0
\(333\) 82.8678 4.54113
\(334\) 0 0
\(335\) −10.5255 −0.575070
\(336\) 0 0
\(337\) −16.1880 −0.881818 −0.440909 0.897552i \(-0.645344\pi\)
−0.440909 + 0.897552i \(0.645344\pi\)
\(338\) 0 0
\(339\) 50.9131 2.76522
\(340\) 0 0
\(341\) 9.09457 0.492499
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 17.1421 0.922902
\(346\) 0 0
\(347\) 14.1922 0.761879 0.380940 0.924600i \(-0.375601\pi\)
0.380940 + 0.924600i \(0.375601\pi\)
\(348\) 0 0
\(349\) −4.22675 −0.226253 −0.113126 0.993581i \(-0.536086\pi\)
−0.113126 + 0.993581i \(0.536086\pi\)
\(350\) 0 0
\(351\) −19.8593 −1.06001
\(352\) 0 0
\(353\) 29.2390 1.55623 0.778116 0.628120i \(-0.216175\pi\)
0.778116 + 0.628120i \(0.216175\pi\)
\(354\) 0 0
\(355\) −14.1062 −0.748679
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.29446 0.437765 0.218882 0.975751i \(-0.429759\pi\)
0.218882 + 0.975751i \(0.429759\pi\)
\(360\) 0 0
\(361\) −14.5138 −0.763885
\(362\) 0 0
\(363\) −28.9271 −1.51828
\(364\) 0 0
\(365\) −9.35917 −0.489882
\(366\) 0 0
\(367\) −24.7251 −1.29064 −0.645321 0.763911i \(-0.723276\pi\)
−0.645321 + 0.763911i \(0.723276\pi\)
\(368\) 0 0
\(369\) −20.6625 −1.07565
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −7.93082 −0.410642 −0.205321 0.978695i \(-0.565824\pi\)
−0.205321 + 0.978695i \(0.565824\pi\)
\(374\) 0 0
\(375\) −28.8869 −1.49171
\(376\) 0 0
\(377\) 6.50727 0.335141
\(378\) 0 0
\(379\) −34.5050 −1.77240 −0.886202 0.463299i \(-0.846666\pi\)
−0.886202 + 0.463299i \(0.846666\pi\)
\(380\) 0 0
\(381\) 65.2606 3.34340
\(382\) 0 0
\(383\) 15.9286 0.813912 0.406956 0.913448i \(-0.366590\pi\)
0.406956 + 0.913448i \(0.366590\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.51381 −0.229450
\(388\) 0 0
\(389\) 8.09690 0.410529 0.205265 0.978707i \(-0.434194\pi\)
0.205265 + 0.978707i \(0.434194\pi\)
\(390\) 0 0
\(391\) −14.7901 −0.747968
\(392\) 0 0
\(393\) 47.3227 2.38711
\(394\) 0 0
\(395\) 7.83589 0.394267
\(396\) 0 0
\(397\) −31.5910 −1.58551 −0.792753 0.609543i \(-0.791353\pi\)
−0.792753 + 0.609543i \(0.791353\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.41382 0.0706029 0.0353015 0.999377i \(-0.488761\pi\)
0.0353015 + 0.999377i \(0.488761\pi\)
\(402\) 0 0
\(403\) −5.66905 −0.282395
\(404\) 0 0
\(405\) 38.4377 1.90999
\(406\) 0 0
\(407\) 15.1328 0.750104
\(408\) 0 0
\(409\) 18.4699 0.913279 0.456639 0.889652i \(-0.349053\pi\)
0.456639 + 0.889652i \(0.349053\pi\)
\(410\) 0 0
\(411\) 22.9422 1.13165
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.0000 −0.589057
\(416\) 0 0
\(417\) −4.32356 −0.211726
\(418\) 0 0
\(419\) −15.1529 −0.740268 −0.370134 0.928978i \(-0.620688\pi\)
−0.370134 + 0.928978i \(0.620688\pi\)
\(420\) 0 0
\(421\) 15.8804 0.773962 0.386981 0.922088i \(-0.373518\pi\)
0.386981 + 0.922088i \(0.373518\pi\)
\(422\) 0 0
\(423\) 40.6908 1.97845
\(424\) 0 0
\(425\) 11.3119 0.548705
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −5.50727 −0.265893
\(430\) 0 0
\(431\) −15.0028 −0.722661 −0.361331 0.932438i \(-0.617677\pi\)
−0.361331 + 0.932438i \(0.617677\pi\)
\(432\) 0 0
\(433\) 9.81258 0.471562 0.235781 0.971806i \(-0.424235\pi\)
0.235781 + 0.971806i \(0.424235\pi\)
\(434\) 0 0
\(435\) −20.5320 −0.984432
\(436\) 0 0
\(437\) −11.5073 −0.550467
\(438\) 0 0
\(439\) 1.40445 0.0670306 0.0335153 0.999438i \(-0.489330\pi\)
0.0335153 + 0.999438i \(0.489330\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 29.2352 1.38901 0.694504 0.719489i \(-0.255624\pi\)
0.694504 + 0.719489i \(0.255624\pi\)
\(444\) 0 0
\(445\) −11.5170 −0.545958
\(446\) 0 0
\(447\) 18.0632 0.854362
\(448\) 0 0
\(449\) 9.13416 0.431067 0.215534 0.976496i \(-0.430851\pi\)
0.215534 + 0.976496i \(0.430851\pi\)
\(450\) 0 0
\(451\) −3.77325 −0.177675
\(452\) 0 0
\(453\) 47.2899 2.22187
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 40.9342 1.91482 0.957409 0.288734i \(-0.0932342\pi\)
0.957409 + 0.288734i \(0.0932342\pi\)
\(458\) 0 0
\(459\) −54.0632 −2.52346
\(460\) 0 0
\(461\) −33.4731 −1.55900 −0.779499 0.626404i \(-0.784526\pi\)
−0.779499 + 0.626404i \(0.784526\pi\)
\(462\) 0 0
\(463\) −6.94390 −0.322710 −0.161355 0.986896i \(-0.551586\pi\)
−0.161355 + 0.986896i \(0.551586\pi\)
\(464\) 0 0
\(465\) 17.8872 0.829498
\(466\) 0 0
\(467\) −12.1872 −0.563955 −0.281977 0.959421i \(-0.590990\pi\)
−0.281977 + 0.959421i \(0.590990\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 4.21133 0.194048
\(472\) 0 0
\(473\) −0.824283 −0.0379006
\(474\) 0 0
\(475\) 8.80105 0.403820
\(476\) 0 0
\(477\) 49.4568 2.26447
\(478\) 0 0
\(479\) 8.08528 0.369426 0.184713 0.982793i \(-0.440864\pi\)
0.184713 + 0.982793i \(0.440864\pi\)
\(480\) 0 0
\(481\) −9.43292 −0.430104
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.63403 −0.301236
\(486\) 0 0
\(487\) −26.4205 −1.19723 −0.598614 0.801038i \(-0.704282\pi\)
−0.598614 + 0.801038i \(0.704282\pi\)
\(488\) 0 0
\(489\) −53.0598 −2.39945
\(490\) 0 0
\(491\) 21.9504 0.990609 0.495304 0.868720i \(-0.335057\pi\)
0.495304 + 0.868720i \(0.335057\pi\)
\(492\) 0 0
\(493\) 17.7148 0.797836
\(494\) 0 0
\(495\) 12.9533 0.582207
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 8.76671 0.392452 0.196226 0.980559i \(-0.437131\pi\)
0.196226 + 0.980559i \(0.437131\pi\)
\(500\) 0 0
\(501\) −81.3913 −3.63630
\(502\) 0 0
\(503\) 19.7135 0.878983 0.439492 0.898247i \(-0.355159\pi\)
0.439492 + 0.898247i \(0.355159\pi\)
\(504\) 0 0
\(505\) 0.696072 0.0309748
\(506\) 0 0
\(507\) 3.43292 0.152461
\(508\) 0 0
\(509\) 21.1094 0.935656 0.467828 0.883819i \(-0.345037\pi\)
0.467828 + 0.883819i \(0.345037\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −42.0632 −1.85714
\(514\) 0 0
\(515\) −0.304182 −0.0134039
\(516\) 0 0
\(517\) 7.43069 0.326801
\(518\) 0 0
\(519\) −48.6662 −2.13621
\(520\) 0 0
\(521\) −30.1481 −1.32081 −0.660405 0.750909i \(-0.729616\pi\)
−0.660405 + 0.750909i \(0.729616\pi\)
\(522\) 0 0
\(523\) −0.280015 −0.0122442 −0.00612211 0.999981i \(-0.501949\pi\)
−0.00612211 + 0.999981i \(0.501949\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −15.4329 −0.672269
\(528\) 0 0
\(529\) 6.51664 0.283332
\(530\) 0 0
\(531\) 64.4459 2.79671
\(532\) 0 0
\(533\) 2.35203 0.101878
\(534\) 0 0
\(535\) −9.42355 −0.407415
\(536\) 0 0
\(537\) −22.1786 −0.957075
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 10.5677 0.454340 0.227170 0.973855i \(-0.427053\pi\)
0.227170 + 0.973855i \(0.427053\pi\)
\(542\) 0 0
\(543\) 41.0151 1.76013
\(544\) 0 0
\(545\) −7.33010 −0.313987
\(546\) 0 0
\(547\) −21.0940 −0.901912 −0.450956 0.892546i \(-0.648917\pi\)
−0.450956 + 0.892546i \(0.648917\pi\)
\(548\) 0 0
\(549\) −5.32724 −0.227361
\(550\) 0 0
\(551\) 13.7828 0.587167
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 29.7631 1.26337
\(556\) 0 0
\(557\) 40.3694 1.71051 0.855253 0.518210i \(-0.173402\pi\)
0.855253 + 0.518210i \(0.173402\pi\)
\(558\) 0 0
\(559\) 0.513812 0.0217319
\(560\) 0 0
\(561\) −14.9925 −0.632984
\(562\) 0 0
\(563\) −30.8504 −1.30019 −0.650095 0.759853i \(-0.725271\pi\)
−0.650095 + 0.759853i \(0.725271\pi\)
\(564\) 0 0
\(565\) 13.6312 0.573468
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.42553 −0.353216 −0.176608 0.984281i \(-0.556513\pi\)
−0.176608 + 0.984281i \(0.556513\pi\)
\(570\) 0 0
\(571\) 3.16030 0.132255 0.0661273 0.997811i \(-0.478936\pi\)
0.0661273 + 0.997811i \(0.478936\pi\)
\(572\) 0 0
\(573\) 7.47879 0.312431
\(574\) 0 0
\(575\) −22.5751 −0.941446
\(576\) 0 0
\(577\) 15.9286 0.663115 0.331558 0.943435i \(-0.392426\pi\)
0.331558 + 0.943435i \(0.392426\pi\)
\(578\) 0 0
\(579\) −69.6841 −2.89597
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 9.03148 0.374046
\(584\) 0 0
\(585\) −8.07435 −0.333833
\(586\) 0 0
\(587\) −25.0415 −1.03357 −0.516786 0.856114i \(-0.672872\pi\)
−0.516786 + 0.856114i \(0.672872\pi\)
\(588\) 0 0
\(589\) −12.0074 −0.494756
\(590\) 0 0
\(591\) −6.89803 −0.283747
\(592\) 0 0
\(593\) 22.1973 0.911534 0.455767 0.890099i \(-0.349365\pi\)
0.455767 + 0.890099i \(0.349365\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −9.06780 −0.371120
\(598\) 0 0
\(599\) −36.4394 −1.48888 −0.744438 0.667692i \(-0.767282\pi\)
−0.744438 + 0.667692i \(0.767282\pi\)
\(600\) 0 0
\(601\) −36.3090 −1.48107 −0.740537 0.672015i \(-0.765429\pi\)
−0.740537 + 0.672015i \(0.765429\pi\)
\(602\) 0 0
\(603\) −100.604 −4.09691
\(604\) 0 0
\(605\) −7.74478 −0.314870
\(606\) 0 0
\(607\) −8.85043 −0.359228 −0.179614 0.983737i \(-0.557485\pi\)
−0.179614 + 0.983737i \(0.557485\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.63187 −0.187386
\(612\) 0 0
\(613\) 20.9761 0.847215 0.423608 0.905846i \(-0.360764\pi\)
0.423608 + 0.905846i \(0.360764\pi\)
\(614\) 0 0
\(615\) −7.42122 −0.299252
\(616\) 0 0
\(617\) −18.4816 −0.744042 −0.372021 0.928224i \(-0.621335\pi\)
−0.372021 + 0.928224i \(0.621335\pi\)
\(618\) 0 0
\(619\) 19.8134 0.796369 0.398185 0.917305i \(-0.369640\pi\)
0.398185 + 0.917305i \(0.369640\pi\)
\(620\) 0 0
\(621\) 107.894 4.32964
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 13.0422 0.521686
\(626\) 0 0
\(627\) −11.6647 −0.465845
\(628\) 0 0
\(629\) −25.6794 −1.02390
\(630\) 0 0
\(631\) 8.40898 0.334756 0.167378 0.985893i \(-0.446470\pi\)
0.167378 + 0.985893i \(0.446470\pi\)
\(632\) 0 0
\(633\) 34.0613 1.35381
\(634\) 0 0
\(635\) 17.4725 0.693375
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −134.828 −5.33373
\(640\) 0 0
\(641\) −30.0267 −1.18599 −0.592993 0.805208i \(-0.702054\pi\)
−0.592993 + 0.805208i \(0.702054\pi\)
\(642\) 0 0
\(643\) −11.1349 −0.439119 −0.219559 0.975599i \(-0.570462\pi\)
−0.219559 + 0.975599i \(0.570462\pi\)
\(644\) 0 0
\(645\) −1.62120 −0.0638346
\(646\) 0 0
\(647\) −28.4525 −1.11858 −0.559292 0.828971i \(-0.688927\pi\)
−0.559292 + 0.828971i \(0.688927\pi\)
\(648\) 0 0
\(649\) 11.7687 0.461961
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 33.6610 1.31726 0.658629 0.752468i \(-0.271137\pi\)
0.658629 + 0.752468i \(0.271137\pi\)
\(654\) 0 0
\(655\) 12.6699 0.495054
\(656\) 0 0
\(657\) −89.4560 −3.49001
\(658\) 0 0
\(659\) 17.2594 0.672332 0.336166 0.941803i \(-0.390870\pi\)
0.336166 + 0.941803i \(0.390870\pi\)
\(660\) 0 0
\(661\) −24.8280 −0.965696 −0.482848 0.875704i \(-0.660398\pi\)
−0.482848 + 0.875704i \(0.660398\pi\)
\(662\) 0 0
\(663\) 9.34549 0.362949
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −35.3535 −1.36889
\(668\) 0 0
\(669\) −31.5967 −1.22160
\(670\) 0 0
\(671\) −0.972826 −0.0375555
\(672\) 0 0
\(673\) −12.7567 −0.491735 −0.245867 0.969303i \(-0.579073\pi\)
−0.245867 + 0.969303i \(0.579073\pi\)
\(674\) 0 0
\(675\) −82.5201 −3.17620
\(676\) 0 0
\(677\) −13.3292 −0.512284 −0.256142 0.966639i \(-0.582451\pi\)
−0.256142 + 0.966639i \(0.582451\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −70.4947 −2.70136
\(682\) 0 0
\(683\) −34.3175 −1.31312 −0.656562 0.754272i \(-0.727990\pi\)
−0.656562 + 0.754272i \(0.727990\pi\)
\(684\) 0 0
\(685\) 6.14240 0.234689
\(686\) 0 0
\(687\) 6.15980 0.235011
\(688\) 0 0
\(689\) −5.62972 −0.214475
\(690\) 0 0
\(691\) −7.65088 −0.291053 −0.145527 0.989354i \(-0.546488\pi\)
−0.145527 + 0.989354i \(0.546488\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.15756 −0.0439089
\(696\) 0 0
\(697\) 6.40297 0.242530
\(698\) 0 0
\(699\) 75.0785 2.83973
\(700\) 0 0
\(701\) 32.7331 1.23631 0.618157 0.786055i \(-0.287880\pi\)
0.618157 + 0.786055i \(0.287880\pi\)
\(702\) 0 0
\(703\) −19.9795 −0.753542
\(704\) 0 0
\(705\) 14.6147 0.550420
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 3.67877 0.138159 0.0690796 0.997611i \(-0.477994\pi\)
0.0690796 + 0.997611i \(0.477994\pi\)
\(710\) 0 0
\(711\) 74.8963 2.80883
\(712\) 0 0
\(713\) 30.7995 1.15345
\(714\) 0 0
\(715\) −1.47448 −0.0551426
\(716\) 0 0
\(717\) 42.3856 1.58292
\(718\) 0 0
\(719\) 11.3777 0.424316 0.212158 0.977235i \(-0.431951\pi\)
0.212158 + 0.977235i \(0.431951\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −47.9906 −1.78479
\(724\) 0 0
\(725\) 27.0392 1.00421
\(726\) 0 0
\(727\) −42.4642 −1.57491 −0.787456 0.616371i \(-0.788602\pi\)
−0.787456 + 0.616371i \(0.788602\pi\)
\(728\) 0 0
\(729\) 162.866 6.03206
\(730\) 0 0
\(731\) 1.39876 0.0517349
\(732\) 0 0
\(733\) −1.37768 −0.0508856 −0.0254428 0.999676i \(-0.508100\pi\)
−0.0254428 + 0.999676i \(0.508100\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −18.3716 −0.676728
\(738\) 0 0
\(739\) 8.66018 0.318570 0.159285 0.987233i \(-0.449081\pi\)
0.159285 + 0.987233i \(0.449081\pi\)
\(740\) 0 0
\(741\) 7.27114 0.267112
\(742\) 0 0
\(743\) 47.1952 1.73143 0.865713 0.500541i \(-0.166866\pi\)
0.865713 + 0.500541i \(0.166866\pi\)
\(744\) 0 0
\(745\) 4.83615 0.177183
\(746\) 0 0
\(747\) −114.697 −4.19655
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 16.4518 0.600334 0.300167 0.953887i \(-0.402958\pi\)
0.300167 + 0.953887i \(0.402958\pi\)
\(752\) 0 0
\(753\) −19.6443 −0.715877
\(754\) 0 0
\(755\) 12.6611 0.460785
\(756\) 0 0
\(757\) −11.4147 −0.414873 −0.207437 0.978248i \(-0.566512\pi\)
−0.207437 + 0.978248i \(0.566512\pi\)
\(758\) 0 0
\(759\) 29.9206 1.08605
\(760\) 0 0
\(761\) −10.3038 −0.373514 −0.186757 0.982406i \(-0.559798\pi\)
−0.186757 + 0.982406i \(0.559798\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −21.9809 −0.794721
\(766\) 0 0
\(767\) −7.33594 −0.264885
\(768\) 0 0
\(769\) 37.3716 1.34766 0.673828 0.738888i \(-0.264649\pi\)
0.673828 + 0.738888i \(0.264649\pi\)
\(770\) 0 0
\(771\) −30.4933 −1.09819
\(772\) 0 0
\(773\) 16.2301 0.583756 0.291878 0.956456i \(-0.405720\pi\)
0.291878 + 0.956456i \(0.405720\pi\)
\(774\) 0 0
\(775\) −23.5562 −0.846165
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.98175 0.178490
\(780\) 0 0
\(781\) −24.6215 −0.881026
\(782\) 0 0
\(783\) −129.230 −4.61830
\(784\) 0 0
\(785\) 1.12752 0.0402429
\(786\) 0 0
\(787\) −2.13251 −0.0760156 −0.0380078 0.999277i \(-0.512101\pi\)
−0.0380078 + 0.999277i \(0.512101\pi\)
\(788\) 0 0
\(789\) 58.0994 2.06839
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.606405 0.0215341
\(794\) 0 0
\(795\) 17.7631 0.629992
\(796\) 0 0
\(797\) 38.0248 1.34691 0.673453 0.739230i \(-0.264810\pi\)
0.673453 + 0.739230i \(0.264810\pi\)
\(798\) 0 0
\(799\) −12.6094 −0.446089
\(800\) 0 0
\(801\) −110.081 −3.88951
\(802\) 0 0
\(803\) −16.3359 −0.576480
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −6.50305 −0.228918
\(808\) 0 0
\(809\) 32.4774 1.14184 0.570922 0.821004i \(-0.306586\pi\)
0.570922 + 0.821004i \(0.306586\pi\)
\(810\) 0 0
\(811\) 12.0285 0.422377 0.211188 0.977445i \(-0.432267\pi\)
0.211188 + 0.977445i \(0.432267\pi\)
\(812\) 0 0
\(813\) −35.9303 −1.26013
\(814\) 0 0
\(815\) −14.2059 −0.497612
\(816\) 0 0
\(817\) 1.08828 0.0380743
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 38.8590 1.35619 0.678095 0.734974i \(-0.262806\pi\)
0.678095 + 0.734974i \(0.262806\pi\)
\(822\) 0 0
\(823\) −17.5947 −0.613313 −0.306656 0.951820i \(-0.599210\pi\)
−0.306656 + 0.951820i \(0.599210\pi\)
\(824\) 0 0
\(825\) −22.8840 −0.796719
\(826\) 0 0
\(827\) 30.5575 1.06259 0.531294 0.847187i \(-0.321706\pi\)
0.531294 + 0.847187i \(0.321706\pi\)
\(828\) 0 0
\(829\) 52.6164 1.82744 0.913721 0.406342i \(-0.133196\pi\)
0.913721 + 0.406342i \(0.133196\pi\)
\(830\) 0 0
\(831\) −38.7476 −1.34414
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −21.7912 −0.754117
\(836\) 0 0
\(837\) 112.583 3.89145
\(838\) 0 0
\(839\) −19.6341 −0.677845 −0.338922 0.940814i \(-0.610062\pi\)
−0.338922 + 0.940814i \(0.610062\pi\)
\(840\) 0 0
\(841\) 13.3445 0.460157
\(842\) 0 0
\(843\) 49.9547 1.72053
\(844\) 0 0
\(845\) 0.919111 0.0316184
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 46.4672 1.59475
\(850\) 0 0
\(851\) 51.2483 1.75677
\(852\) 0 0
\(853\) 0.00430866 0.000147526 0 7.37629e−5 1.00000i \(-0.499977\pi\)
7.37629e−5 1.00000i \(0.499977\pi\)
\(854\) 0 0
\(855\) −17.1020 −0.584875
\(856\) 0 0
\(857\) 6.19972 0.211779 0.105889 0.994378i \(-0.466231\pi\)
0.105889 + 0.994378i \(0.466231\pi\)
\(858\) 0 0
\(859\) −13.0504 −0.445274 −0.222637 0.974901i \(-0.571466\pi\)
−0.222637 + 0.974901i \(0.571466\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.284324 0.00967850 0.00483925 0.999988i \(-0.498460\pi\)
0.00483925 + 0.999988i \(0.498460\pi\)
\(864\) 0 0
\(865\) −13.0296 −0.443020
\(866\) 0 0
\(867\) −32.9183 −1.11797
\(868\) 0 0
\(869\) 13.6771 0.463963
\(870\) 0 0
\(871\) 11.4518 0.388031
\(872\) 0 0
\(873\) −63.4087 −2.14606
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −27.9940 −0.945289 −0.472644 0.881253i \(-0.656701\pi\)
−0.472644 + 0.881253i \(0.656701\pi\)
\(878\) 0 0
\(879\) 49.7143 1.67682
\(880\) 0 0
\(881\) 3.18975 0.107465 0.0537327 0.998555i \(-0.482888\pi\)
0.0537327 + 0.998555i \(0.482888\pi\)
\(882\) 0 0
\(883\) 39.6084 1.33293 0.666464 0.745537i \(-0.267807\pi\)
0.666464 + 0.745537i \(0.267807\pi\)
\(884\) 0 0
\(885\) 23.1466 0.778065
\(886\) 0 0
\(887\) 7.37768 0.247718 0.123859 0.992300i \(-0.460473\pi\)
0.123859 + 0.992300i \(0.460473\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 67.0907 2.24762
\(892\) 0 0
\(893\) −9.81060 −0.328299
\(894\) 0 0
\(895\) −5.93796 −0.198484
\(896\) 0 0
\(897\) −18.6508 −0.622732
\(898\) 0 0
\(899\) −36.8900 −1.23035
\(900\) 0 0
\(901\) −15.3259 −0.510578
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10.9812 0.365026
\(906\) 0 0
\(907\) 2.28473 0.0758633 0.0379317 0.999280i \(-0.487923\pi\)
0.0379317 + 0.999280i \(0.487923\pi\)
\(908\) 0 0
\(909\) 6.65313 0.220670
\(910\) 0 0
\(911\) −2.47732 −0.0820772 −0.0410386 0.999158i \(-0.513067\pi\)
−0.0410386 + 0.999158i \(0.513067\pi\)
\(912\) 0 0
\(913\) −20.9453 −0.693187
\(914\) 0 0
\(915\) −1.91335 −0.0632534
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −38.2173 −1.26067 −0.630337 0.776322i \(-0.717083\pi\)
−0.630337 + 0.776322i \(0.717083\pi\)
\(920\) 0 0
\(921\) −50.3025 −1.65752
\(922\) 0 0
\(923\) 15.3476 0.505174
\(924\) 0 0
\(925\) −39.1960 −1.28876
\(926\) 0 0
\(927\) −2.90741 −0.0954918
\(928\) 0 0
\(929\) 20.6428 0.677268 0.338634 0.940918i \(-0.390035\pi\)
0.338634 + 0.940918i \(0.390035\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −47.4654 −1.55395
\(934\) 0 0
\(935\) −4.01401 −0.131272
\(936\) 0 0
\(937\) −46.3418 −1.51392 −0.756960 0.653461i \(-0.773316\pi\)
−0.756960 + 0.653461i \(0.773316\pi\)
\(938\) 0 0
\(939\) 61.6753 2.01270
\(940\) 0 0
\(941\) 32.6297 1.06370 0.531849 0.846839i \(-0.321497\pi\)
0.531849 + 0.846839i \(0.321497\pi\)
\(942\) 0 0
\(943\) −12.7784 −0.416122
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.2107 −0.559271 −0.279636 0.960106i \(-0.590214\pi\)
−0.279636 + 0.960106i \(0.590214\pi\)
\(948\) 0 0
\(949\) 10.1829 0.330550
\(950\) 0 0
\(951\) 12.4978 0.405269
\(952\) 0 0
\(953\) 50.0504 1.62129 0.810646 0.585537i \(-0.199116\pi\)
0.810646 + 0.585537i \(0.199116\pi\)
\(954\) 0 0
\(955\) 2.00233 0.0647938
\(956\) 0 0
\(957\) −35.8373 −1.15845
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.13810 0.0367127
\(962\) 0 0
\(963\) −90.0712 −2.90250
\(964\) 0 0
\(965\) −18.6568 −0.600584
\(966\) 0 0
\(967\) −15.9540 −0.513045 −0.256522 0.966538i \(-0.582577\pi\)
−0.256522 + 0.966538i \(0.582577\pi\)
\(968\) 0 0
\(969\) 19.7943 0.635886
\(970\) 0 0
\(971\) 5.09398 0.163473 0.0817367 0.996654i \(-0.473953\pi\)
0.0817367 + 0.996654i \(0.473953\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 14.2646 0.456833
\(976\) 0 0
\(977\) 29.7850 0.952905 0.476453 0.879200i \(-0.341922\pi\)
0.476453 + 0.879200i \(0.341922\pi\)
\(978\) 0 0
\(979\) −20.1022 −0.642469
\(980\) 0 0
\(981\) −70.0619 −2.23690
\(982\) 0 0
\(983\) −25.7771 −0.822162 −0.411081 0.911599i \(-0.634849\pi\)
−0.411081 + 0.911599i \(0.634849\pi\)
\(984\) 0 0
\(985\) −1.84684 −0.0588452
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.79150 −0.0887645
\(990\) 0 0
\(991\) −18.1153 −0.575451 −0.287725 0.957713i \(-0.592899\pi\)
−0.287725 + 0.957713i \(0.592899\pi\)
\(992\) 0 0
\(993\) 46.5591 1.47751
\(994\) 0 0
\(995\) −2.42776 −0.0769652
\(996\) 0 0
\(997\) 14.6955 0.465413 0.232706 0.972547i \(-0.425242\pi\)
0.232706 + 0.972547i \(0.425242\pi\)
\(998\) 0 0
\(999\) 187.331 5.92690
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.a.q.1.4 4
7.2 even 3 364.2.j.e.53.1 8
7.3 odd 6 2548.2.j.q.1353.4 8
7.4 even 3 364.2.j.e.261.1 yes 8
7.5 odd 6 2548.2.j.q.1145.4 8
7.6 odd 2 2548.2.a.p.1.1 4
21.2 odd 6 3276.2.r.j.1873.3 8
21.11 odd 6 3276.2.r.j.2809.3 8
28.11 odd 6 1456.2.r.o.625.4 8
28.23 odd 6 1456.2.r.o.417.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.j.e.53.1 8 7.2 even 3
364.2.j.e.261.1 yes 8 7.4 even 3
1456.2.r.o.417.4 8 28.23 odd 6
1456.2.r.o.625.4 8 28.11 odd 6
2548.2.a.p.1.1 4 7.6 odd 2
2548.2.a.q.1.4 4 1.1 even 1 trivial
2548.2.j.q.1145.4 8 7.5 odd 6
2548.2.j.q.1353.4 8 7.3 odd 6
3276.2.r.j.1873.3 8 21.2 odd 6
3276.2.r.j.2809.3 8 21.11 odd 6