Properties

Label 364.2.j.e.53.1
Level $364$
Weight $2$
Character 364.53
Analytic conductor $2.907$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [364,2,Mod(53,364)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("364.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(364, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 364 = 2^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 364.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-3,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.90655463357\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.856615824.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 36x^{4} + 32x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 53.1
Root \(-2.33086i\) of defining polynomial
Character \(\chi\) \(=\) 364.53
Dual form 364.2.j.e.261.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.71646 + 2.97300i) q^{3} +(-0.459555 - 0.795973i) q^{5} +(-1.51859 - 2.16654i) q^{7} +(-4.39248 - 7.60799i) q^{9} +(-0.802125 + 1.38932i) q^{11} -1.00000 q^{13} +3.15524 q^{15} +(1.36116 - 2.35759i) q^{17} +(1.05903 + 1.83430i) q^{19} +(9.04771 - 0.795973i) q^{21} +(-2.71646 - 4.70505i) q^{23} +(2.07762 - 3.59854i) q^{25} +19.8593 q^{27} -6.50727 q^{29} +(-2.83452 + 4.90954i) q^{31} +(-2.75363 - 4.76943i) q^{33} +(-1.02663 + 2.20440i) q^{35} +(-4.71646 - 8.16915i) q^{37} +(1.71646 - 2.97300i) q^{39} -2.35203 q^{41} -0.513812 q^{43} +(-4.03717 + 6.99259i) q^{45} +(-2.31594 - 4.01132i) q^{47} +(-2.38779 + 6.58016i) q^{49} +(4.67274 + 8.09343i) q^{51} +(-2.81486 + 4.87548i) q^{53} +1.47448 q^{55} -7.27114 q^{57} +(-3.66797 + 6.35311i) q^{59} +(0.303203 + 0.525162i) q^{61} +(-9.81267 + 21.0699i) q^{63} +(0.459555 + 0.795973i) q^{65} +(5.72592 - 9.91759i) q^{67} +18.6508 q^{69} -15.3476 q^{71} +(5.09143 - 8.81861i) q^{73} +(7.13230 + 12.3535i) q^{75} +(4.22812 - 0.371969i) q^{77} +(-4.26276 - 7.38331i) q^{79} +(-20.9103 + 36.2177i) q^{81} -13.0561 q^{83} -2.50211 q^{85} +(11.1695 - 19.3461i) q^{87} +(6.26529 + 10.8518i) q^{89} +(1.51859 + 2.16654i) q^{91} +(-9.73070 - 16.8541i) q^{93} +(0.973367 - 1.68592i) q^{95} -7.21788 q^{97} +14.0933 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 3 q^{3} + q^{5} + q^{7} - 9 q^{9} - 4 q^{11} - 8 q^{13} - 18 q^{15} + 3 q^{21} - 11 q^{23} - 5 q^{25} + 54 q^{27} + 22 q^{29} + 5 q^{31} + 15 q^{33} - 25 q^{35} - 27 q^{37} + 3 q^{39} + 12 q^{41}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/364\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(183\) \(197\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.71646 + 2.97300i −0.990999 + 1.71646i −0.379567 + 0.925164i \(0.623927\pi\)
−0.611432 + 0.791297i \(0.709406\pi\)
\(4\) 0 0
\(5\) −0.459555 0.795973i −0.205519 0.355970i 0.744779 0.667312i \(-0.232555\pi\)
−0.950298 + 0.311342i \(0.899222\pi\)
\(6\) 0 0
\(7\) −1.51859 2.16654i −0.573972 0.818875i
\(8\) 0 0
\(9\) −4.39248 7.60799i −1.46416 2.53600i
\(10\) 0 0
\(11\) −0.802125 + 1.38932i −0.241850 + 0.418896i −0.961241 0.275709i \(-0.911087\pi\)
0.719391 + 0.694605i \(0.244421\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 3.15524 0.814678
\(16\) 0 0
\(17\) 1.36116 2.35759i 0.330129 0.571800i −0.652408 0.757868i \(-0.726241\pi\)
0.982537 + 0.186068i \(0.0595744\pi\)
\(18\) 0 0
\(19\) 1.05903 + 1.83430i 0.242958 + 0.420816i 0.961556 0.274610i \(-0.0885488\pi\)
−0.718597 + 0.695427i \(0.755215\pi\)
\(20\) 0 0
\(21\) 9.04771 0.795973i 1.97437 0.173696i
\(22\) 0 0
\(23\) −2.71646 4.70505i −0.566421 0.981070i −0.996916 0.0784773i \(-0.974994\pi\)
0.430495 0.902593i \(-0.358339\pi\)
\(24\) 0 0
\(25\) 2.07762 3.59854i 0.415524 0.719708i
\(26\) 0 0
\(27\) 19.8593 3.82192
\(28\) 0 0
\(29\) −6.50727 −1.20837 −0.604185 0.796844i \(-0.706501\pi\)
−0.604185 + 0.796844i \(0.706501\pi\)
\(30\) 0 0
\(31\) −2.83452 + 4.90954i −0.509095 + 0.881779i 0.490849 + 0.871245i \(0.336687\pi\)
−0.999945 + 0.0105346i \(0.996647\pi\)
\(32\) 0 0
\(33\) −2.75363 4.76943i −0.479346 0.830252i
\(34\) 0 0
\(35\) −1.02663 + 2.20440i −0.173533 + 0.372611i
\(36\) 0 0
\(37\) −4.71646 8.16915i −0.775381 1.34300i −0.934580 0.355753i \(-0.884224\pi\)
0.159198 0.987247i \(-0.449109\pi\)
\(38\) 0 0
\(39\) 1.71646 2.97300i 0.274854 0.476061i
\(40\) 0 0
\(41\) −2.35203 −0.367326 −0.183663 0.982989i \(-0.558795\pi\)
−0.183663 + 0.982989i \(0.558795\pi\)
\(42\) 0 0
\(43\) −0.513812 −0.0783555 −0.0391778 0.999232i \(-0.512474\pi\)
−0.0391778 + 0.999232i \(0.512474\pi\)
\(44\) 0 0
\(45\) −4.03717 + 6.99259i −0.601826 + 1.04239i
\(46\) 0 0
\(47\) −2.31594 4.01132i −0.337814 0.585111i 0.646207 0.763162i \(-0.276354\pi\)
−0.984021 + 0.178051i \(0.943021\pi\)
\(48\) 0 0
\(49\) −2.38779 + 6.58016i −0.341113 + 0.940022i
\(50\) 0 0
\(51\) 4.67274 + 8.09343i 0.654315 + 1.13331i
\(52\) 0 0
\(53\) −2.81486 + 4.87548i −0.386651 + 0.669699i −0.991997 0.126264i \(-0.959701\pi\)
0.605346 + 0.795962i \(0.293035\pi\)
\(54\) 0 0
\(55\) 1.47448 0.198819
\(56\) 0 0
\(57\) −7.27114 −0.963087
\(58\) 0 0
\(59\) −3.66797 + 6.35311i −0.477529 + 0.827105i −0.999668 0.0257557i \(-0.991801\pi\)
0.522139 + 0.852860i \(0.325134\pi\)
\(60\) 0 0
\(61\) 0.303203 + 0.525162i 0.0388211 + 0.0672401i 0.884783 0.466003i \(-0.154306\pi\)
−0.845962 + 0.533243i \(0.820973\pi\)
\(62\) 0 0
\(63\) −9.81267 + 21.0699i −1.23628 + 2.65455i
\(64\) 0 0
\(65\) 0.459555 + 0.795973i 0.0570008 + 0.0987283i
\(66\) 0 0
\(67\) 5.72592 9.91759i 0.699533 1.21163i −0.269096 0.963113i \(-0.586725\pi\)
0.968629 0.248513i \(-0.0799419\pi\)
\(68\) 0 0
\(69\) 18.6508 2.24529
\(70\) 0 0
\(71\) −15.3476 −1.82143 −0.910715 0.413035i \(-0.864469\pi\)
−0.910715 + 0.413035i \(0.864469\pi\)
\(72\) 0 0
\(73\) 5.09143 8.81861i 0.595907 1.03214i −0.397511 0.917597i \(-0.630126\pi\)
0.993418 0.114544i \(-0.0365405\pi\)
\(74\) 0 0
\(75\) 7.13230 + 12.3535i 0.823567 + 1.42646i
\(76\) 0 0
\(77\) 4.22812 0.371969i 0.481839 0.0423898i
\(78\) 0 0
\(79\) −4.26276 7.38331i −0.479598 0.830688i 0.520128 0.854088i \(-0.325884\pi\)
−0.999726 + 0.0234004i \(0.992551\pi\)
\(80\) 0 0
\(81\) −20.9103 + 36.2177i −2.32337 + 4.02419i
\(82\) 0 0
\(83\) −13.0561 −1.43309 −0.716547 0.697539i \(-0.754278\pi\)
−0.716547 + 0.697539i \(0.754278\pi\)
\(84\) 0 0
\(85\) −2.50211 −0.271392
\(86\) 0 0
\(87\) 11.1695 19.3461i 1.19749 2.07412i
\(88\) 0 0
\(89\) 6.26529 + 10.8518i 0.664120 + 1.15029i 0.979523 + 0.201331i \(0.0645268\pi\)
−0.315404 + 0.948958i \(0.602140\pi\)
\(90\) 0 0
\(91\) 1.51859 + 2.16654i 0.159191 + 0.227115i
\(92\) 0 0
\(93\) −9.73070 16.8541i −1.00903 1.74769i
\(94\) 0 0
\(95\) 0.973367 1.68592i 0.0998653 0.172972i
\(96\) 0 0
\(97\) −7.21788 −0.732864 −0.366432 0.930445i \(-0.619421\pi\)
−0.366432 + 0.930445i \(0.619421\pi\)
\(98\) 0 0
\(99\) 14.0933 1.41643
\(100\) 0 0
\(101\) −0.378666 + 0.655869i −0.0376787 + 0.0652614i −0.884250 0.467014i \(-0.845330\pi\)
0.846571 + 0.532276i \(0.178663\pi\)
\(102\) 0 0
\(103\) 0.165476 + 0.286614i 0.0163049 + 0.0282409i 0.874063 0.485813i \(-0.161476\pi\)
−0.857758 + 0.514054i \(0.828143\pi\)
\(104\) 0 0
\(105\) −4.79150 6.83594i −0.467602 0.667120i
\(106\) 0 0
\(107\) 5.12645 + 8.87927i 0.495592 + 0.858391i 0.999987 0.00508195i \(-0.00161764\pi\)
−0.504395 + 0.863473i \(0.668284\pi\)
\(108\) 0 0
\(109\) 3.98760 6.90673i 0.381943 0.661545i −0.609397 0.792865i \(-0.708588\pi\)
0.991340 + 0.131320i \(0.0419216\pi\)
\(110\) 0 0
\(111\) 32.3825 3.07361
\(112\) 0 0
\(113\) 14.8308 1.39517 0.697583 0.716504i \(-0.254259\pi\)
0.697583 + 0.716504i \(0.254259\pi\)
\(114\) 0 0
\(115\) −2.49673 + 4.32446i −0.232821 + 0.403258i
\(116\) 0 0
\(117\) 4.39248 + 7.60799i 0.406085 + 0.703359i
\(118\) 0 0
\(119\) −7.17485 + 0.631208i −0.657718 + 0.0578628i
\(120\) 0 0
\(121\) 4.21319 + 7.29746i 0.383017 + 0.663405i
\(122\) 0 0
\(123\) 4.03717 6.99259i 0.364020 0.630501i
\(124\) 0 0
\(125\) −8.41467 −0.752631
\(126\) 0 0
\(127\) 19.0102 1.68688 0.843442 0.537219i \(-0.180525\pi\)
0.843442 + 0.537219i \(0.180525\pi\)
\(128\) 0 0
\(129\) 0.881938 1.52756i 0.0776503 0.134494i
\(130\) 0 0
\(131\) −6.89248 11.9381i −0.602199 1.04304i −0.992487 0.122346i \(-0.960958\pi\)
0.390289 0.920692i \(-0.372375\pi\)
\(132\) 0 0
\(133\) 2.36584 5.07997i 0.205145 0.440489i
\(134\) 0 0
\(135\) −9.12645 15.8075i −0.785480 1.36049i
\(136\) 0 0
\(137\) −3.34149 + 5.78764i −0.285483 + 0.494471i −0.972726 0.231956i \(-0.925487\pi\)
0.687243 + 0.726427i \(0.258821\pi\)
\(138\) 0 0
\(139\) −1.25944 −0.106824 −0.0534121 0.998573i \(-0.517010\pi\)
−0.0534121 + 0.998573i \(0.517010\pi\)
\(140\) 0 0
\(141\) 15.9009 1.33909
\(142\) 0 0
\(143\) 0.802125 1.38932i 0.0670771 0.116181i
\(144\) 0 0
\(145\) 2.99045 + 5.17961i 0.248343 + 0.430143i
\(146\) 0 0
\(147\) −15.4642 18.3935i −1.27547 1.51707i
\(148\) 0 0
\(149\) −2.63088 4.55682i −0.215530 0.373310i 0.737906 0.674903i \(-0.235815\pi\)
−0.953437 + 0.301594i \(0.902481\pi\)
\(150\) 0 0
\(151\) −6.88770 + 11.9299i −0.560513 + 0.970837i 0.436938 + 0.899491i \(0.356063\pi\)
−0.997452 + 0.0713460i \(0.977271\pi\)
\(152\) 0 0
\(153\) −23.9154 −1.93345
\(154\) 0 0
\(155\) 5.21048 0.418516
\(156\) 0 0
\(157\) −0.613375 + 1.06240i −0.0489526 + 0.0847884i −0.889463 0.457006i \(-0.848922\pi\)
0.840511 + 0.541795i \(0.182255\pi\)
\(158\) 0 0
\(159\) −9.66319 16.7371i −0.766341 1.32734i
\(160\) 0 0
\(161\) −6.06849 + 13.0303i −0.478264 + 1.02694i
\(162\) 0 0
\(163\) 7.72808 + 13.3854i 0.605310 + 1.04843i 0.992002 + 0.126219i \(0.0402841\pi\)
−0.386693 + 0.922209i \(0.626383\pi\)
\(164\) 0 0
\(165\) −2.53089 + 4.38364i −0.197030 + 0.341266i
\(166\) 0 0
\(167\) −23.7091 −1.83466 −0.917331 0.398126i \(-0.869661\pi\)
−0.917331 + 0.398126i \(0.869661\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 9.30354 16.1142i 0.711460 1.23228i
\(172\) 0 0
\(173\) 7.08816 + 12.2770i 0.538903 + 0.933407i 0.998963 + 0.0455194i \(0.0144943\pi\)
−0.460061 + 0.887887i \(0.652172\pi\)
\(174\) 0 0
\(175\) −10.9514 + 0.963452i −0.827850 + 0.0728301i
\(176\) 0 0
\(177\) −12.5919 21.8097i −0.946462 1.63932i
\(178\) 0 0
\(179\) 3.23027 5.59500i 0.241442 0.418190i −0.719683 0.694302i \(-0.755713\pi\)
0.961125 + 0.276113i \(0.0890463\pi\)
\(180\) 0 0
\(181\) 11.9476 0.888057 0.444029 0.896013i \(-0.353549\pi\)
0.444029 + 0.896013i \(0.353549\pi\)
\(182\) 0 0
\(183\) −2.08174 −0.153887
\(184\) 0 0
\(185\) −4.33495 + 7.50835i −0.318712 + 0.552025i
\(186\) 0 0
\(187\) 2.18364 + 3.78217i 0.159683 + 0.276580i
\(188\) 0 0
\(189\) −30.1581 43.0260i −2.19368 3.12968i
\(190\) 0 0
\(191\) −1.08928 1.88668i −0.0788172 0.136515i 0.823923 0.566702i \(-0.191781\pi\)
−0.902740 + 0.430187i \(0.858448\pi\)
\(192\) 0 0
\(193\) 10.1494 17.5792i 0.730569 1.26538i −0.226072 0.974111i \(-0.572588\pi\)
0.956640 0.291271i \(-0.0940782\pi\)
\(194\) 0 0
\(195\) −3.15524 −0.225951
\(196\) 0 0
\(197\) −2.00938 −0.143162 −0.0715810 0.997435i \(-0.522804\pi\)
−0.0715810 + 0.997435i \(0.522804\pi\)
\(198\) 0 0
\(199\) 1.32071 2.28754i 0.0936228 0.162159i −0.815410 0.578884i \(-0.803489\pi\)
0.909033 + 0.416724i \(0.136822\pi\)
\(200\) 0 0
\(201\) 19.6567 + 34.0463i 1.38647 + 2.40144i
\(202\) 0 0
\(203\) 9.88185 + 14.0983i 0.693570 + 0.989504i
\(204\) 0 0
\(205\) 1.08089 + 1.87216i 0.0754926 + 0.130757i
\(206\) 0 0
\(207\) −23.8640 + 41.3336i −1.65866 + 2.87289i
\(208\) 0 0
\(209\) −3.39790 −0.235038
\(210\) 0 0
\(211\) 9.92194 0.683055 0.341527 0.939872i \(-0.389056\pi\)
0.341527 + 0.939872i \(0.389056\pi\)
\(212\) 0 0
\(213\) 26.3436 45.6285i 1.80504 3.12641i
\(214\) 0 0
\(215\) 0.236125 + 0.408980i 0.0161036 + 0.0278922i
\(216\) 0 0
\(217\) 14.9412 1.31445i 1.01427 0.0892308i
\(218\) 0 0
\(219\) 17.4785 + 30.2736i 1.18109 + 2.04570i
\(220\) 0 0
\(221\) −1.36116 + 2.35759i −0.0915613 + 0.158589i
\(222\) 0 0
\(223\) −9.20402 −0.616347 −0.308173 0.951330i \(-0.599718\pi\)
−0.308173 + 0.951330i \(0.599718\pi\)
\(224\) 0 0
\(225\) −36.5036 −2.43357
\(226\) 0 0
\(227\) 10.2674 17.7837i 0.681474 1.18035i −0.293057 0.956095i \(-0.594672\pi\)
0.974531 0.224253i \(-0.0719942\pi\)
\(228\) 0 0
\(229\) −0.897165 1.55394i −0.0592864 0.102687i 0.834859 0.550464i \(-0.185549\pi\)
−0.894145 + 0.447777i \(0.852216\pi\)
\(230\) 0 0
\(231\) −6.15154 + 13.2087i −0.404741 + 0.869066i
\(232\) 0 0
\(233\) −10.9351 18.9401i −0.716381 1.24081i −0.962425 0.271549i \(-0.912464\pi\)
0.246044 0.969259i \(-0.420869\pi\)
\(234\) 0 0
\(235\) −2.12860 + 3.68685i −0.138855 + 0.240503i
\(236\) 0 0
\(237\) 29.2674 1.90112
\(238\) 0 0
\(239\) 12.3468 0.798648 0.399324 0.916810i \(-0.369245\pi\)
0.399324 + 0.916810i \(0.369245\pi\)
\(240\) 0 0
\(241\) 6.98976 12.1066i 0.450250 0.779856i −0.548151 0.836379i \(-0.684668\pi\)
0.998401 + 0.0565234i \(0.0180015\pi\)
\(242\) 0 0
\(243\) −41.9944 72.7365i −2.69394 4.66605i
\(244\) 0 0
\(245\) 6.33495 1.12333i 0.404725 0.0717669i
\(246\) 0 0
\(247\) −1.05903 1.83430i −0.0673845 0.116713i
\(248\) 0 0
\(249\) 22.4103 38.8158i 1.42019 2.45985i
\(250\) 0 0
\(251\) −5.72231 −0.361189 −0.180595 0.983558i \(-0.557802\pi\)
−0.180595 + 0.983558i \(0.557802\pi\)
\(252\) 0 0
\(253\) 8.71577 0.547956
\(254\) 0 0
\(255\) 4.29477 7.43876i 0.268949 0.465833i
\(256\) 0 0
\(257\) 4.44131 + 7.69257i 0.277041 + 0.479849i 0.970648 0.240504i \(-0.0773128\pi\)
−0.693607 + 0.720354i \(0.743979\pi\)
\(258\) 0 0
\(259\) −10.5364 + 22.6240i −0.654702 + 1.40578i
\(260\) 0 0
\(261\) 28.5830 + 49.5073i 1.76925 + 3.06442i
\(262\) 0 0
\(263\) −8.46209 + 14.6568i −0.521795 + 0.903775i 0.477884 + 0.878423i \(0.341404\pi\)
−0.999679 + 0.0253520i \(0.991929\pi\)
\(264\) 0 0
\(265\) 5.17434 0.317857
\(266\) 0 0
\(267\) −43.0165 −2.63257
\(268\) 0 0
\(269\) 0.947160 1.64053i 0.0577494 0.100025i −0.835705 0.549178i \(-0.814941\pi\)
0.893455 + 0.449153i \(0.148274\pi\)
\(270\) 0 0
\(271\) 5.23319 + 9.06416i 0.317894 + 0.550608i 0.980048 0.198759i \(-0.0636911\pi\)
−0.662155 + 0.749367i \(0.730358\pi\)
\(272\) 0 0
\(273\) −9.04771 + 0.795973i −0.547593 + 0.0481745i
\(274\) 0 0
\(275\) 3.33302 + 5.77296i 0.200989 + 0.348123i
\(276\) 0 0
\(277\) 5.64353 9.77488i 0.339087 0.587316i −0.645174 0.764035i \(-0.723215\pi\)
0.984261 + 0.176720i \(0.0565486\pi\)
\(278\) 0 0
\(279\) 49.8023 2.98159
\(280\) 0 0
\(281\) 14.5517 0.868079 0.434040 0.900894i \(-0.357088\pi\)
0.434040 + 0.900894i \(0.357088\pi\)
\(282\) 0 0
\(283\) −6.76787 + 11.7223i −0.402308 + 0.696818i −0.994004 0.109343i \(-0.965125\pi\)
0.591696 + 0.806161i \(0.298459\pi\)
\(284\) 0 0
\(285\) 3.34149 + 5.78764i 0.197933 + 0.342830i
\(286\) 0 0
\(287\) 3.57177 + 5.09577i 0.210835 + 0.300794i
\(288\) 0 0
\(289\) 4.79451 + 8.30433i 0.282030 + 0.488490i
\(290\) 0 0
\(291\) 12.3892 21.4587i 0.726268 1.25793i
\(292\) 0 0
\(293\) 14.4816 0.846026 0.423013 0.906124i \(-0.360973\pi\)
0.423013 + 0.906124i \(0.360973\pi\)
\(294\) 0 0
\(295\) 6.74254 0.392566
\(296\) 0 0
\(297\) −15.9297 + 27.5910i −0.924332 + 1.60099i
\(298\) 0 0
\(299\) 2.71646 + 4.70505i 0.157097 + 0.272100i
\(300\) 0 0
\(301\) 0.780267 + 1.11319i 0.0449739 + 0.0641634i
\(302\) 0 0
\(303\) −1.29993 2.25155i −0.0746791 0.129348i
\(304\) 0 0
\(305\) 0.278677 0.482682i 0.0159570 0.0276383i
\(306\) 0 0
\(307\) −14.6530 −0.836288 −0.418144 0.908381i \(-0.637319\pi\)
−0.418144 + 0.908381i \(0.637319\pi\)
\(308\) 0 0
\(309\) −1.13614 −0.0646325
\(310\) 0 0
\(311\) 6.91326 11.9741i 0.392015 0.678990i −0.600700 0.799474i \(-0.705111\pi\)
0.992715 + 0.120485i \(0.0384448\pi\)
\(312\) 0 0
\(313\) −8.98292 15.5589i −0.507744 0.879439i −0.999960 0.00896576i \(-0.997146\pi\)
0.492215 0.870473i \(-0.336187\pi\)
\(314\) 0 0
\(315\) 21.2805 1.87216i 1.19902 0.105484i
\(316\) 0 0
\(317\) −1.82029 3.15283i −0.102237 0.177080i 0.810369 0.585920i \(-0.199267\pi\)
−0.912606 + 0.408840i \(0.865933\pi\)
\(318\) 0 0
\(319\) 5.21965 9.04069i 0.292244 0.506182i
\(320\) 0 0
\(321\) −35.1974 −1.96453
\(322\) 0 0
\(323\) 5.76603 0.320830
\(324\) 0 0
\(325\) −2.07762 + 3.59854i −0.115245 + 0.199611i
\(326\) 0 0
\(327\) 13.6891 + 23.7103i 0.757011 + 1.31118i
\(328\) 0 0
\(329\) −5.17373 + 11.1091i −0.285237 + 0.612465i
\(330\) 0 0
\(331\) −6.78126 11.7455i −0.372732 0.645590i 0.617253 0.786765i \(-0.288245\pi\)
−0.989985 + 0.141175i \(0.954912\pi\)
\(332\) 0 0
\(333\) −41.4339 + 71.7656i −2.27056 + 3.93273i
\(334\) 0 0
\(335\) −10.5255 −0.575070
\(336\) 0 0
\(337\) −16.1880 −0.881818 −0.440909 0.897552i \(-0.645344\pi\)
−0.440909 + 0.897552i \(0.645344\pi\)
\(338\) 0 0
\(339\) −25.4565 + 44.0920i −1.38261 + 2.39475i
\(340\) 0 0
\(341\) −4.54729 7.87613i −0.246249 0.426516i
\(342\) 0 0
\(343\) 17.8822 4.81930i 0.965550 0.260218i
\(344\) 0 0
\(345\) −8.57107 14.8455i −0.461451 0.799257i
\(346\) 0 0
\(347\) −7.09612 + 12.2908i −0.380940 + 0.659807i −0.991197 0.132397i \(-0.957733\pi\)
0.610257 + 0.792203i \(0.291066\pi\)
\(348\) 0 0
\(349\) −4.22675 −0.226253 −0.113126 0.993581i \(-0.536086\pi\)
−0.113126 + 0.993581i \(0.536086\pi\)
\(350\) 0 0
\(351\) −19.8593 −1.06001
\(352\) 0 0
\(353\) −14.6195 + 25.3217i −0.778116 + 1.34774i 0.154910 + 0.987929i \(0.450491\pi\)
−0.933026 + 0.359808i \(0.882842\pi\)
\(354\) 0 0
\(355\) 7.05309 + 12.2163i 0.374339 + 0.648375i
\(356\) 0 0
\(357\) 10.4388 22.4143i 0.552479 1.18629i
\(358\) 0 0
\(359\) −4.14723 7.18321i −0.218882 0.379115i 0.735584 0.677433i \(-0.236908\pi\)
−0.954467 + 0.298318i \(0.903574\pi\)
\(360\) 0 0
\(361\) 7.25691 12.5693i 0.381942 0.661544i
\(362\) 0 0
\(363\) −28.9271 −1.51828
\(364\) 0 0
\(365\) −9.35917 −0.489882
\(366\) 0 0
\(367\) 12.3626 21.4126i 0.645321 1.11773i −0.338906 0.940820i \(-0.610057\pi\)
0.984227 0.176909i \(-0.0566097\pi\)
\(368\) 0 0
\(369\) 10.3313 + 17.8943i 0.537823 + 0.931538i
\(370\) 0 0
\(371\) 14.8375 1.30533i 0.770326 0.0677695i
\(372\) 0 0
\(373\) 3.96541 + 6.86829i 0.205321 + 0.355626i 0.950235 0.311534i \(-0.100843\pi\)
−0.744914 + 0.667161i \(0.767509\pi\)
\(374\) 0 0
\(375\) 14.4435 25.0168i 0.745857 1.29186i
\(376\) 0 0
\(377\) 6.50727 0.335141
\(378\) 0 0
\(379\) −34.5050 −1.77240 −0.886202 0.463299i \(-0.846666\pi\)
−0.886202 + 0.463299i \(0.846666\pi\)
\(380\) 0 0
\(381\) −32.6303 + 56.5174i −1.67170 + 2.89547i
\(382\) 0 0
\(383\) −7.96429 13.7946i −0.406956 0.704869i 0.587591 0.809158i \(-0.300077\pi\)
−0.994547 + 0.104289i \(0.966743\pi\)
\(384\) 0 0
\(385\) −2.23913 3.19453i −0.114117 0.162808i
\(386\) 0 0
\(387\) 2.25691 + 3.90908i 0.114725 + 0.198709i
\(388\) 0 0
\(389\) −4.04845 + 7.01212i −0.205265 + 0.355529i −0.950217 0.311589i \(-0.899139\pi\)
0.744952 + 0.667118i \(0.232472\pi\)
\(390\) 0 0
\(391\) −14.7901 −0.747968
\(392\) 0 0
\(393\) 47.3227 2.38711
\(394\) 0 0
\(395\) −3.91795 + 6.78608i −0.197133 + 0.341445i
\(396\) 0 0
\(397\) 15.7955 + 27.3586i 0.792753 + 1.37309i 0.924256 + 0.381773i \(0.124686\pi\)
−0.131503 + 0.991316i \(0.541980\pi\)
\(398\) 0 0
\(399\) 11.0419 + 15.7532i 0.552784 + 0.788648i
\(400\) 0 0
\(401\) −0.706911 1.22441i −0.0353015 0.0611439i 0.847835 0.530260i \(-0.177906\pi\)
−0.883136 + 0.469116i \(0.844572\pi\)
\(402\) 0 0
\(403\) 2.83452 4.90954i 0.141198 0.244562i
\(404\) 0 0
\(405\) 38.4377 1.90999
\(406\) 0 0
\(407\) 15.1328 0.750104
\(408\) 0 0
\(409\) −9.23496 + 15.9954i −0.456639 + 0.790923i −0.998781 0.0493646i \(-0.984280\pi\)
0.542141 + 0.840287i \(0.317614\pi\)
\(410\) 0 0
\(411\) −11.4711 19.8685i −0.565827 0.980041i
\(412\) 0 0
\(413\) 19.3344 1.70094i 0.951383 0.0836980i
\(414\) 0 0
\(415\) 6.00000 + 10.3923i 0.294528 + 0.510138i
\(416\) 0 0
\(417\) 2.16178 3.74431i 0.105863 0.183360i
\(418\) 0 0
\(419\) −15.1529 −0.740268 −0.370134 0.928978i \(-0.620688\pi\)
−0.370134 + 0.928978i \(0.620688\pi\)
\(420\) 0 0
\(421\) 15.8804 0.773962 0.386981 0.922088i \(-0.373518\pi\)
0.386981 + 0.922088i \(0.373518\pi\)
\(422\) 0 0
\(423\) −20.3454 + 35.2393i −0.989227 + 1.71339i
\(424\) 0 0
\(425\) −5.65593 9.79635i −0.274353 0.475193i
\(426\) 0 0
\(427\) 0.677346 1.45440i 0.0327791 0.0703836i
\(428\) 0 0
\(429\) 2.75363 + 4.76943i 0.132947 + 0.230270i
\(430\) 0 0
\(431\) 7.50142 12.9928i 0.361331 0.625843i −0.626850 0.779140i \(-0.715656\pi\)
0.988180 + 0.153298i \(0.0489893\pi\)
\(432\) 0 0
\(433\) 9.81258 0.471562 0.235781 0.971806i \(-0.424235\pi\)
0.235781 + 0.971806i \(0.424235\pi\)
\(434\) 0 0
\(435\) −20.5320 −0.984432
\(436\) 0 0
\(437\) 5.75363 9.96559i 0.275234 0.476719i
\(438\) 0 0
\(439\) −0.702223 1.21629i −0.0335153 0.0580502i 0.848781 0.528744i \(-0.177337\pi\)
−0.882297 + 0.470694i \(0.844004\pi\)
\(440\) 0 0
\(441\) 60.5501 10.7369i 2.88334 0.511281i
\(442\) 0 0
\(443\) −14.6176 25.3185i −0.694504 1.20292i −0.970348 0.241714i \(-0.922290\pi\)
0.275843 0.961203i \(-0.411043\pi\)
\(444\) 0 0
\(445\) 5.75850 9.97401i 0.272979 0.472813i
\(446\) 0 0
\(447\) 18.0632 0.854362
\(448\) 0 0
\(449\) 9.13416 0.431067 0.215534 0.976496i \(-0.430851\pi\)
0.215534 + 0.976496i \(0.430851\pi\)
\(450\) 0 0
\(451\) 1.88663 3.26773i 0.0888377 0.153871i
\(452\) 0 0
\(453\) −23.6449 40.9543i −1.11094 1.92420i
\(454\) 0 0
\(455\) 1.02663 2.20440i 0.0481293 0.103344i
\(456\) 0 0
\(457\) −20.4671 35.4500i −0.957409 1.65828i −0.728755 0.684774i \(-0.759901\pi\)
−0.228654 0.973508i \(-0.573432\pi\)
\(458\) 0 0
\(459\) 27.0316 46.8201i 1.26173 2.18538i
\(460\) 0 0
\(461\) −33.4731 −1.55900 −0.779499 0.626404i \(-0.784526\pi\)
−0.779499 + 0.626404i \(0.784526\pi\)
\(462\) 0 0
\(463\) −6.94390 −0.322710 −0.161355 0.986896i \(-0.551586\pi\)
−0.161355 + 0.986896i \(0.551586\pi\)
\(464\) 0 0
\(465\) −8.94359 + 15.4908i −0.414749 + 0.718366i
\(466\) 0 0
\(467\) 6.09358 + 10.5544i 0.281977 + 0.488399i 0.971872 0.235511i \(-0.0756763\pi\)
−0.689894 + 0.723910i \(0.742343\pi\)
\(468\) 0 0
\(469\) −30.1822 + 2.65528i −1.39368 + 0.122609i
\(470\) 0 0
\(471\) −2.10567 3.64712i −0.0970240 0.168051i
\(472\) 0 0
\(473\) 0.412141 0.713850i 0.0189503 0.0328228i
\(474\) 0 0
\(475\) 8.80105 0.403820
\(476\) 0 0
\(477\) 49.4568 2.26447
\(478\) 0 0
\(479\) −4.04264 + 7.00206i −0.184713 + 0.319932i −0.943480 0.331430i \(-0.892469\pi\)
0.758767 + 0.651362i \(0.225802\pi\)
\(480\) 0 0
\(481\) 4.71646 + 8.16915i 0.215052 + 0.372481i
\(482\) 0 0
\(483\) −28.3229 40.4077i −1.28873 1.83861i
\(484\) 0 0
\(485\) 3.31701 + 5.74524i 0.150618 + 0.260878i
\(486\) 0 0
\(487\) 13.2103 22.8808i 0.598614 1.03683i −0.394412 0.918934i \(-0.629052\pi\)
0.993026 0.117896i \(-0.0376149\pi\)
\(488\) 0 0
\(489\) −53.0598 −2.39945
\(490\) 0 0
\(491\) 21.9504 0.990609 0.495304 0.868720i \(-0.335057\pi\)
0.495304 + 0.868720i \(0.335057\pi\)
\(492\) 0 0
\(493\) −8.85741 + 15.3415i −0.398918 + 0.690946i
\(494\) 0 0
\(495\) −6.47664 11.2179i −0.291103 0.504206i
\(496\) 0 0
\(497\) 23.3067 + 33.2513i 1.04545 + 1.49152i
\(498\) 0 0
\(499\) −4.38335 7.59219i −0.196226 0.339873i 0.751076 0.660216i \(-0.229535\pi\)
−0.947302 + 0.320343i \(0.896202\pi\)
\(500\) 0 0
\(501\) 40.6957 70.4870i 1.81815 3.14913i
\(502\) 0 0
\(503\) 19.7135 0.878983 0.439492 0.898247i \(-0.355159\pi\)
0.439492 + 0.898247i \(0.355159\pi\)
\(504\) 0 0
\(505\) 0.696072 0.0309748
\(506\) 0 0
\(507\) −1.71646 + 2.97300i −0.0762307 + 0.132035i
\(508\) 0 0
\(509\) −10.5547 18.2812i −0.467828 0.810302i 0.531496 0.847061i \(-0.321630\pi\)
−0.999324 + 0.0367587i \(0.988297\pi\)
\(510\) 0 0
\(511\) −26.8377 + 2.36104i −1.18723 + 0.104446i
\(512\) 0 0
\(513\) 21.0316 + 36.4278i 0.928569 + 1.60833i
\(514\) 0 0
\(515\) 0.152091 0.263430i 0.00670194 0.0116081i
\(516\) 0 0
\(517\) 7.43069 0.326801
\(518\) 0 0
\(519\) −48.6662 −2.13621
\(520\) 0 0
\(521\) 15.0740 26.1090i 0.660405 1.14386i −0.320104 0.947382i \(-0.603718\pi\)
0.980509 0.196473i \(-0.0629489\pi\)
\(522\) 0 0
\(523\) 0.140008 + 0.242500i 0.00612211 + 0.0106038i 0.869070 0.494689i \(-0.164718\pi\)
−0.862948 + 0.505293i \(0.831385\pi\)
\(524\) 0 0
\(525\) 15.9333 34.2123i 0.695388 1.49315i
\(526\) 0 0
\(527\) 7.71646 + 13.3653i 0.336134 + 0.582202i
\(528\) 0 0
\(529\) −3.25832 + 5.64358i −0.141666 + 0.245373i
\(530\) 0 0
\(531\) 64.4459 2.79671
\(532\) 0 0
\(533\) 2.35203 0.101878
\(534\) 0 0
\(535\) 4.71177 8.16103i 0.203708 0.352832i
\(536\) 0 0
\(537\) 11.0893 + 19.2072i 0.478538 + 0.828851i
\(538\) 0 0
\(539\) −7.22665 8.59552i −0.311274 0.370235i
\(540\) 0 0
\(541\) −5.28384 9.15188i −0.227170 0.393470i 0.729798 0.683663i \(-0.239614\pi\)
−0.956968 + 0.290193i \(0.906281\pi\)
\(542\) 0 0
\(543\) −20.5076 + 35.5201i −0.880064 + 1.52432i
\(544\) 0 0
\(545\) −7.33010 −0.313987
\(546\) 0 0
\(547\) −21.0940 −0.901912 −0.450956 0.892546i \(-0.648917\pi\)
−0.450956 + 0.892546i \(0.648917\pi\)
\(548\) 0 0
\(549\) 2.66362 4.61353i 0.113681 0.196901i
\(550\) 0 0
\(551\) −6.89140 11.9363i −0.293584 0.508502i
\(552\) 0 0
\(553\) −9.52288 + 20.4476i −0.404954 + 0.869522i
\(554\) 0 0
\(555\) −14.8815 25.7756i −0.631686 1.09411i
\(556\) 0 0
\(557\) −20.1847 + 34.9609i −0.855253 + 1.48134i 0.0211566 + 0.999776i \(0.493265\pi\)
−0.876410 + 0.481566i \(0.840068\pi\)
\(558\) 0 0
\(559\) 0.513812 0.0217319
\(560\) 0 0
\(561\) −14.9925 −0.632984
\(562\) 0 0
\(563\) 15.4252 26.7173i 0.650095 1.12600i −0.333004 0.942925i \(-0.608062\pi\)
0.983099 0.183073i \(-0.0586044\pi\)
\(564\) 0 0
\(565\) −6.81559 11.8049i −0.286734 0.496638i
\(566\) 0 0
\(567\) 110.221 9.69671i 4.62885 0.407224i
\(568\) 0 0
\(569\) 4.21276 + 7.29672i 0.176608 + 0.305894i 0.940717 0.339193i \(-0.110154\pi\)
−0.764108 + 0.645088i \(0.776821\pi\)
\(570\) 0 0
\(571\) −1.58015 + 2.73690i −0.0661273 + 0.114536i −0.897193 0.441638i \(-0.854398\pi\)
0.831066 + 0.556173i \(0.187731\pi\)
\(572\) 0 0
\(573\) 7.47879 0.312431
\(574\) 0 0
\(575\) −22.5751 −0.941446
\(576\) 0 0
\(577\) −7.96429 + 13.7946i −0.331558 + 0.574275i −0.982817 0.184580i \(-0.940908\pi\)
0.651260 + 0.758855i \(0.274241\pi\)
\(578\) 0 0
\(579\) 34.8420 + 60.3482i 1.44799 + 2.50799i
\(580\) 0 0
\(581\) 19.8268 + 28.2866i 0.822555 + 1.17352i
\(582\) 0 0
\(583\) −4.51574 7.82149i −0.187023 0.323933i
\(584\) 0 0
\(585\) 4.03717 6.99259i 0.166917 0.289108i
\(586\) 0 0
\(587\) −25.0415 −1.03357 −0.516786 0.856114i \(-0.672872\pi\)
−0.516786 + 0.856114i \(0.672872\pi\)
\(588\) 0 0
\(589\) −12.0074 −0.494756
\(590\) 0 0
\(591\) 3.44902 5.97387i 0.141874 0.245732i
\(592\) 0 0
\(593\) −11.0987 19.2234i −0.455767 0.789412i 0.542965 0.839755i \(-0.317302\pi\)
−0.998732 + 0.0503438i \(0.983968\pi\)
\(594\) 0 0
\(595\) 3.79967 + 5.42092i 0.155771 + 0.222236i
\(596\) 0 0
\(597\) 4.53390 + 7.85295i 0.185560 + 0.321400i
\(598\) 0 0
\(599\) 18.2197 31.5575i 0.744438 1.28940i −0.206019 0.978548i \(-0.566051\pi\)
0.950457 0.310856i \(-0.100616\pi\)
\(600\) 0 0
\(601\) −36.3090 −1.48107 −0.740537 0.672015i \(-0.765429\pi\)
−0.740537 + 0.672015i \(0.765429\pi\)
\(602\) 0 0
\(603\) −100.604 −4.09691
\(604\) 0 0
\(605\) 3.87239 6.70717i 0.157435 0.272685i
\(606\) 0 0
\(607\) 4.42521 + 7.66470i 0.179614 + 0.311100i 0.941748 0.336318i \(-0.109182\pi\)
−0.762134 + 0.647419i \(0.775848\pi\)
\(608\) 0 0
\(609\) −58.8759 + 5.17961i −2.38577 + 0.209888i
\(610\) 0 0
\(611\) 2.31594 + 4.01132i 0.0936928 + 0.162281i
\(612\) 0 0
\(613\) −10.4880 + 18.1658i −0.423608 + 0.733710i −0.996289 0.0860680i \(-0.972570\pi\)
0.572682 + 0.819778i \(0.305903\pi\)
\(614\) 0 0
\(615\) −7.42122 −0.299252
\(616\) 0 0
\(617\) −18.4816 −0.744042 −0.372021 0.928224i \(-0.621335\pi\)
−0.372021 + 0.928224i \(0.621335\pi\)
\(618\) 0 0
\(619\) −9.90672 + 17.1589i −0.398185 + 0.689676i −0.993502 0.113815i \(-0.963693\pi\)
0.595317 + 0.803491i \(0.297026\pi\)
\(620\) 0 0
\(621\) −53.9470 93.4390i −2.16482 3.74958i
\(622\) 0 0
\(623\) 13.9965 30.0534i 0.560757 1.20406i
\(624\) 0 0
\(625\) −6.52108 11.2948i −0.260843 0.451794i
\(626\) 0 0
\(627\) 5.83237 10.1020i 0.232922 0.403433i
\(628\) 0 0
\(629\) −25.6794 −1.02390
\(630\) 0 0
\(631\) 8.40898 0.334756 0.167378 0.985893i \(-0.446470\pi\)
0.167378 + 0.985893i \(0.446470\pi\)
\(632\) 0 0
\(633\) −17.0306 + 29.4979i −0.676907 + 1.17244i
\(634\) 0 0
\(635\) −8.73625 15.1316i −0.346688 0.600481i
\(636\) 0 0
\(637\) 2.38779 6.58016i 0.0946077 0.260715i
\(638\) 0 0
\(639\) 67.4142 + 116.765i 2.66686 + 4.61914i
\(640\) 0 0
\(641\) 15.0134 26.0039i 0.592993 1.02709i −0.400834 0.916151i \(-0.631280\pi\)
0.993827 0.110943i \(-0.0353870\pi\)
\(642\) 0 0
\(643\) −11.1349 −0.439119 −0.219559 0.975599i \(-0.570462\pi\)
−0.219559 + 0.975599i \(0.570462\pi\)
\(644\) 0 0
\(645\) −1.62120 −0.0638346
\(646\) 0 0
\(647\) 14.2263 24.6406i 0.559292 0.968722i −0.438264 0.898847i \(-0.644406\pi\)
0.997556 0.0698759i \(-0.0222603\pi\)
\(648\) 0 0
\(649\) −5.88434 10.1920i −0.230981 0.400070i
\(650\) 0 0
\(651\) −21.7381 + 46.6763i −0.851983 + 1.82939i
\(652\) 0 0
\(653\) −16.8305 29.1513i −0.658629 1.14078i −0.980971 0.194155i \(-0.937803\pi\)
0.322342 0.946623i \(-0.395530\pi\)
\(654\) 0 0
\(655\) −6.33495 + 10.9725i −0.247527 + 0.428729i
\(656\) 0 0
\(657\) −89.4560 −3.49001
\(658\) 0 0
\(659\) 17.2594 0.672332 0.336166 0.941803i \(-0.390870\pi\)
0.336166 + 0.941803i \(0.390870\pi\)
\(660\) 0 0
\(661\) 12.4140 21.5017i 0.482848 0.836317i −0.516958 0.856011i \(-0.672936\pi\)
0.999806 + 0.0196934i \(0.00626902\pi\)
\(662\) 0 0
\(663\) −4.67274 8.09343i −0.181474 0.314323i
\(664\) 0 0
\(665\) −5.13076 + 0.451379i −0.198962 + 0.0175037i
\(666\) 0 0
\(667\) 17.6767 + 30.6170i 0.684446 + 1.18550i
\(668\) 0 0
\(669\) 15.7983 27.3635i 0.610799 1.05794i
\(670\) 0 0
\(671\) −0.972826 −0.0375555
\(672\) 0 0
\(673\) −12.7567 −0.491735 −0.245867 0.969303i \(-0.579073\pi\)
−0.245867 + 0.969303i \(0.579073\pi\)
\(674\) 0 0
\(675\) 41.2600 71.4645i 1.58810 2.75067i
\(676\) 0 0
\(677\) 6.66461 + 11.5434i 0.256142 + 0.443651i 0.965205 0.261494i \(-0.0842153\pi\)
−0.709063 + 0.705145i \(0.750882\pi\)
\(678\) 0 0
\(679\) 10.9610 + 15.6378i 0.420643 + 0.600124i
\(680\) 0 0
\(681\) 35.2473 + 61.0502i 1.35068 + 2.33945i
\(682\) 0 0
\(683\) 17.1588 29.7198i 0.656562 1.13720i −0.324938 0.945735i \(-0.605343\pi\)
0.981500 0.191463i \(-0.0613232\pi\)
\(684\) 0 0
\(685\) 6.14240 0.234689
\(686\) 0 0
\(687\) 6.15980 0.235011
\(688\) 0 0
\(689\) 2.81486 4.87548i 0.107238 0.185741i
\(690\) 0 0
\(691\) 3.82544 + 6.62586i 0.145527 + 0.252059i 0.929569 0.368647i \(-0.120179\pi\)
−0.784043 + 0.620707i \(0.786846\pi\)
\(692\) 0 0
\(693\) −21.4019 30.5336i −0.812989 1.15988i
\(694\) 0 0
\(695\) 0.578782 + 1.00248i 0.0219545 + 0.0380262i
\(696\) 0 0
\(697\) −3.20149 + 5.54514i −0.121265 + 0.210037i
\(698\) 0 0
\(699\) 75.0785 2.83973
\(700\) 0 0
\(701\) 32.7331 1.23631 0.618157 0.786055i \(-0.287880\pi\)
0.618157 + 0.786055i \(0.287880\pi\)
\(702\) 0 0
\(703\) 9.98976 17.3028i 0.376771 0.652586i
\(704\) 0 0
\(705\) −7.30733 12.6567i −0.275210 0.476677i
\(706\) 0 0
\(707\) 1.99600 0.175599i 0.0750674 0.00660406i
\(708\) 0 0
\(709\) −1.83939 3.18591i −0.0690796 0.119649i 0.829417 0.558630i \(-0.188673\pi\)
−0.898496 + 0.438981i \(0.855340\pi\)
\(710\) 0 0
\(711\) −37.4481 + 64.8621i −1.40441 + 2.43252i
\(712\) 0 0
\(713\) 30.7995 1.15345
\(714\) 0 0
\(715\) −1.47448 −0.0551426
\(716\) 0 0
\(717\) −21.1928 + 36.7070i −0.791459 + 1.37085i
\(718\) 0 0
\(719\) −5.68884 9.85336i −0.212158 0.367468i 0.740232 0.672352i \(-0.234716\pi\)
−0.952390 + 0.304884i \(0.901382\pi\)
\(720\) 0 0
\(721\) 0.369670 0.793759i 0.0137672 0.0295611i
\(722\) 0 0
\(723\) 23.9953 + 41.5611i 0.892395 + 1.54567i
\(724\) 0 0
\(725\) −13.5196 + 23.4167i −0.502106 + 0.869673i
\(726\) 0 0
\(727\) −42.4642 −1.57491 −0.787456 0.616371i \(-0.788602\pi\)
−0.787456 + 0.616371i \(0.788602\pi\)
\(728\) 0 0
\(729\) 162.866 6.03206
\(730\) 0 0
\(731\) −0.699378 + 1.21136i −0.0258674 + 0.0448037i
\(732\) 0 0
\(733\) 0.688838 + 1.19310i 0.0254428 + 0.0440682i 0.878466 0.477804i \(-0.158567\pi\)
−0.853024 + 0.521872i \(0.825234\pi\)
\(734\) 0 0
\(735\) −7.53404 + 20.7619i −0.277897 + 0.765816i
\(736\) 0 0
\(737\) 9.18582 + 15.9103i 0.338364 + 0.586064i
\(738\) 0 0
\(739\) −4.33009 + 7.49993i −0.159285 + 0.275889i −0.934611 0.355672i \(-0.884252\pi\)
0.775326 + 0.631561i \(0.217585\pi\)
\(740\) 0 0
\(741\) 7.27114 0.267112
\(742\) 0 0
\(743\) 47.1952 1.73143 0.865713 0.500541i \(-0.166866\pi\)
0.865713 + 0.500541i \(0.166866\pi\)
\(744\) 0 0
\(745\) −2.41807 + 4.18823i −0.0885914 + 0.153445i
\(746\) 0 0
\(747\) 57.3486 + 99.3307i 2.09828 + 3.63432i
\(748\) 0 0
\(749\) 11.4523 24.5906i 0.418459 0.898521i
\(750\) 0 0
\(751\) −8.22588 14.2476i −0.300167 0.519904i 0.676007 0.736895i \(-0.263709\pi\)
−0.976174 + 0.216991i \(0.930376\pi\)
\(752\) 0 0
\(753\) 9.82213 17.0124i 0.357938 0.619967i
\(754\) 0 0
\(755\) 12.6611 0.460785
\(756\) 0 0
\(757\) −11.4147 −0.414873 −0.207437 0.978248i \(-0.566512\pi\)
−0.207437 + 0.978248i \(0.566512\pi\)
\(758\) 0 0
\(759\) −14.9603 + 25.9120i −0.543024 + 0.940545i
\(760\) 0 0
\(761\) 5.15192 + 8.92338i 0.186757 + 0.323472i 0.944167 0.329467i \(-0.106869\pi\)
−0.757410 + 0.652939i \(0.773536\pi\)
\(762\) 0 0
\(763\) −21.0192 + 1.84917i −0.760947 + 0.0669444i
\(764\) 0 0
\(765\) 10.9905 + 19.0360i 0.397361 + 0.688249i
\(766\) 0 0
\(767\) 3.66797 6.35311i 0.132443 0.229398i
\(768\) 0 0
\(769\) 37.3716 1.34766 0.673828 0.738888i \(-0.264649\pi\)
0.673828 + 0.738888i \(0.264649\pi\)
\(770\) 0 0
\(771\) −30.4933 −1.09819
\(772\) 0 0
\(773\) −8.11504 + 14.0557i −0.291878 + 0.505547i −0.974254 0.225454i \(-0.927613\pi\)
0.682376 + 0.731001i \(0.260947\pi\)
\(774\) 0 0
\(775\) 11.7781 + 20.4003i 0.423082 + 0.732800i
\(776\) 0 0
\(777\) −49.1756 70.1580i −1.76417 2.51690i
\(778\) 0 0
\(779\) −2.49088 4.31432i −0.0892449 0.154577i
\(780\) 0 0
\(781\) 12.3107 21.3228i 0.440513 0.762990i
\(782\) 0 0
\(783\) −129.230 −4.61830
\(784\) 0 0
\(785\) 1.12752 0.0402429
\(786\) 0 0
\(787\) 1.06625 1.84680i 0.0380078 0.0658314i −0.846396 0.532554i \(-0.821232\pi\)
0.884404 + 0.466723i \(0.154565\pi\)
\(788\) 0 0
\(789\) −29.0497 50.3155i −1.03420 1.79128i
\(790\) 0 0
\(791\) −22.5219 32.1316i −0.800786 1.14247i
\(792\) 0 0
\(793\) −0.303203 0.525162i −0.0107670 0.0186491i
\(794\) 0 0
\(795\) −8.88155 + 15.3833i −0.314996 + 0.545589i
\(796\) 0 0
\(797\) 38.0248 1.34691 0.673453 0.739230i \(-0.264810\pi\)
0.673453 + 0.739230i \(0.264810\pi\)
\(798\) 0 0
\(799\) −12.6094 −0.446089
\(800\) 0 0
\(801\) 55.0403 95.3326i 1.94475 3.36841i
\(802\) 0 0
\(803\) 8.16793 + 14.1473i 0.288240 + 0.499246i
\(804\) 0 0
\(805\) 13.1606 1.15781i 0.463851 0.0408073i
\(806\) 0 0
\(807\) 3.25153 + 5.63181i 0.114459 + 0.198249i
\(808\) 0 0
\(809\) −16.2387 + 28.1263i −0.570922 + 0.988867i 0.425549 + 0.904935i \(0.360081\pi\)
−0.996472 + 0.0839314i \(0.973252\pi\)
\(810\) 0 0
\(811\) 12.0285 0.422377 0.211188 0.977445i \(-0.432267\pi\)
0.211188 + 0.977445i \(0.432267\pi\)
\(812\) 0 0
\(813\) −35.9303 −1.26013
\(814\) 0 0
\(815\) 7.10296 12.3027i 0.248806 0.430944i
\(816\) 0 0
\(817\) −0.544142 0.942482i −0.0190371 0.0329733i
\(818\) 0 0
\(819\) 9.81267 21.0699i 0.342882 0.736241i
\(820\) 0 0
\(821\) −19.4295 33.6529i −0.678095 1.17450i −0.975554 0.219760i \(-0.929472\pi\)
0.297459 0.954735i \(-0.403861\pi\)
\(822\) 0 0
\(823\) 8.79735 15.2375i 0.306656 0.531144i −0.670972 0.741482i \(-0.734123\pi\)
0.977629 + 0.210338i \(0.0674564\pi\)
\(824\) 0 0
\(825\) −22.8840 −0.796719
\(826\) 0 0
\(827\) 30.5575 1.06259 0.531294 0.847187i \(-0.321706\pi\)
0.531294 + 0.847187i \(0.321706\pi\)
\(828\) 0 0
\(829\) −26.3082 + 45.5671i −0.913721 + 1.58261i −0.104958 + 0.994477i \(0.533471\pi\)
−0.808763 + 0.588135i \(0.799862\pi\)
\(830\) 0 0
\(831\) 19.3738 + 33.5564i 0.672070 + 1.16406i
\(832\) 0 0
\(833\) 12.2632 + 14.5861i 0.424894 + 0.505377i
\(834\) 0 0
\(835\) 10.8956 + 18.8718i 0.377059 + 0.653085i
\(836\) 0 0
\(837\) −56.2917 + 97.5000i −1.94572 + 3.37009i
\(838\) 0 0
\(839\) −19.6341 −0.677845 −0.338922 0.940814i \(-0.610062\pi\)
−0.338922 + 0.940814i \(0.610062\pi\)
\(840\) 0 0
\(841\) 13.3445 0.460157
\(842\) 0 0
\(843\) −24.9774 + 43.2621i −0.860266 + 1.49002i
\(844\) 0 0
\(845\) −0.459555 0.795973i −0.0158092 0.0273823i
\(846\) 0 0
\(847\) 9.41214 20.2099i 0.323405 0.694419i
\(848\) 0 0
\(849\) −23.2336 40.2417i −0.797374 1.38109i
\(850\) 0 0
\(851\) −25.6242 + 44.3824i −0.878385 + 1.52141i
\(852\) 0 0
\(853\) 0.00430866 0.000147526 7.37629e−5 1.00000i \(-0.499977\pi\)
7.37629e−5 1.00000i \(0.499977\pi\)
\(854\) 0 0
\(855\) −17.1020 −0.584875
\(856\) 0 0
\(857\) −3.09986 + 5.36912i −0.105889 + 0.183406i −0.914101 0.405486i \(-0.867102\pi\)
0.808212 + 0.588892i \(0.200436\pi\)
\(858\) 0 0
\(859\) 6.52520 + 11.3020i 0.222637 + 0.385619i 0.955608 0.294641i \(-0.0952002\pi\)
−0.732971 + 0.680260i \(0.761867\pi\)
\(860\) 0 0
\(861\) −21.2805 + 1.87216i −0.725238 + 0.0638029i
\(862\) 0 0
\(863\) −0.142162 0.246232i −0.00483925 0.00838183i 0.863596 0.504185i \(-0.168207\pi\)
−0.868435 + 0.495803i \(0.834874\pi\)
\(864\) 0 0
\(865\) 6.51480 11.2840i 0.221510 0.383666i
\(866\) 0 0
\(867\) −32.9183 −1.11797
\(868\) 0 0
\(869\) 13.6771 0.463963
\(870\) 0 0
\(871\) −5.72592 + 9.91759i −0.194016 + 0.336045i
\(872\) 0 0
\(873\) 31.7044 + 54.9136i 1.07303 + 1.85854i
\(874\) 0 0
\(875\) 12.7784 + 18.2307i 0.431989 + 0.616311i
\(876\) 0 0
\(877\) 13.9970 + 24.2435i 0.472644 + 0.818644i 0.999510 0.0313045i \(-0.00996616\pi\)
−0.526865 + 0.849949i \(0.676633\pi\)
\(878\) 0 0
\(879\) −24.8571 + 43.0538i −0.838411 + 1.45217i
\(880\) 0 0
\(881\) 3.18975 0.107465 0.0537327 0.998555i \(-0.482888\pi\)
0.0537327 + 0.998555i \(0.482888\pi\)
\(882\) 0 0
\(883\) 39.6084 1.33293 0.666464 0.745537i \(-0.267807\pi\)
0.666464 + 0.745537i \(0.267807\pi\)
\(884\) 0 0
\(885\) −11.5733 + 20.0456i −0.389033 + 0.673824i
\(886\) 0 0
\(887\) −3.68884 6.38925i −0.123859 0.214530i 0.797427 0.603415i \(-0.206194\pi\)
−0.921286 + 0.388885i \(0.872860\pi\)
\(888\) 0 0
\(889\) −28.8687 41.1864i −0.968224 1.38135i
\(890\) 0 0
\(891\) −33.5453 58.1022i −1.12381 1.94650i
\(892\) 0 0
\(893\) 4.90530 8.49623i 0.164150 0.284315i
\(894\) 0 0
\(895\) −5.93796 −0.198484
\(896\) 0 0
\(897\) −18.6508 −0.622732
\(898\) 0 0
\(899\) 18.4450 31.9477i 0.615175 1.06552i
\(900\) 0 0
\(901\) 7.66293 + 13.2726i 0.255289 + 0.442174i
\(902\) 0 0
\(903\) −4.64882 + 0.408980i −0.154703 + 0.0136100i
\(904\) 0 0
\(905\) −5.49058 9.50996i −0.182513 0.316122i
\(906\) 0 0
\(907\) −1.14237 + 1.97864i −0.0379317 + 0.0656996i −0.884368 0.466790i \(-0.845410\pi\)
0.846436 + 0.532490i \(0.178744\pi\)
\(908\) 0 0
\(909\) 6.65313 0.220670
\(910\) 0 0
\(911\) −2.47732 −0.0820772 −0.0410386 0.999158i \(-0.513067\pi\)
−0.0410386 + 0.999158i \(0.513067\pi\)
\(912\) 0 0
\(913\) 10.4726 18.1391i 0.346593 0.600317i
\(914\) 0 0
\(915\) 0.956676 + 1.65701i 0.0316267 + 0.0547791i
\(916\) 0 0
\(917\) −15.3976 + 33.0619i −0.508473 + 1.09180i
\(918\) 0 0
\(919\) 19.1087 + 33.0972i 0.630337 + 1.09178i 0.987483 + 0.157727i \(0.0504166\pi\)
−0.357146 + 0.934049i \(0.616250\pi\)
\(920\) 0 0
\(921\) 25.1512 43.5632i 0.828761 1.43546i
\(922\) 0 0
\(923\) 15.3476 0.505174
\(924\) 0 0
\(925\) −39.1960 −1.28876
\(926\) 0 0
\(927\) 1.45370 2.51789i 0.0477459 0.0826983i
\(928\) 0 0
\(929\) −10.3214 17.8772i −0.338634 0.586531i 0.645542 0.763725i \(-0.276631\pi\)
−0.984176 + 0.177194i \(0.943298\pi\)
\(930\) 0 0
\(931\) −14.5987 + 2.58868i −0.478453 + 0.0848405i
\(932\) 0 0
\(933\) 23.7327 + 41.1062i 0.776973 + 1.34576i
\(934\) 0 0
\(935\) 2.00700 3.47623i 0.0656360 0.113685i
\(936\) 0 0
\(937\) −46.3418 −1.51392 −0.756960 0.653461i \(-0.773316\pi\)
−0.756960 + 0.653461i \(0.773316\pi\)
\(938\) 0 0
\(939\) 61.6753 2.01270
\(940\) 0 0
\(941\) −16.3148 + 28.2581i −0.531849 + 0.921189i 0.467460 + 0.884014i \(0.345169\pi\)
−0.999309 + 0.0371749i \(0.988164\pi\)
\(942\) 0 0
\(943\) 6.38921 + 11.0664i 0.208061 + 0.360373i
\(944\) 0 0
\(945\) −20.3882 + 43.7778i −0.663229 + 1.42409i
\(946\) 0 0
\(947\) 8.60533 + 14.9049i 0.279636 + 0.484343i 0.971294 0.237882i \(-0.0764530\pi\)
−0.691659 + 0.722225i \(0.743120\pi\)
\(948\) 0 0
\(949\) −5.09143 + 8.81861i −0.165275 + 0.286264i
\(950\) 0 0
\(951\) 12.4978 0.405269
\(952\) 0 0
\(953\) 50.0504 1.62129 0.810646 0.585537i \(-0.199116\pi\)
0.810646 + 0.585537i \(0.199116\pi\)
\(954\) 0 0
\(955\) −1.00116 + 1.73407i −0.0323969 + 0.0561131i
\(956\) 0 0
\(957\) 17.9186 + 31.0360i 0.579227 + 1.00325i
\(958\) 0 0
\(959\) 17.6135 1.54955i 0.568769 0.0500375i
\(960\) 0 0
\(961\) −0.569048 0.985619i −0.0183564 0.0317942i
\(962\) 0 0
\(963\) 45.0356 78.0040i 1.45125 2.51364i
\(964\) 0 0
\(965\) −18.6568 −0.600584
\(966\) 0 0
\(967\) −15.9540 −0.513045 −0.256522 0.966538i \(-0.582577\pi\)
−0.256522 + 0.966538i \(0.582577\pi\)
\(968\) 0 0
\(969\) −9.89717 + 17.1424i −0.317943 + 0.550693i
\(970\) 0 0
\(971\) −2.54699 4.41151i −0.0817367 0.141572i 0.822259 0.569113i \(-0.192713\pi\)
−0.903996 + 0.427541i \(0.859380\pi\)
\(972\) 0 0
\(973\) 1.91257 + 2.72863i 0.0613141 + 0.0874757i
\(974\) 0 0
\(975\) −7.13230 12.3535i −0.228416 0.395629i
\(976\) 0 0
\(977\) −14.8925 + 25.7945i −0.476453 + 0.825240i −0.999636 0.0269801i \(-0.991411\pi\)
0.523183 + 0.852220i \(0.324744\pi\)
\(978\) 0 0
\(979\) −20.1022 −0.642469
\(980\) 0 0
\(981\) −70.0619 −2.23690
\(982\) 0 0
\(983\) 12.8886 22.3236i 0.411081 0.712013i −0.583927 0.811806i \(-0.698485\pi\)
0.995008 + 0.0997927i \(0.0318180\pi\)
\(984\) 0 0
\(985\) 0.923419 + 1.59941i 0.0294226 + 0.0509614i
\(986\) 0 0
\(987\) −24.1468 34.4499i −0.768602 1.09655i
\(988\) 0 0
\(989\) 1.39575 + 2.41751i 0.0443822 + 0.0768723i
\(990\) 0 0
\(991\) 9.05764 15.6883i 0.287725 0.498355i −0.685541 0.728034i \(-0.740434\pi\)
0.973266 + 0.229679i \(0.0737676\pi\)
\(992\) 0 0
\(993\) 46.5591 1.47751
\(994\) 0 0
\(995\) −2.42776 −0.0769652
\(996\) 0 0
\(997\) −7.34777 + 12.7267i −0.232706 + 0.403059i −0.958604 0.284744i \(-0.908091\pi\)
0.725897 + 0.687803i \(0.241425\pi\)
\(998\) 0 0
\(999\) −93.6656 162.234i −2.96345 5.13284i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 364.2.j.e.53.1 8
3.2 odd 2 3276.2.r.j.1873.3 8
4.3 odd 2 1456.2.r.o.417.4 8
7.2 even 3 inner 364.2.j.e.261.1 yes 8
7.3 odd 6 2548.2.a.p.1.1 4
7.4 even 3 2548.2.a.q.1.4 4
7.5 odd 6 2548.2.j.q.1353.4 8
7.6 odd 2 2548.2.j.q.1145.4 8
21.2 odd 6 3276.2.r.j.2809.3 8
28.23 odd 6 1456.2.r.o.625.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.j.e.53.1 8 1.1 even 1 trivial
364.2.j.e.261.1 yes 8 7.2 even 3 inner
1456.2.r.o.417.4 8 4.3 odd 2
1456.2.r.o.625.4 8 28.23 odd 6
2548.2.a.p.1.1 4 7.3 odd 6
2548.2.a.q.1.4 4 7.4 even 3
2548.2.j.q.1145.4 8 7.6 odd 2
2548.2.j.q.1353.4 8 7.5 odd 6
3276.2.r.j.1873.3 8 3.2 odd 2
3276.2.r.j.2809.3 8 21.2 odd 6