Properties

Label 2-2548-1.1-c1-0-24
Degree $2$
Conductor $2548$
Sign $1$
Analytic cond. $20.3458$
Root an. cond. $4.51064$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.43·3-s + 0.919·5-s + 8.78·9-s + 1.60·11-s − 13-s + 3.15·15-s − 2.72·17-s − 2.11·19-s + 5.43·23-s − 4.15·25-s + 19.8·27-s − 6.50·29-s + 5.66·31-s + 5.50·33-s + 9.43·37-s − 3.43·39-s − 2.35·41-s − 0.513·43-s + 8.07·45-s + 4.63·47-s − 9.34·51-s + 5.62·53-s + 1.47·55-s − 7.27·57-s + 7.33·59-s − 0.606·61-s − 0.919·65-s + ⋯
L(s)  = 1  + 1.98·3-s + 0.411·5-s + 2.92·9-s + 0.483·11-s − 0.277·13-s + 0.814·15-s − 0.660·17-s − 0.485·19-s + 1.13·23-s − 0.831·25-s + 3.82·27-s − 1.20·29-s + 1.01·31-s + 0.958·33-s + 1.55·37-s − 0.549·39-s − 0.367·41-s − 0.0783·43-s + 1.20·45-s + 0.675·47-s − 1.30·51-s + 0.773·53-s + 0.198·55-s − 0.963·57-s + 0.955·59-s − 0.0776·61-s − 0.114·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2548 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2548\)    =    \(2^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(20.3458\)
Root analytic conductor: \(4.51064\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2548,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.293267452\)
\(L(\frac12)\) \(\approx\) \(4.293267452\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 3.43T + 3T^{2} \)
5 \( 1 - 0.919T + 5T^{2} \)
11 \( 1 - 1.60T + 11T^{2} \)
17 \( 1 + 2.72T + 17T^{2} \)
19 \( 1 + 2.11T + 19T^{2} \)
23 \( 1 - 5.43T + 23T^{2} \)
29 \( 1 + 6.50T + 29T^{2} \)
31 \( 1 - 5.66T + 31T^{2} \)
37 \( 1 - 9.43T + 37T^{2} \)
41 \( 1 + 2.35T + 41T^{2} \)
43 \( 1 + 0.513T + 43T^{2} \)
47 \( 1 - 4.63T + 47T^{2} \)
53 \( 1 - 5.62T + 53T^{2} \)
59 \( 1 - 7.33T + 59T^{2} \)
61 \( 1 + 0.606T + 61T^{2} \)
67 \( 1 + 11.4T + 67T^{2} \)
71 \( 1 + 15.3T + 71T^{2} \)
73 \( 1 + 10.1T + 73T^{2} \)
79 \( 1 - 8.52T + 79T^{2} \)
83 \( 1 + 13.0T + 83T^{2} \)
89 \( 1 + 12.5T + 89T^{2} \)
97 \( 1 + 7.21T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.855127218950067542807836997437, −8.343842824050729802793666493201, −7.42570931632072399732811061635, −6.95046381976788297798573087568, −5.90760481367996961752671849123, −4.54338179945622296085997921112, −4.02710402466343820849236833735, −2.97811561985514131895200235573, −2.31631927459285674634008565335, −1.38809660610194867148642542191, 1.38809660610194867148642542191, 2.31631927459285674634008565335, 2.97811561985514131895200235573, 4.02710402466343820849236833735, 4.54338179945622296085997921112, 5.90760481367996961752671849123, 6.95046381976788297798573087568, 7.42570931632072399732811061635, 8.343842824050729802793666493201, 8.855127218950067542807836997437

Graph of the $Z$-function along the critical line