Properties

Label 2523.2.a.m.1.3
Level $2523$
Weight $2$
Character 2523.1
Self dual yes
Analytic conductor $20.146$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2523,2,Mod(1,2523)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2523.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2523, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2523.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-1,8,11,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.1462564300\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: 8.8.5878828125.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 13x^{6} + 7x^{5} + 55x^{4} + 3x^{3} - 78x^{2} - 54x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.758720\) of defining polynomial
Character \(\chi\) \(=\) 2523.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.09698 q^{2} +1.00000 q^{3} +2.39733 q^{4} -1.13206 q^{5} -2.09698 q^{6} -0.0912936 q^{7} -0.833198 q^{8} +1.00000 q^{9} +2.37390 q^{10} -0.163949 q^{11} +2.39733 q^{12} +1.31599 q^{13} +0.191441 q^{14} -1.13206 q^{15} -3.04746 q^{16} +7.71760 q^{17} -2.09698 q^{18} -5.87961 q^{19} -2.71392 q^{20} -0.0912936 q^{21} +0.343799 q^{22} -7.17942 q^{23} -0.833198 q^{24} -3.71845 q^{25} -2.75960 q^{26} +1.00000 q^{27} -0.218861 q^{28} +2.37390 q^{30} -3.18098 q^{31} +8.05687 q^{32} -0.163949 q^{33} -16.1837 q^{34} +0.103350 q^{35} +2.39733 q^{36} -9.45882 q^{37} +12.3294 q^{38} +1.31599 q^{39} +0.943228 q^{40} +8.17236 q^{41} +0.191441 q^{42} +3.63682 q^{43} -0.393041 q^{44} -1.13206 q^{45} +15.0551 q^{46} +8.29212 q^{47} -3.04746 q^{48} -6.99167 q^{49} +7.79752 q^{50} +7.71760 q^{51} +3.15486 q^{52} -1.28693 q^{53} -2.09698 q^{54} +0.185600 q^{55} +0.0760657 q^{56} -5.87961 q^{57} -10.2612 q^{59} -2.71392 q^{60} -6.48785 q^{61} +6.67046 q^{62} -0.0912936 q^{63} -10.8002 q^{64} -1.48977 q^{65} +0.343799 q^{66} +4.74325 q^{67} +18.5017 q^{68} -7.17942 q^{69} -0.216722 q^{70} -0.498624 q^{71} -0.833198 q^{72} +9.30088 q^{73} +19.8350 q^{74} -3.71845 q^{75} -14.0954 q^{76} +0.0149675 q^{77} -2.75960 q^{78} +13.4381 q^{79} +3.44990 q^{80} +1.00000 q^{81} -17.1373 q^{82} +3.64859 q^{83} -0.218861 q^{84} -8.73677 q^{85} -7.62634 q^{86} +0.136602 q^{88} -9.56754 q^{89} +2.37390 q^{90} -0.120141 q^{91} -17.2115 q^{92} -3.18098 q^{93} -17.3884 q^{94} +6.65606 q^{95} +8.05687 q^{96} -12.6212 q^{97} +14.6614 q^{98} -0.163949 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} + 8 q^{3} + 11 q^{4} - 9 q^{5} - q^{6} - 12 q^{7} - 15 q^{8} + 8 q^{9} - 2 q^{10} + 12 q^{11} + 11 q^{12} - 15 q^{13} - 11 q^{14} - 9 q^{15} + 13 q^{16} + 9 q^{17} - q^{18} - 9 q^{19} - 8 q^{20}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.09698 −1.48279 −0.741395 0.671069i \(-0.765835\pi\)
−0.741395 + 0.671069i \(0.765835\pi\)
\(3\) 1.00000 0.577350
\(4\) 2.39733 1.19867
\(5\) −1.13206 −0.506271 −0.253136 0.967431i \(-0.581462\pi\)
−0.253136 + 0.967431i \(0.581462\pi\)
\(6\) −2.09698 −0.856089
\(7\) −0.0912936 −0.0345057 −0.0172529 0.999851i \(-0.505492\pi\)
−0.0172529 + 0.999851i \(0.505492\pi\)
\(8\) −0.833198 −0.294580
\(9\) 1.00000 0.333333
\(10\) 2.37390 0.750694
\(11\) −0.163949 −0.0494326 −0.0247163 0.999695i \(-0.507868\pi\)
−0.0247163 + 0.999695i \(0.507868\pi\)
\(12\) 2.39733 0.692050
\(13\) 1.31599 0.364989 0.182495 0.983207i \(-0.441583\pi\)
0.182495 + 0.983207i \(0.441583\pi\)
\(14\) 0.191441 0.0511647
\(15\) −1.13206 −0.292296
\(16\) −3.04746 −0.761866
\(17\) 7.71760 1.87179 0.935897 0.352274i \(-0.114591\pi\)
0.935897 + 0.352274i \(0.114591\pi\)
\(18\) −2.09698 −0.494263
\(19\) −5.87961 −1.34888 −0.674438 0.738331i \(-0.735614\pi\)
−0.674438 + 0.738331i \(0.735614\pi\)
\(20\) −2.71392 −0.606850
\(21\) −0.0912936 −0.0199219
\(22\) 0.343799 0.0732981
\(23\) −7.17942 −1.49701 −0.748507 0.663127i \(-0.769229\pi\)
−0.748507 + 0.663127i \(0.769229\pi\)
\(24\) −0.833198 −0.170076
\(25\) −3.71845 −0.743690
\(26\) −2.75960 −0.541202
\(27\) 1.00000 0.192450
\(28\) −0.218861 −0.0413608
\(29\) 0 0
\(30\) 2.37390 0.433413
\(31\) −3.18098 −0.571321 −0.285661 0.958331i \(-0.592213\pi\)
−0.285661 + 0.958331i \(0.592213\pi\)
\(32\) 8.05687 1.42427
\(33\) −0.163949 −0.0285399
\(34\) −16.1837 −2.77548
\(35\) 0.103350 0.0174693
\(36\) 2.39733 0.399555
\(37\) −9.45882 −1.55502 −0.777510 0.628871i \(-0.783518\pi\)
−0.777510 + 0.628871i \(0.783518\pi\)
\(38\) 12.3294 2.00010
\(39\) 1.31599 0.210727
\(40\) 0.943228 0.149137
\(41\) 8.17236 1.27631 0.638154 0.769909i \(-0.279698\pi\)
0.638154 + 0.769909i \(0.279698\pi\)
\(42\) 0.191441 0.0295400
\(43\) 3.63682 0.554610 0.277305 0.960782i \(-0.410559\pi\)
0.277305 + 0.960782i \(0.410559\pi\)
\(44\) −0.393041 −0.0592531
\(45\) −1.13206 −0.168757
\(46\) 15.0551 2.21976
\(47\) 8.29212 1.20953 0.604765 0.796404i \(-0.293267\pi\)
0.604765 + 0.796404i \(0.293267\pi\)
\(48\) −3.04746 −0.439863
\(49\) −6.99167 −0.998809
\(50\) 7.79752 1.10274
\(51\) 7.71760 1.08068
\(52\) 3.15486 0.437500
\(53\) −1.28693 −0.176773 −0.0883866 0.996086i \(-0.528171\pi\)
−0.0883866 + 0.996086i \(0.528171\pi\)
\(54\) −2.09698 −0.285363
\(55\) 0.185600 0.0250263
\(56\) 0.0760657 0.0101647
\(57\) −5.87961 −0.778774
\(58\) 0 0
\(59\) −10.2612 −1.33590 −0.667949 0.744207i \(-0.732827\pi\)
−0.667949 + 0.744207i \(0.732827\pi\)
\(60\) −2.71392 −0.350365
\(61\) −6.48785 −0.830684 −0.415342 0.909665i \(-0.636338\pi\)
−0.415342 + 0.909665i \(0.636338\pi\)
\(62\) 6.67046 0.847149
\(63\) −0.0912936 −0.0115019
\(64\) −10.8002 −1.35002
\(65\) −1.48977 −0.184784
\(66\) 0.343799 0.0423187
\(67\) 4.74325 0.579480 0.289740 0.957105i \(-0.406431\pi\)
0.289740 + 0.957105i \(0.406431\pi\)
\(68\) 18.5017 2.24366
\(69\) −7.17942 −0.864301
\(70\) −0.216722 −0.0259032
\(71\) −0.498624 −0.0591758 −0.0295879 0.999562i \(-0.509419\pi\)
−0.0295879 + 0.999562i \(0.509419\pi\)
\(72\) −0.833198 −0.0981934
\(73\) 9.30088 1.08859 0.544293 0.838895i \(-0.316798\pi\)
0.544293 + 0.838895i \(0.316798\pi\)
\(74\) 19.8350 2.30577
\(75\) −3.71845 −0.429369
\(76\) −14.0954 −1.61685
\(77\) 0.0149675 0.00170571
\(78\) −2.75960 −0.312463
\(79\) 13.4381 1.51190 0.755952 0.654627i \(-0.227175\pi\)
0.755952 + 0.654627i \(0.227175\pi\)
\(80\) 3.44990 0.385711
\(81\) 1.00000 0.111111
\(82\) −17.1373 −1.89250
\(83\) 3.64859 0.400484 0.200242 0.979746i \(-0.435827\pi\)
0.200242 + 0.979746i \(0.435827\pi\)
\(84\) −0.218861 −0.0238797
\(85\) −8.73677 −0.947635
\(86\) −7.62634 −0.822370
\(87\) 0 0
\(88\) 0.136602 0.0145619
\(89\) −9.56754 −1.01416 −0.507079 0.861900i \(-0.669275\pi\)
−0.507079 + 0.861900i \(0.669275\pi\)
\(90\) 2.37390 0.250231
\(91\) −0.120141 −0.0125942
\(92\) −17.2115 −1.79442
\(93\) −3.18098 −0.329852
\(94\) −17.3884 −1.79348
\(95\) 6.65606 0.682897
\(96\) 8.05687 0.822301
\(97\) −12.6212 −1.28149 −0.640746 0.767753i \(-0.721375\pi\)
−0.640746 + 0.767753i \(0.721375\pi\)
\(98\) 14.6614 1.48102
\(99\) −0.163949 −0.0164775
\(100\) −8.91435 −0.891435
\(101\) −7.21725 −0.718143 −0.359072 0.933310i \(-0.616907\pi\)
−0.359072 + 0.933310i \(0.616907\pi\)
\(102\) −16.1837 −1.60242
\(103\) −15.4950 −1.52677 −0.763383 0.645946i \(-0.776463\pi\)
−0.763383 + 0.645946i \(0.776463\pi\)
\(104\) −1.09648 −0.107519
\(105\) 0.103350 0.0100859
\(106\) 2.69867 0.262118
\(107\) −10.5923 −1.02400 −0.511998 0.858987i \(-0.671095\pi\)
−0.511998 + 0.858987i \(0.671095\pi\)
\(108\) 2.39733 0.230683
\(109\) 4.55678 0.436461 0.218230 0.975897i \(-0.429972\pi\)
0.218230 + 0.975897i \(0.429972\pi\)
\(110\) −0.389200 −0.0371087
\(111\) −9.45882 −0.897791
\(112\) 0.278214 0.0262887
\(113\) −8.87084 −0.834498 −0.417249 0.908792i \(-0.637006\pi\)
−0.417249 + 0.908792i \(0.637006\pi\)
\(114\) 12.3294 1.15476
\(115\) 8.12751 0.757895
\(116\) 0 0
\(117\) 1.31599 0.121663
\(118\) 21.5176 1.98086
\(119\) −0.704568 −0.0645876
\(120\) 0.943228 0.0861045
\(121\) −10.9731 −0.997556
\(122\) 13.6049 1.23173
\(123\) 8.17236 0.736877
\(124\) −7.62587 −0.684823
\(125\) 9.86978 0.882780
\(126\) 0.191441 0.0170549
\(127\) 8.09974 0.718736 0.359368 0.933196i \(-0.382992\pi\)
0.359368 + 0.933196i \(0.382992\pi\)
\(128\) 6.53405 0.577534
\(129\) 3.63682 0.320204
\(130\) 3.12403 0.273995
\(131\) 8.04982 0.703316 0.351658 0.936129i \(-0.385618\pi\)
0.351658 + 0.936129i \(0.385618\pi\)
\(132\) −0.393041 −0.0342098
\(133\) 0.536771 0.0465440
\(134\) −9.94651 −0.859248
\(135\) −1.13206 −0.0974319
\(136\) −6.43030 −0.551393
\(137\) 6.91181 0.590516 0.295258 0.955418i \(-0.404594\pi\)
0.295258 + 0.955418i \(0.404594\pi\)
\(138\) 15.0551 1.28158
\(139\) 7.66177 0.649863 0.324932 0.945738i \(-0.394659\pi\)
0.324932 + 0.945738i \(0.394659\pi\)
\(140\) 0.247763 0.0209398
\(141\) 8.29212 0.698322
\(142\) 1.04560 0.0877452
\(143\) −0.215755 −0.0180424
\(144\) −3.04746 −0.253955
\(145\) 0 0
\(146\) −19.5038 −1.61414
\(147\) −6.99167 −0.576663
\(148\) −22.6759 −1.86395
\(149\) −15.7867 −1.29330 −0.646649 0.762788i \(-0.723830\pi\)
−0.646649 + 0.762788i \(0.723830\pi\)
\(150\) 7.79752 0.636665
\(151\) 0.635934 0.0517516 0.0258758 0.999665i \(-0.491763\pi\)
0.0258758 + 0.999665i \(0.491763\pi\)
\(152\) 4.89888 0.397352
\(153\) 7.71760 0.623931
\(154\) −0.0313866 −0.00252921
\(155\) 3.60105 0.289243
\(156\) 3.15486 0.252591
\(157\) −23.8012 −1.89954 −0.949771 0.312946i \(-0.898684\pi\)
−0.949771 + 0.312946i \(0.898684\pi\)
\(158\) −28.1794 −2.24183
\(159\) −1.28693 −0.102060
\(160\) −9.12083 −0.721065
\(161\) 0.655435 0.0516555
\(162\) −2.09698 −0.164754
\(163\) 3.91590 0.306717 0.153358 0.988171i \(-0.450991\pi\)
0.153358 + 0.988171i \(0.450991\pi\)
\(164\) 19.5919 1.52987
\(165\) 0.185600 0.0144489
\(166\) −7.65102 −0.593834
\(167\) 10.8198 0.837264 0.418632 0.908156i \(-0.362510\pi\)
0.418632 + 0.908156i \(0.362510\pi\)
\(168\) 0.0760657 0.00586859
\(169\) −11.2682 −0.866783
\(170\) 18.3208 1.40514
\(171\) −5.87961 −0.449625
\(172\) 8.71866 0.664792
\(173\) −9.24218 −0.702670 −0.351335 0.936250i \(-0.614272\pi\)
−0.351335 + 0.936250i \(0.614272\pi\)
\(174\) 0 0
\(175\) 0.339470 0.0256616
\(176\) 0.499629 0.0376610
\(177\) −10.2612 −0.771281
\(178\) 20.0630 1.50378
\(179\) 23.1857 1.73298 0.866492 0.499192i \(-0.166370\pi\)
0.866492 + 0.499192i \(0.166370\pi\)
\(180\) −2.71392 −0.202283
\(181\) −9.10833 −0.677017 −0.338509 0.940963i \(-0.609922\pi\)
−0.338509 + 0.940963i \(0.609922\pi\)
\(182\) 0.251934 0.0186746
\(183\) −6.48785 −0.479595
\(184\) 5.98188 0.440990
\(185\) 10.7079 0.787262
\(186\) 6.67046 0.489102
\(187\) −1.26530 −0.0925276
\(188\) 19.8790 1.44982
\(189\) −0.0912936 −0.00664063
\(190\) −13.9576 −1.01259
\(191\) −18.0224 −1.30405 −0.652027 0.758196i \(-0.726081\pi\)
−0.652027 + 0.758196i \(0.726081\pi\)
\(192\) −10.8002 −0.779436
\(193\) 1.58339 0.113975 0.0569875 0.998375i \(-0.481850\pi\)
0.0569875 + 0.998375i \(0.481850\pi\)
\(194\) 26.4665 1.90018
\(195\) −1.48977 −0.106685
\(196\) −16.7613 −1.19724
\(197\) −10.4546 −0.744863 −0.372431 0.928060i \(-0.621476\pi\)
−0.372431 + 0.928060i \(0.621476\pi\)
\(198\) 0.343799 0.0244327
\(199\) 3.74757 0.265658 0.132829 0.991139i \(-0.457594\pi\)
0.132829 + 0.991139i \(0.457594\pi\)
\(200\) 3.09820 0.219076
\(201\) 4.74325 0.334563
\(202\) 15.1344 1.06486
\(203\) 0 0
\(204\) 18.5017 1.29538
\(205\) −9.25158 −0.646158
\(206\) 32.4927 2.26387
\(207\) −7.17942 −0.499004
\(208\) −4.01042 −0.278073
\(209\) 0.963959 0.0666784
\(210\) −0.216722 −0.0149552
\(211\) −26.1603 −1.80095 −0.900475 0.434907i \(-0.856781\pi\)
−0.900475 + 0.434907i \(0.856781\pi\)
\(212\) −3.08519 −0.211892
\(213\) −0.498624 −0.0341651
\(214\) 22.2119 1.51837
\(215\) −4.11708 −0.280783
\(216\) −0.833198 −0.0566920
\(217\) 0.290403 0.0197139
\(218\) −9.55549 −0.647179
\(219\) 9.30088 0.628495
\(220\) 0.444945 0.0299982
\(221\) 10.1563 0.683185
\(222\) 19.8350 1.33124
\(223\) 25.9173 1.73555 0.867776 0.496956i \(-0.165549\pi\)
0.867776 + 0.496956i \(0.165549\pi\)
\(224\) −0.735541 −0.0491454
\(225\) −3.71845 −0.247897
\(226\) 18.6020 1.23739
\(227\) 9.08975 0.603308 0.301654 0.953417i \(-0.402461\pi\)
0.301654 + 0.953417i \(0.402461\pi\)
\(228\) −14.0954 −0.933490
\(229\) −9.16097 −0.605374 −0.302687 0.953090i \(-0.597884\pi\)
−0.302687 + 0.953090i \(0.597884\pi\)
\(230\) −17.0432 −1.12380
\(231\) 0.0149675 0.000984790 0
\(232\) 0 0
\(233\) −12.6349 −0.827739 −0.413869 0.910336i \(-0.635823\pi\)
−0.413869 + 0.910336i \(0.635823\pi\)
\(234\) −2.75960 −0.180401
\(235\) −9.38714 −0.612350
\(236\) −24.5996 −1.60130
\(237\) 13.4381 0.872898
\(238\) 1.47747 0.0957699
\(239\) 11.3997 0.737388 0.368694 0.929551i \(-0.379805\pi\)
0.368694 + 0.929551i \(0.379805\pi\)
\(240\) 3.44990 0.222690
\(241\) −20.1130 −1.29559 −0.647795 0.761814i \(-0.724309\pi\)
−0.647795 + 0.761814i \(0.724309\pi\)
\(242\) 23.0104 1.47917
\(243\) 1.00000 0.0641500
\(244\) −15.5535 −0.995712
\(245\) 7.91496 0.505668
\(246\) −17.1373 −1.09263
\(247\) −7.73750 −0.492325
\(248\) 2.65039 0.168300
\(249\) 3.64859 0.231220
\(250\) −20.6967 −1.30898
\(251\) 0.748847 0.0472668 0.0236334 0.999721i \(-0.492477\pi\)
0.0236334 + 0.999721i \(0.492477\pi\)
\(252\) −0.218861 −0.0137869
\(253\) 1.17706 0.0740012
\(254\) −16.9850 −1.06573
\(255\) −8.73677 −0.547118
\(256\) 7.89859 0.493662
\(257\) 9.30596 0.580490 0.290245 0.956952i \(-0.406263\pi\)
0.290245 + 0.956952i \(0.406263\pi\)
\(258\) −7.62634 −0.474795
\(259\) 0.863529 0.0536571
\(260\) −3.57148 −0.221494
\(261\) 0 0
\(262\) −16.8803 −1.04287
\(263\) −13.4886 −0.831740 −0.415870 0.909424i \(-0.636523\pi\)
−0.415870 + 0.909424i \(0.636523\pi\)
\(264\) 0.136602 0.00840729
\(265\) 1.45688 0.0894952
\(266\) −1.12560 −0.0690149
\(267\) −9.56754 −0.585524
\(268\) 11.3712 0.694604
\(269\) −22.9084 −1.39675 −0.698375 0.715733i \(-0.746093\pi\)
−0.698375 + 0.715733i \(0.746093\pi\)
\(270\) 2.37390 0.144471
\(271\) −0.252974 −0.0153671 −0.00768353 0.999970i \(-0.502446\pi\)
−0.00768353 + 0.999970i \(0.502446\pi\)
\(272\) −23.5191 −1.42606
\(273\) −0.120141 −0.00727128
\(274\) −14.4939 −0.875611
\(275\) 0.609637 0.0367625
\(276\) −17.2115 −1.03601
\(277\) −18.0655 −1.08545 −0.542726 0.839910i \(-0.682608\pi\)
−0.542726 + 0.839910i \(0.682608\pi\)
\(278\) −16.0666 −0.963611
\(279\) −3.18098 −0.190440
\(280\) −0.0861106 −0.00514609
\(281\) 13.0549 0.778787 0.389394 0.921071i \(-0.372685\pi\)
0.389394 + 0.921071i \(0.372685\pi\)
\(282\) −17.3884 −1.03546
\(283\) −21.6748 −1.28843 −0.644216 0.764844i \(-0.722816\pi\)
−0.644216 + 0.764844i \(0.722816\pi\)
\(284\) −1.19537 −0.0709320
\(285\) 6.65606 0.394271
\(286\) 0.452435 0.0267530
\(287\) −0.746084 −0.0440400
\(288\) 8.05687 0.474756
\(289\) 42.5614 2.50361
\(290\) 0 0
\(291\) −12.6212 −0.739870
\(292\) 22.2973 1.30485
\(293\) −25.4395 −1.48619 −0.743097 0.669184i \(-0.766644\pi\)
−0.743097 + 0.669184i \(0.766644\pi\)
\(294\) 14.6614 0.855070
\(295\) 11.6163 0.676326
\(296\) 7.88107 0.458078
\(297\) −0.163949 −0.00951330
\(298\) 33.1044 1.91769
\(299\) −9.44803 −0.546394
\(300\) −8.91435 −0.514670
\(301\) −0.332018 −0.0191372
\(302\) −1.33354 −0.0767367
\(303\) −7.21725 −0.414620
\(304\) 17.9179 1.02766
\(305\) 7.34461 0.420551
\(306\) −16.1837 −0.925159
\(307\) −13.6331 −0.778083 −0.389041 0.921220i \(-0.627194\pi\)
−0.389041 + 0.921220i \(0.627194\pi\)
\(308\) 0.0358821 0.00204457
\(309\) −15.4950 −0.881479
\(310\) −7.55134 −0.428887
\(311\) −27.3748 −1.55228 −0.776140 0.630560i \(-0.782825\pi\)
−0.776140 + 0.630560i \(0.782825\pi\)
\(312\) −1.09648 −0.0620759
\(313\) −17.7630 −1.00402 −0.502012 0.864861i \(-0.667407\pi\)
−0.502012 + 0.864861i \(0.667407\pi\)
\(314\) 49.9107 2.81662
\(315\) 0.103350 0.00582308
\(316\) 32.2156 1.81227
\(317\) 5.14271 0.288844 0.144422 0.989516i \(-0.453868\pi\)
0.144422 + 0.989516i \(0.453868\pi\)
\(318\) 2.69867 0.151334
\(319\) 0 0
\(320\) 12.2264 0.683478
\(321\) −10.5923 −0.591204
\(322\) −1.37444 −0.0765943
\(323\) −45.3765 −2.52482
\(324\) 2.39733 0.133185
\(325\) −4.89343 −0.271439
\(326\) −8.21156 −0.454796
\(327\) 4.55678 0.251991
\(328\) −6.80920 −0.375975
\(329\) −0.757017 −0.0417357
\(330\) −0.389200 −0.0214247
\(331\) 14.1996 0.780479 0.390239 0.920713i \(-0.372392\pi\)
0.390239 + 0.920713i \(0.372392\pi\)
\(332\) 8.74688 0.480047
\(333\) −9.45882 −0.518340
\(334\) −22.6890 −1.24149
\(335\) −5.36963 −0.293374
\(336\) 0.278214 0.0151778
\(337\) 33.9954 1.85185 0.925925 0.377708i \(-0.123288\pi\)
0.925925 + 0.377708i \(0.123288\pi\)
\(338\) 23.6292 1.28526
\(339\) −8.87084 −0.481798
\(340\) −20.9449 −1.13590
\(341\) 0.521520 0.0282419
\(342\) 12.3294 0.666700
\(343\) 1.27735 0.0689704
\(344\) −3.03019 −0.163377
\(345\) 8.12751 0.437571
\(346\) 19.3807 1.04191
\(347\) −12.1147 −0.650351 −0.325175 0.945654i \(-0.605423\pi\)
−0.325175 + 0.945654i \(0.605423\pi\)
\(348\) 0 0
\(349\) 4.80123 0.257004 0.128502 0.991709i \(-0.458983\pi\)
0.128502 + 0.991709i \(0.458983\pi\)
\(350\) −0.711863 −0.0380507
\(351\) 1.31599 0.0702422
\(352\) −1.32092 −0.0704052
\(353\) −17.7002 −0.942085 −0.471042 0.882111i \(-0.656122\pi\)
−0.471042 + 0.882111i \(0.656122\pi\)
\(354\) 21.5176 1.14365
\(355\) 0.564470 0.0299590
\(356\) −22.9366 −1.21564
\(357\) −0.704568 −0.0372897
\(358\) −48.6201 −2.56965
\(359\) −1.99568 −0.105328 −0.0526641 0.998612i \(-0.516771\pi\)
−0.0526641 + 0.998612i \(0.516771\pi\)
\(360\) 0.943228 0.0497125
\(361\) 15.5699 0.819467
\(362\) 19.1000 1.00387
\(363\) −10.9731 −0.575939
\(364\) −0.288018 −0.0150963
\(365\) −10.5291 −0.551120
\(366\) 13.6049 0.711139
\(367\) 6.40827 0.334509 0.167255 0.985914i \(-0.446510\pi\)
0.167255 + 0.985914i \(0.446510\pi\)
\(368\) 21.8790 1.14052
\(369\) 8.17236 0.425436
\(370\) −22.4543 −1.16734
\(371\) 0.117488 0.00609969
\(372\) −7.62587 −0.395383
\(373\) −37.9983 −1.96748 −0.983739 0.179605i \(-0.942518\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(374\) 2.65330 0.137199
\(375\) 9.86978 0.509673
\(376\) −6.90898 −0.356303
\(377\) 0 0
\(378\) 0.191441 0.00984666
\(379\) −34.1968 −1.75657 −0.878286 0.478136i \(-0.841313\pi\)
−0.878286 + 0.478136i \(0.841313\pi\)
\(380\) 15.9568 0.818565
\(381\) 8.09974 0.414962
\(382\) 37.7926 1.93364
\(383\) −17.9240 −0.915872 −0.457936 0.888985i \(-0.651411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(384\) 6.53405 0.333439
\(385\) −0.0169441 −0.000863550 0
\(386\) −3.32034 −0.169001
\(387\) 3.63682 0.184870
\(388\) −30.2573 −1.53608
\(389\) −13.4961 −0.684280 −0.342140 0.939649i \(-0.611152\pi\)
−0.342140 + 0.939649i \(0.611152\pi\)
\(390\) 3.12403 0.158191
\(391\) −55.4080 −2.80210
\(392\) 5.82544 0.294229
\(393\) 8.04982 0.406060
\(394\) 21.9232 1.10447
\(395\) −15.2127 −0.765433
\(396\) −0.393041 −0.0197510
\(397\) −3.90554 −0.196014 −0.0980068 0.995186i \(-0.531247\pi\)
−0.0980068 + 0.995186i \(0.531247\pi\)
\(398\) −7.85859 −0.393916
\(399\) 0.536771 0.0268722
\(400\) 11.3318 0.566592
\(401\) −17.8068 −0.889231 −0.444616 0.895722i \(-0.646660\pi\)
−0.444616 + 0.895722i \(0.646660\pi\)
\(402\) −9.94651 −0.496087
\(403\) −4.18613 −0.208526
\(404\) −17.3021 −0.860814
\(405\) −1.13206 −0.0562523
\(406\) 0 0
\(407\) 1.55077 0.0768686
\(408\) −6.43030 −0.318347
\(409\) 13.5378 0.669402 0.334701 0.942324i \(-0.391365\pi\)
0.334701 + 0.942324i \(0.391365\pi\)
\(410\) 19.4004 0.958117
\(411\) 6.91181 0.340935
\(412\) −37.1466 −1.83008
\(413\) 0.936784 0.0460961
\(414\) 15.0551 0.739919
\(415\) −4.13041 −0.202754
\(416\) 10.6027 0.519842
\(417\) 7.66177 0.375199
\(418\) −2.02140 −0.0988701
\(419\) 28.2739 1.38127 0.690636 0.723203i \(-0.257331\pi\)
0.690636 + 0.723203i \(0.257331\pi\)
\(420\) 0.247763 0.0120896
\(421\) 18.0251 0.878490 0.439245 0.898367i \(-0.355246\pi\)
0.439245 + 0.898367i \(0.355246\pi\)
\(422\) 54.8577 2.67043
\(423\) 8.29212 0.403176
\(424\) 1.07227 0.0520739
\(425\) −28.6975 −1.39203
\(426\) 1.04560 0.0506597
\(427\) 0.592299 0.0286633
\(428\) −25.3933 −1.22743
\(429\) −0.215755 −0.0104168
\(430\) 8.63345 0.416342
\(431\) 11.2989 0.544247 0.272124 0.962262i \(-0.412274\pi\)
0.272124 + 0.962262i \(0.412274\pi\)
\(432\) −3.04746 −0.146621
\(433\) −10.4849 −0.503874 −0.251937 0.967744i \(-0.581068\pi\)
−0.251937 + 0.967744i \(0.581068\pi\)
\(434\) −0.608970 −0.0292315
\(435\) 0 0
\(436\) 10.9241 0.523170
\(437\) 42.2122 2.01929
\(438\) −19.5038 −0.931927
\(439\) −12.0658 −0.575869 −0.287934 0.957650i \(-0.592969\pi\)
−0.287934 + 0.957650i \(0.592969\pi\)
\(440\) −0.154642 −0.00737225
\(441\) −6.99167 −0.332936
\(442\) −21.2975 −1.01302
\(443\) 23.2867 1.10639 0.553193 0.833053i \(-0.313409\pi\)
0.553193 + 0.833053i \(0.313409\pi\)
\(444\) −22.6759 −1.07615
\(445\) 10.8310 0.513439
\(446\) −54.3481 −2.57346
\(447\) −15.7867 −0.746686
\(448\) 0.985987 0.0465835
\(449\) 34.3214 1.61973 0.809864 0.586617i \(-0.199541\pi\)
0.809864 + 0.586617i \(0.199541\pi\)
\(450\) 7.79752 0.367578
\(451\) −1.33985 −0.0630912
\(452\) −21.2663 −1.00028
\(453\) 0.635934 0.0298788
\(454\) −19.0610 −0.894579
\(455\) 0.136007 0.00637609
\(456\) 4.89888 0.229411
\(457\) −4.33538 −0.202801 −0.101400 0.994846i \(-0.532332\pi\)
−0.101400 + 0.994846i \(0.532332\pi\)
\(458\) 19.2104 0.897642
\(459\) 7.71760 0.360227
\(460\) 19.4844 0.908463
\(461\) 26.1946 1.22000 0.610002 0.792400i \(-0.291168\pi\)
0.610002 + 0.792400i \(0.291168\pi\)
\(462\) −0.0313866 −0.00146024
\(463\) −36.9851 −1.71884 −0.859422 0.511267i \(-0.829176\pi\)
−0.859422 + 0.511267i \(0.829176\pi\)
\(464\) 0 0
\(465\) 3.60105 0.166995
\(466\) 26.4951 1.22736
\(467\) 9.31884 0.431224 0.215612 0.976479i \(-0.430825\pi\)
0.215612 + 0.976479i \(0.430825\pi\)
\(468\) 3.15486 0.145833
\(469\) −0.433028 −0.0199954
\(470\) 19.6847 0.907986
\(471\) −23.8012 −1.09670
\(472\) 8.54963 0.393529
\(473\) −0.596254 −0.0274158
\(474\) −28.1794 −1.29432
\(475\) 21.8630 1.00314
\(476\) −1.68908 −0.0774190
\(477\) −1.28693 −0.0589244
\(478\) −23.9050 −1.09339
\(479\) 27.7692 1.26881 0.634403 0.773002i \(-0.281246\pi\)
0.634403 + 0.773002i \(0.281246\pi\)
\(480\) −9.12083 −0.416307
\(481\) −12.4477 −0.567566
\(482\) 42.1765 1.92109
\(483\) 0.655435 0.0298233
\(484\) −26.3062 −1.19574
\(485\) 14.2880 0.648783
\(486\) −2.09698 −0.0951210
\(487\) −16.4009 −0.743196 −0.371598 0.928394i \(-0.621190\pi\)
−0.371598 + 0.928394i \(0.621190\pi\)
\(488\) 5.40566 0.244703
\(489\) 3.91590 0.177083
\(490\) −16.5975 −0.749800
\(491\) 10.3115 0.465352 0.232676 0.972554i \(-0.425252\pi\)
0.232676 + 0.972554i \(0.425252\pi\)
\(492\) 19.5919 0.883269
\(493\) 0 0
\(494\) 16.2254 0.730015
\(495\) 0.185600 0.00834209
\(496\) 9.69392 0.435270
\(497\) 0.0455211 0.00204190
\(498\) −7.65102 −0.342850
\(499\) 23.6561 1.05899 0.529497 0.848312i \(-0.322381\pi\)
0.529497 + 0.848312i \(0.322381\pi\)
\(500\) 23.6611 1.05816
\(501\) 10.8198 0.483394
\(502\) −1.57032 −0.0700868
\(503\) −22.3591 −0.996944 −0.498472 0.866906i \(-0.666105\pi\)
−0.498472 + 0.866906i \(0.666105\pi\)
\(504\) 0.0760657 0.00338823
\(505\) 8.17034 0.363575
\(506\) −2.46828 −0.109728
\(507\) −11.2682 −0.500437
\(508\) 19.4178 0.861524
\(509\) −6.26755 −0.277804 −0.138902 0.990306i \(-0.544357\pi\)
−0.138902 + 0.990306i \(0.544357\pi\)
\(510\) 18.3208 0.811260
\(511\) −0.849111 −0.0375624
\(512\) −29.6313 −1.30953
\(513\) −5.87961 −0.259591
\(514\) −19.5144 −0.860745
\(515\) 17.5412 0.772957
\(516\) 8.71866 0.383818
\(517\) −1.35949 −0.0597901
\(518\) −1.81081 −0.0795622
\(519\) −9.24218 −0.405687
\(520\) 1.24128 0.0544335
\(521\) 7.10042 0.311075 0.155537 0.987830i \(-0.450289\pi\)
0.155537 + 0.987830i \(0.450289\pi\)
\(522\) 0 0
\(523\) 34.1343 1.49259 0.746295 0.665616i \(-0.231831\pi\)
0.746295 + 0.665616i \(0.231831\pi\)
\(524\) 19.2981 0.843041
\(525\) 0.339470 0.0148157
\(526\) 28.2853 1.23330
\(527\) −24.5496 −1.06940
\(528\) 0.499629 0.0217436
\(529\) 28.5441 1.24105
\(530\) −3.05504 −0.132703
\(531\) −10.2612 −0.445299
\(532\) 1.28682 0.0557907
\(533\) 10.7547 0.465839
\(534\) 20.0630 0.868209
\(535\) 11.9911 0.518420
\(536\) −3.95207 −0.170703
\(537\) 23.1857 1.00054
\(538\) 48.0385 2.07109
\(539\) 1.14628 0.0493737
\(540\) −2.71392 −0.116788
\(541\) 21.3516 0.917979 0.458990 0.888442i \(-0.348212\pi\)
0.458990 + 0.888442i \(0.348212\pi\)
\(542\) 0.530481 0.0227861
\(543\) −9.10833 −0.390876
\(544\) 62.1797 2.66593
\(545\) −5.15854 −0.220967
\(546\) 0.251934 0.0107818
\(547\) −1.57848 −0.0674909 −0.0337455 0.999430i \(-0.510744\pi\)
−0.0337455 + 0.999430i \(0.510744\pi\)
\(548\) 16.5699 0.707832
\(549\) −6.48785 −0.276895
\(550\) −1.27840 −0.0545110
\(551\) 0 0
\(552\) 5.98188 0.254606
\(553\) −1.22681 −0.0521693
\(554\) 37.8831 1.60950
\(555\) 10.7079 0.454526
\(556\) 18.3678 0.778969
\(557\) 10.8029 0.457733 0.228866 0.973458i \(-0.426498\pi\)
0.228866 + 0.973458i \(0.426498\pi\)
\(558\) 6.67046 0.282383
\(559\) 4.78601 0.202427
\(560\) −0.314954 −0.0133092
\(561\) −1.26530 −0.0534208
\(562\) −27.3758 −1.15478
\(563\) 9.00865 0.379669 0.189835 0.981816i \(-0.439205\pi\)
0.189835 + 0.981816i \(0.439205\pi\)
\(564\) 19.8790 0.837055
\(565\) 10.0423 0.422482
\(566\) 45.4516 1.91047
\(567\) −0.0912936 −0.00383397
\(568\) 0.415452 0.0174320
\(569\) −4.88055 −0.204603 −0.102302 0.994753i \(-0.532621\pi\)
−0.102302 + 0.994753i \(0.532621\pi\)
\(570\) −13.9576 −0.584621
\(571\) −12.4919 −0.522770 −0.261385 0.965235i \(-0.584179\pi\)
−0.261385 + 0.965235i \(0.584179\pi\)
\(572\) −0.517237 −0.0216268
\(573\) −18.0224 −0.752895
\(574\) 1.56452 0.0653020
\(575\) 26.6963 1.11331
\(576\) −10.8002 −0.450008
\(577\) −1.29103 −0.0537461 −0.0268730 0.999639i \(-0.508555\pi\)
−0.0268730 + 0.999639i \(0.508555\pi\)
\(578\) −89.2505 −3.71233
\(579\) 1.58339 0.0658035
\(580\) 0 0
\(581\) −0.333093 −0.0138190
\(582\) 26.4665 1.09707
\(583\) 0.210991 0.00873835
\(584\) −7.74948 −0.320676
\(585\) −1.48977 −0.0615945
\(586\) 53.3462 2.20371
\(587\) 20.6154 0.850888 0.425444 0.904985i \(-0.360118\pi\)
0.425444 + 0.904985i \(0.360118\pi\)
\(588\) −16.7613 −0.691226
\(589\) 18.7029 0.770641
\(590\) −24.3591 −1.00285
\(591\) −10.4546 −0.430047
\(592\) 28.8254 1.18472
\(593\) 12.4617 0.511742 0.255871 0.966711i \(-0.417638\pi\)
0.255871 + 0.966711i \(0.417638\pi\)
\(594\) 0.343799 0.0141062
\(595\) 0.797611 0.0326988
\(596\) −37.8460 −1.55023
\(597\) 3.74757 0.153378
\(598\) 19.8123 0.810187
\(599\) 10.8545 0.443502 0.221751 0.975103i \(-0.428823\pi\)
0.221751 + 0.975103i \(0.428823\pi\)
\(600\) 3.09820 0.126484
\(601\) 40.9778 1.67152 0.835761 0.549094i \(-0.185027\pi\)
0.835761 + 0.549094i \(0.185027\pi\)
\(602\) 0.696236 0.0283765
\(603\) 4.74325 0.193160
\(604\) 1.52455 0.0620329
\(605\) 12.4222 0.505034
\(606\) 15.1344 0.614795
\(607\) −3.25085 −0.131948 −0.0659740 0.997821i \(-0.521015\pi\)
−0.0659740 + 0.997821i \(0.521015\pi\)
\(608\) −47.3713 −1.92116
\(609\) 0 0
\(610\) −15.4015 −0.623589
\(611\) 10.9123 0.441465
\(612\) 18.5017 0.747885
\(613\) 23.5901 0.952797 0.476398 0.879230i \(-0.341942\pi\)
0.476398 + 0.879230i \(0.341942\pi\)
\(614\) 28.5884 1.15373
\(615\) −9.25158 −0.373060
\(616\) −0.0124709 −0.000502467 0
\(617\) −0.947410 −0.0381413 −0.0190706 0.999818i \(-0.506071\pi\)
−0.0190706 + 0.999818i \(0.506071\pi\)
\(618\) 32.4927 1.30705
\(619\) −17.6721 −0.710300 −0.355150 0.934809i \(-0.615570\pi\)
−0.355150 + 0.934809i \(0.615570\pi\)
\(620\) 8.63292 0.346706
\(621\) −7.17942 −0.288100
\(622\) 57.4044 2.30171
\(623\) 0.873455 0.0349942
\(624\) −4.01042 −0.160545
\(625\) 7.41909 0.296764
\(626\) 37.2487 1.48876
\(627\) 0.963959 0.0384968
\(628\) −57.0594 −2.27692
\(629\) −72.9994 −2.91068
\(630\) −0.216722 −0.00863441
\(631\) 41.0803 1.63538 0.817689 0.575660i \(-0.195255\pi\)
0.817689 + 0.575660i \(0.195255\pi\)
\(632\) −11.1966 −0.445377
\(633\) −26.1603 −1.03978
\(634\) −10.7842 −0.428294
\(635\) −9.16936 −0.363875
\(636\) −3.08519 −0.122336
\(637\) −9.20094 −0.364555
\(638\) 0 0
\(639\) −0.498624 −0.0197253
\(640\) −7.39691 −0.292389
\(641\) −13.7121 −0.541597 −0.270798 0.962636i \(-0.587288\pi\)
−0.270798 + 0.962636i \(0.587288\pi\)
\(642\) 22.2119 0.876632
\(643\) 6.81932 0.268928 0.134464 0.990918i \(-0.457069\pi\)
0.134464 + 0.990918i \(0.457069\pi\)
\(644\) 1.57130 0.0619177
\(645\) −4.11708 −0.162110
\(646\) 95.1538 3.74378
\(647\) −1.97113 −0.0774931 −0.0387465 0.999249i \(-0.512336\pi\)
−0.0387465 + 0.999249i \(0.512336\pi\)
\(648\) −0.833198 −0.0327311
\(649\) 1.68232 0.0660369
\(650\) 10.2614 0.402487
\(651\) 0.290403 0.0113818
\(652\) 9.38771 0.367651
\(653\) 36.9164 1.44465 0.722325 0.691554i \(-0.243074\pi\)
0.722325 + 0.691554i \(0.243074\pi\)
\(654\) −9.55549 −0.373649
\(655\) −9.11285 −0.356068
\(656\) −24.9050 −0.972376
\(657\) 9.30088 0.362862
\(658\) 1.58745 0.0618853
\(659\) 3.59139 0.139901 0.0699503 0.997550i \(-0.477716\pi\)
0.0699503 + 0.997550i \(0.477716\pi\)
\(660\) 0.444945 0.0173194
\(661\) −0.738752 −0.0287341 −0.0143671 0.999897i \(-0.504573\pi\)
−0.0143671 + 0.999897i \(0.504573\pi\)
\(662\) −29.7762 −1.15729
\(663\) 10.1563 0.394437
\(664\) −3.04000 −0.117975
\(665\) −0.607655 −0.0235639
\(666\) 19.8350 0.768589
\(667\) 0 0
\(668\) 25.9387 1.00360
\(669\) 25.9173 1.00202
\(670\) 11.2600 0.435012
\(671\) 1.06368 0.0410628
\(672\) −0.735541 −0.0283741
\(673\) 0.0479660 0.00184895 0.000924476 1.00000i \(-0.499706\pi\)
0.000924476 1.00000i \(0.499706\pi\)
\(674\) −71.2878 −2.74590
\(675\) −3.71845 −0.143123
\(676\) −27.0136 −1.03898
\(677\) 14.3152 0.550176 0.275088 0.961419i \(-0.411293\pi\)
0.275088 + 0.961419i \(0.411293\pi\)
\(678\) 18.6020 0.714405
\(679\) 1.15224 0.0442188
\(680\) 7.27946 0.279155
\(681\) 9.08975 0.348320
\(682\) −1.09362 −0.0418768
\(683\) 3.42727 0.131141 0.0655705 0.997848i \(-0.479113\pi\)
0.0655705 + 0.997848i \(0.479113\pi\)
\(684\) −14.0954 −0.538951
\(685\) −7.82456 −0.298961
\(686\) −2.67858 −0.102269
\(687\) −9.16097 −0.349513
\(688\) −11.0831 −0.422538
\(689\) −1.69358 −0.0645203
\(690\) −17.0432 −0.648825
\(691\) −11.4442 −0.435359 −0.217680 0.976020i \(-0.569849\pi\)
−0.217680 + 0.976020i \(0.569849\pi\)
\(692\) −22.1566 −0.842266
\(693\) 0.0149675 0.000568569 0
\(694\) 25.4043 0.964334
\(695\) −8.67356 −0.329007
\(696\) 0 0
\(697\) 63.0711 2.38899
\(698\) −10.0681 −0.381083
\(699\) −12.6349 −0.477895
\(700\) 0.813823 0.0307596
\(701\) −2.53939 −0.0959115 −0.0479558 0.998849i \(-0.515271\pi\)
−0.0479558 + 0.998849i \(0.515271\pi\)
\(702\) −2.75960 −0.104154
\(703\) 55.6142 2.09753
\(704\) 1.77068 0.0667351
\(705\) −9.38714 −0.353540
\(706\) 37.1169 1.39691
\(707\) 0.658889 0.0247801
\(708\) −24.5996 −0.924508
\(709\) −2.88169 −0.108224 −0.0541121 0.998535i \(-0.517233\pi\)
−0.0541121 + 0.998535i \(0.517233\pi\)
\(710\) −1.18368 −0.0444229
\(711\) 13.4381 0.503968
\(712\) 7.97166 0.298751
\(713\) 22.8376 0.855275
\(714\) 1.47747 0.0552928
\(715\) 0.244247 0.00913432
\(716\) 55.5839 2.07727
\(717\) 11.3997 0.425731
\(718\) 4.18491 0.156179
\(719\) 2.19420 0.0818298 0.0409149 0.999163i \(-0.486973\pi\)
0.0409149 + 0.999163i \(0.486973\pi\)
\(720\) 3.44990 0.128570
\(721\) 1.41459 0.0526822
\(722\) −32.6497 −1.21510
\(723\) −20.1130 −0.748010
\(724\) −21.8357 −0.811518
\(725\) 0 0
\(726\) 23.0104 0.853997
\(727\) −42.0925 −1.56112 −0.780562 0.625079i \(-0.785067\pi\)
−0.780562 + 0.625079i \(0.785067\pi\)
\(728\) 0.100101 0.00371001
\(729\) 1.00000 0.0370370
\(730\) 22.0794 0.817195
\(731\) 28.0675 1.03812
\(732\) −15.5535 −0.574875
\(733\) −13.3636 −0.493597 −0.246799 0.969067i \(-0.579379\pi\)
−0.246799 + 0.969067i \(0.579379\pi\)
\(734\) −13.4380 −0.496007
\(735\) 7.91496 0.291948
\(736\) −57.8437 −2.13215
\(737\) −0.777653 −0.0286452
\(738\) −17.1373 −0.630832
\(739\) 7.77219 0.285905 0.142952 0.989730i \(-0.454340\pi\)
0.142952 + 0.989730i \(0.454340\pi\)
\(740\) 25.6704 0.943664
\(741\) −7.73750 −0.284244
\(742\) −0.246371 −0.00904456
\(743\) 45.6074 1.67317 0.836587 0.547835i \(-0.184548\pi\)
0.836587 + 0.547835i \(0.184548\pi\)
\(744\) 2.65039 0.0971680
\(745\) 17.8714 0.654759
\(746\) 79.6818 2.91736
\(747\) 3.64859 0.133495
\(748\) −3.03333 −0.110910
\(749\) 0.967009 0.0353337
\(750\) −20.6967 −0.755738
\(751\) 11.5520 0.421538 0.210769 0.977536i \(-0.432403\pi\)
0.210769 + 0.977536i \(0.432403\pi\)
\(752\) −25.2699 −0.921499
\(753\) 0.748847 0.0272895
\(754\) 0 0
\(755\) −0.719913 −0.0262003
\(756\) −0.218861 −0.00795990
\(757\) 43.4744 1.58010 0.790052 0.613039i \(-0.210053\pi\)
0.790052 + 0.613039i \(0.210053\pi\)
\(758\) 71.7101 2.60463
\(759\) 1.17706 0.0427246
\(760\) −5.54582 −0.201168
\(761\) −12.9622 −0.469878 −0.234939 0.972010i \(-0.575489\pi\)
−0.234939 + 0.972010i \(0.575489\pi\)
\(762\) −16.9850 −0.615302
\(763\) −0.416005 −0.0150604
\(764\) −43.2056 −1.56312
\(765\) −8.73677 −0.315878
\(766\) 37.5862 1.35805
\(767\) −13.5036 −0.487588
\(768\) 7.89859 0.285016
\(769\) −21.3281 −0.769112 −0.384556 0.923102i \(-0.625646\pi\)
−0.384556 + 0.923102i \(0.625646\pi\)
\(770\) 0.0355314 0.00128046
\(771\) 9.30596 0.335146
\(772\) 3.79591 0.136618
\(773\) −47.2378 −1.69903 −0.849514 0.527567i \(-0.823104\pi\)
−0.849514 + 0.527567i \(0.823104\pi\)
\(774\) −7.62634 −0.274123
\(775\) 11.8283 0.424886
\(776\) 10.5160 0.377502
\(777\) 0.863529 0.0309789
\(778\) 28.3011 1.01464
\(779\) −48.0503 −1.72158
\(780\) −3.57148 −0.127879
\(781\) 0.0817490 0.00292521
\(782\) 116.189 4.15493
\(783\) 0 0
\(784\) 21.3068 0.760959
\(785\) 26.9443 0.961683
\(786\) −16.8803 −0.602101
\(787\) 4.70797 0.167821 0.0839105 0.996473i \(-0.473259\pi\)
0.0839105 + 0.996473i \(0.473259\pi\)
\(788\) −25.0633 −0.892842
\(789\) −13.4886 −0.480205
\(790\) 31.9007 1.13498
\(791\) 0.809850 0.0287950
\(792\) 0.136602 0.00485395
\(793\) −8.53792 −0.303191
\(794\) 8.18985 0.290647
\(795\) 1.45688 0.0516701
\(796\) 8.98418 0.318436
\(797\) −34.6119 −1.22602 −0.613008 0.790076i \(-0.710041\pi\)
−0.613008 + 0.790076i \(0.710041\pi\)
\(798\) −1.12560 −0.0398458
\(799\) 63.9953 2.26399
\(800\) −29.9591 −1.05921
\(801\) −9.56754 −0.338053
\(802\) 37.3406 1.31854
\(803\) −1.52487 −0.0538116
\(804\) 11.3712 0.401030
\(805\) −0.741990 −0.0261517
\(806\) 8.77824 0.309200
\(807\) −22.9084 −0.806413
\(808\) 6.01340 0.211551
\(809\) 48.7335 1.71338 0.856689 0.515834i \(-0.172518\pi\)
0.856689 + 0.515834i \(0.172518\pi\)
\(810\) 2.37390 0.0834104
\(811\) −12.0087 −0.421684 −0.210842 0.977520i \(-0.567621\pi\)
−0.210842 + 0.977520i \(0.567621\pi\)
\(812\) 0 0
\(813\) −0.252974 −0.00887217
\(814\) −3.25193 −0.113980
\(815\) −4.43302 −0.155282
\(816\) −23.5191 −0.823334
\(817\) −21.3831 −0.748100
\(818\) −28.3886 −0.992583
\(819\) −0.120141 −0.00419807
\(820\) −22.1791 −0.774528
\(821\) −11.1177 −0.388012 −0.194006 0.981000i \(-0.562148\pi\)
−0.194006 + 0.981000i \(0.562148\pi\)
\(822\) −14.4939 −0.505534
\(823\) −9.56608 −0.333452 −0.166726 0.986003i \(-0.553320\pi\)
−0.166726 + 0.986003i \(0.553320\pi\)
\(824\) 12.9104 0.449755
\(825\) 0.609637 0.0212248
\(826\) −1.96442 −0.0683509
\(827\) −37.1375 −1.29140 −0.645698 0.763593i \(-0.723434\pi\)
−0.645698 + 0.763593i \(0.723434\pi\)
\(828\) −17.2115 −0.598140
\(829\) 37.8359 1.31409 0.657047 0.753850i \(-0.271805\pi\)
0.657047 + 0.753850i \(0.271805\pi\)
\(830\) 8.66139 0.300641
\(831\) −18.0655 −0.626686
\(832\) −14.2129 −0.492744
\(833\) −53.9589 −1.86957
\(834\) −16.0666 −0.556341
\(835\) −12.2487 −0.423882
\(836\) 2.31093 0.0799252
\(837\) −3.18098 −0.109951
\(838\) −59.2899 −2.04814
\(839\) 47.4370 1.63771 0.818854 0.574001i \(-0.194610\pi\)
0.818854 + 0.574001i \(0.194610\pi\)
\(840\) −0.0861106 −0.00297110
\(841\) 0 0
\(842\) −37.7983 −1.30262
\(843\) 13.0549 0.449633
\(844\) −62.7150 −2.15874
\(845\) 12.7562 0.438827
\(846\) −17.3884 −0.597826
\(847\) 1.00178 0.0344214
\(848\) 3.92187 0.134677
\(849\) −21.6748 −0.743877
\(850\) 60.1782 2.06409
\(851\) 67.9089 2.32789
\(852\) −1.19537 −0.0409526
\(853\) 27.5050 0.941754 0.470877 0.882199i \(-0.343938\pi\)
0.470877 + 0.882199i \(0.343938\pi\)
\(854\) −1.24204 −0.0425017
\(855\) 6.65606 0.227632
\(856\) 8.82549 0.301649
\(857\) −23.0151 −0.786180 −0.393090 0.919500i \(-0.628594\pi\)
−0.393090 + 0.919500i \(0.628594\pi\)
\(858\) 0.452435 0.0154459
\(859\) −22.6058 −0.771299 −0.385650 0.922645i \(-0.626023\pi\)
−0.385650 + 0.922645i \(0.626023\pi\)
\(860\) −9.87002 −0.336565
\(861\) −0.746084 −0.0254265
\(862\) −23.6935 −0.807005
\(863\) −31.9619 −1.08800 −0.543998 0.839086i \(-0.683090\pi\)
−0.543998 + 0.839086i \(0.683090\pi\)
\(864\) 8.05687 0.274100
\(865\) 10.4627 0.355741
\(866\) 21.9867 0.747139
\(867\) 42.5614 1.44546
\(868\) 0.696193 0.0236303
\(869\) −2.20317 −0.0747373
\(870\) 0 0
\(871\) 6.24206 0.211504
\(872\) −3.79670 −0.128573
\(873\) −12.6212 −0.427164
\(874\) −88.5183 −2.99418
\(875\) −0.901047 −0.0304610
\(876\) 22.2973 0.753356
\(877\) −44.7188 −1.51005 −0.755023 0.655699i \(-0.772374\pi\)
−0.755023 + 0.655699i \(0.772374\pi\)
\(878\) 25.3017 0.853892
\(879\) −25.4395 −0.858054
\(880\) −0.565609 −0.0190667
\(881\) 19.3000 0.650233 0.325117 0.945674i \(-0.394596\pi\)
0.325117 + 0.945674i \(0.394596\pi\)
\(882\) 14.6614 0.493675
\(883\) −43.7898 −1.47365 −0.736823 0.676086i \(-0.763675\pi\)
−0.736823 + 0.676086i \(0.763675\pi\)
\(884\) 24.3480 0.818910
\(885\) 11.6163 0.390477
\(886\) −48.8319 −1.64054
\(887\) 3.50632 0.117731 0.0588653 0.998266i \(-0.481252\pi\)
0.0588653 + 0.998266i \(0.481252\pi\)
\(888\) 7.88107 0.264471
\(889\) −0.739454 −0.0248005
\(890\) −22.7124 −0.761322
\(891\) −0.163949 −0.00549251
\(892\) 62.1324 2.08035
\(893\) −48.7544 −1.63151
\(894\) 33.1044 1.10718
\(895\) −26.2476 −0.877359
\(896\) −0.596517 −0.0199282
\(897\) −9.44803 −0.315461
\(898\) −71.9714 −2.40172
\(899\) 0 0
\(900\) −8.91435 −0.297145
\(901\) −9.93201 −0.330883
\(902\) 2.80965 0.0935510
\(903\) −0.332018 −0.0110489
\(904\) 7.39117 0.245827
\(905\) 10.3112 0.342754
\(906\) −1.33354 −0.0443040
\(907\) 30.6917 1.01910 0.509551 0.860441i \(-0.329812\pi\)
0.509551 + 0.860441i \(0.329812\pi\)
\(908\) 21.7912 0.723165
\(909\) −7.21725 −0.239381
\(910\) −0.285203 −0.00945440
\(911\) 13.4661 0.446151 0.223075 0.974801i \(-0.428390\pi\)
0.223075 + 0.974801i \(0.428390\pi\)
\(912\) 17.9179 0.593321
\(913\) −0.598183 −0.0197970
\(914\) 9.09121 0.300711
\(915\) 7.34461 0.242805
\(916\) −21.9619 −0.725641
\(917\) −0.734897 −0.0242684
\(918\) −16.1837 −0.534141
\(919\) 12.3778 0.408308 0.204154 0.978939i \(-0.434556\pi\)
0.204154 + 0.978939i \(0.434556\pi\)
\(920\) −6.77183 −0.223261
\(921\) −13.6331 −0.449226
\(922\) −54.9296 −1.80901
\(923\) −0.656183 −0.0215985
\(924\) 0.0358821 0.00118043
\(925\) 35.1721 1.15645
\(926\) 77.5571 2.54868
\(927\) −15.4950 −0.508922
\(928\) 0 0
\(929\) −20.2666 −0.664927 −0.332464 0.943116i \(-0.607880\pi\)
−0.332464 + 0.943116i \(0.607880\pi\)
\(930\) −7.55134 −0.247618
\(931\) 41.1083 1.34727
\(932\) −30.2900 −0.992183
\(933\) −27.3748 −0.896210
\(934\) −19.5414 −0.639415
\(935\) 1.43239 0.0468441
\(936\) −1.09648 −0.0358395
\(937\) −26.4354 −0.863607 −0.431804 0.901968i \(-0.642123\pi\)
−0.431804 + 0.901968i \(0.642123\pi\)
\(938\) 0.908053 0.0296490
\(939\) −17.7630 −0.579673
\(940\) −22.5041 −0.734003
\(941\) −21.6605 −0.706111 −0.353055 0.935602i \(-0.614857\pi\)
−0.353055 + 0.935602i \(0.614857\pi\)
\(942\) 49.9107 1.62618
\(943\) −58.6728 −1.91065
\(944\) 31.2707 1.01777
\(945\) 0.103350 0.00336196
\(946\) 1.25033 0.0406518
\(947\) 52.6021 1.70934 0.854669 0.519173i \(-0.173760\pi\)
0.854669 + 0.519173i \(0.173760\pi\)
\(948\) 32.2156 1.04631
\(949\) 12.2398 0.397322
\(950\) −45.8464 −1.48745
\(951\) 5.14271 0.166764
\(952\) 0.587045 0.0190262
\(953\) −29.7867 −0.964887 −0.482444 0.875927i \(-0.660251\pi\)
−0.482444 + 0.875927i \(0.660251\pi\)
\(954\) 2.69867 0.0873725
\(955\) 20.4023 0.660204
\(956\) 27.3290 0.883882
\(957\) 0 0
\(958\) −58.2315 −1.88137
\(959\) −0.631004 −0.0203762
\(960\) 12.2264 0.394606
\(961\) −20.8814 −0.673592
\(962\) 26.1026 0.841581
\(963\) −10.5923 −0.341332
\(964\) −48.2175 −1.55298
\(965\) −1.79249 −0.0577022
\(966\) −1.37444 −0.0442217
\(967\) 37.1267 1.19391 0.596956 0.802274i \(-0.296377\pi\)
0.596956 + 0.802274i \(0.296377\pi\)
\(968\) 9.14279 0.293860
\(969\) −45.3765 −1.45770
\(970\) −29.9616 −0.962008
\(971\) −3.73862 −0.119978 −0.0599890 0.998199i \(-0.519107\pi\)
−0.0599890 + 0.998199i \(0.519107\pi\)
\(972\) 2.39733 0.0768945
\(973\) −0.699471 −0.0224240
\(974\) 34.3924 1.10200
\(975\) −4.89343 −0.156715
\(976\) 19.7715 0.632869
\(977\) 9.85004 0.315131 0.157565 0.987509i \(-0.449636\pi\)
0.157565 + 0.987509i \(0.449636\pi\)
\(978\) −8.21156 −0.262577
\(979\) 1.56859 0.0501324
\(980\) 18.9748 0.606127
\(981\) 4.55678 0.145487
\(982\) −21.6231 −0.690020
\(983\) 9.42634 0.300653 0.150327 0.988636i \(-0.451967\pi\)
0.150327 + 0.988636i \(0.451967\pi\)
\(984\) −6.80920 −0.217069
\(985\) 11.8353 0.377102
\(986\) 0 0
\(987\) −0.757017 −0.0240961
\(988\) −18.5494 −0.590134
\(989\) −26.1103 −0.830258
\(990\) −0.389200 −0.0123696
\(991\) 33.7698 1.07273 0.536367 0.843985i \(-0.319796\pi\)
0.536367 + 0.843985i \(0.319796\pi\)
\(992\) −25.6288 −0.813714
\(993\) 14.1996 0.450610
\(994\) −0.0954570 −0.00302771
\(995\) −4.24246 −0.134495
\(996\) 8.74688 0.277155
\(997\) 5.94070 0.188144 0.0940719 0.995565i \(-0.470012\pi\)
0.0940719 + 0.995565i \(0.470012\pi\)
\(998\) −49.6064 −1.57026
\(999\) −9.45882 −0.299264
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2523.2.a.m.1.3 8
3.2 odd 2 7569.2.a.bh.1.6 8
29.28 even 2 2523.2.a.n.1.6 yes 8
87.86 odd 2 7569.2.a.be.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2523.2.a.m.1.3 8 1.1 even 1 trivial
2523.2.a.n.1.6 yes 8 29.28 even 2
7569.2.a.be.1.3 8 87.86 odd 2
7569.2.a.bh.1.6 8 3.2 odd 2