Properties

Label 2523.2.a
Level $2523$
Weight $2$
Character orbit 2523.a
Rep. character $\chi_{2523}(1,\cdot)$
Character field $\Q$
Dimension $135$
Newform subspaces $22$
Sturm bound $580$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2523.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 22 \)
Sturm bound: \(580\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2523))\).

Total New Old
Modular forms 320 135 185
Cusp forms 261 135 126
Eisenstein series 59 0 59

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(29\)FrickeDim
\(+\)\(+\)\(+\)\(32\)
\(+\)\(-\)\(-\)\(35\)
\(-\)\(+\)\(-\)\(42\)
\(-\)\(-\)\(+\)\(26\)
Plus space\(+\)\(58\)
Minus space\(-\)\(77\)

Trace form

\( 135 q - 3 q^{2} + q^{3} + 135 q^{4} - 2 q^{5} + q^{6} - 3 q^{8} + 135 q^{9} + 10 q^{10} + 4 q^{11} + 7 q^{12} - 2 q^{13} + 12 q^{14} - 2 q^{15} + 147 q^{16} - 10 q^{17} - 3 q^{18} + 12 q^{19} + 22 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2523))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 29
2523.2.a.a 2523.a 1.a $2$ $20.146$ \(\Q(\sqrt{5}) \) None 2523.2.a.a \(-1\) \(-2\) \(-3\) \(1\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}-q^{3}+(-1+\beta )q^{4}+(-1-\beta )q^{5}+\cdots\)
2523.2.a.b 2523.a 1.a $2$ $20.146$ \(\Q(\sqrt{5}) \) None 2523.2.a.b \(-1\) \(-2\) \(-1\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}-q^{3}+(-1+\beta )q^{4}+(-1+\beta )q^{5}+\cdots\)
2523.2.a.c 2523.a 1.a $2$ $20.146$ \(\Q(\sqrt{5}) \) None 87.2.a.a \(-1\) \(-2\) \(2\) \(-4\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta q^{2}-q^{3}+(-1+\beta )q^{4}+(2-2\beta )q^{5}+\cdots\)
2523.2.a.d 2523.a 1.a $2$ $20.146$ \(\Q(\sqrt{5}) \) None 87.2.c.a \(-1\) \(2\) \(-2\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}+q^{3}+(-1+\beta )q^{4}-2\beta q^{5}+\cdots\)
2523.2.a.e 2523.a 1.a $2$ $20.146$ \(\Q(\sqrt{5}) \) None 87.2.c.a \(1\) \(-2\) \(-2\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-q^{3}+(-1+\beta )q^{4}-2\beta q^{5}+\cdots\)
2523.2.a.f 2523.a 1.a $2$ $20.146$ \(\Q(\sqrt{5}) \) None 2523.2.a.a \(1\) \(2\) \(-3\) \(1\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{3}+(-1+\beta )q^{4}+(-1-\beta )q^{5}+\cdots\)
2523.2.a.g 2523.a 1.a $2$ $20.146$ \(\Q(\sqrt{5}) \) None 2523.2.a.b \(1\) \(2\) \(-1\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{3}+(-1+\beta )q^{4}+(-1+\beta )q^{5}+\cdots\)
2523.2.a.h 2523.a 1.a $3$ $20.146$ 3.3.229.1 None 87.2.a.b \(-2\) \(3\) \(0\) \(4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{2}+q^{3}+(2+\beta _{1})q^{4}+\cdots\)
2523.2.a.i 2523.a 1.a $3$ $20.146$ 3.3.733.1 None 2523.2.a.i \(-1\) \(-3\) \(3\) \(1\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(3+\beta _{2})q^{4}+(1+\beta _{2})q^{5}+\cdots\)
2523.2.a.j 2523.a 1.a $3$ $20.146$ 3.3.733.1 None 2523.2.a.i \(1\) \(3\) \(3\) \(1\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(3+\beta _{2})q^{4}+(1+\beta _{2})q^{5}+\cdots\)
2523.2.a.k 2523.a 1.a $6$ $20.146$ 6.6.8902000.1 None 2523.2.a.k \(-1\) \(-6\) \(5\) \(3\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(2+\beta _{2}-\beta _{3}+\beta _{4}+\cdots)q^{4}+\cdots\)
2523.2.a.l 2523.a 1.a $6$ $20.146$ 6.6.8902000.1 None 2523.2.a.k \(1\) \(6\) \(5\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(2+\beta _{2}-\beta _{3}+\beta _{4}+\cdots)q^{4}+\cdots\)
2523.2.a.m 2523.a 1.a $8$ $20.146$ 8.8.5878828125.1 None 2523.2.a.m \(-1\) \(8\) \(-9\) \(-12\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(\beta _{1}-\beta _{2})q^{2}+q^{3}+(2-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
2523.2.a.n 2523.a 1.a $8$ $20.146$ 8.8.5878828125.1 None 2523.2.a.m \(1\) \(-8\) \(-9\) \(-12\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}+\beta _{2})q^{2}-q^{3}+(2-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
2523.2.a.o 2523.a 1.a $9$ $20.146$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 87.2.g.a \(-5\) \(-9\) \(-4\) \(5\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}-q^{3}+(1-\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\)
2523.2.a.p 2523.a 1.a $9$ $20.146$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 87.2.g.b \(-1\) \(-9\) \(0\) \(5\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-q^{3}+(1+\beta _{2})q^{4}+(-1+\beta _{4}+\cdots)q^{5}+\cdots\)
2523.2.a.q 2523.a 1.a $9$ $20.146$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 87.2.g.b \(1\) \(9\) \(0\) \(5\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+q^{3}+(1+\beta _{2})q^{4}+(-1+\beta _{4}+\cdots)q^{5}+\cdots\)
2523.2.a.r 2523.a 1.a $9$ $20.146$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 87.2.g.a \(5\) \(9\) \(-4\) \(5\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+q^{3}+(1-\beta _{1}+\beta _{3}+\beta _{4}+\cdots)q^{4}+\cdots\)
2523.2.a.s 2523.a 1.a $12$ $20.146$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 87.2.i.a \(-6\) \(12\) \(2\) \(-10\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+q^{3}+(1+\beta _{2})q^{4}+\cdots\)
2523.2.a.t 2523.a 1.a $12$ $20.146$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 2523.2.a.t \(-1\) \(12\) \(7\) \(9\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+q^{3}+(1+\beta _{3}-\beta _{6}+\beta _{9}+\cdots)q^{4}+\cdots\)
2523.2.a.u 2523.a 1.a $12$ $20.146$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 2523.2.a.t \(1\) \(-12\) \(7\) \(9\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-q^{3}+(1+\beta _{3}-\beta _{6}+\beta _{9}+\cdots)q^{4}+\cdots\)
2523.2.a.v 2523.a 1.a $12$ $20.146$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 87.2.i.a \(6\) \(-12\) \(2\) \(-10\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}-q^{3}+(1+\beta _{2})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2523))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2523)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(87))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(841))\)\(^{\oplus 2}\)