Properties

Label 2523.2
Level 2523
Weight 2
Dimension 175043
Nonzero newspaces 12
Sturm bound 941920
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2523 = 3 \cdot 29^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(941920\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2523))\).

Total New Old
Modular forms 237888 177339 60549
Cusp forms 233073 175043 58030
Eisenstein series 4815 2296 2519

Trace form

\( 175043 q + 3 q^{2} - 377 q^{3} - 749 q^{4} + 6 q^{5} - 375 q^{6} - 748 q^{7} + 15 q^{8} - 377 q^{9} - 738 q^{10} + 12 q^{11} - 371 q^{12} - 742 q^{13} + 24 q^{14} - 372 q^{15} - 725 q^{16} + 18 q^{17} - 375 q^{18}+ \cdots - 450 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2523))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2523.2.a \(\chi_{2523}(1, \cdot)\) 2523.2.a.a 2 1
2523.2.a.b 2
2523.2.a.c 2
2523.2.a.d 2
2523.2.a.e 2
2523.2.a.f 2
2523.2.a.g 2
2523.2.a.h 3
2523.2.a.i 3
2523.2.a.j 3
2523.2.a.k 6
2523.2.a.l 6
2523.2.a.m 8
2523.2.a.n 8
2523.2.a.o 9
2523.2.a.p 9
2523.2.a.q 9
2523.2.a.r 9
2523.2.a.s 12
2523.2.a.t 12
2523.2.a.u 12
2523.2.a.v 12
2523.2.c \(\chi_{2523}(1681, \cdot)\) n/a 136 1
2523.2.f \(\chi_{2523}(41, \cdot)\) n/a 488 2
2523.2.g \(\chi_{2523}(190, \cdot)\) n/a 804 6
2523.2.i \(\chi_{2523}(196, \cdot)\) n/a 816 6
2523.2.k \(\chi_{2523}(14, \cdot)\) n/a 2928 12
2523.2.m \(\chi_{2523}(88, \cdot)\) n/a 4088 28
2523.2.o \(\chi_{2523}(28, \cdot)\) n/a 4032 28
2523.2.q \(\chi_{2523}(17, \cdot)\) n/a 16128 56
2523.2.s \(\chi_{2523}(7, \cdot)\) n/a 24528 168
2523.2.u \(\chi_{2523}(4, \cdot)\) n/a 24192 168
2523.2.x \(\chi_{2523}(2, \cdot)\) n/a 96768 336

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2523))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(2523)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(87))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(841))\)\(^{\oplus 2}\)