Defining parameters
Level: | \( N \) | = | \( 2523 = 3 \cdot 29^{2} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(941920\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(2523))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 237888 | 177339 | 60549 |
Cusp forms | 233073 | 175043 | 58030 |
Eisenstein series | 4815 | 2296 | 2519 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(2523))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
2523.2.a | \(\chi_{2523}(1, \cdot)\) | 2523.2.a.a | 2 | 1 |
2523.2.a.b | 2 | |||
2523.2.a.c | 2 | |||
2523.2.a.d | 2 | |||
2523.2.a.e | 2 | |||
2523.2.a.f | 2 | |||
2523.2.a.g | 2 | |||
2523.2.a.h | 3 | |||
2523.2.a.i | 3 | |||
2523.2.a.j | 3 | |||
2523.2.a.k | 6 | |||
2523.2.a.l | 6 | |||
2523.2.a.m | 8 | |||
2523.2.a.n | 8 | |||
2523.2.a.o | 9 | |||
2523.2.a.p | 9 | |||
2523.2.a.q | 9 | |||
2523.2.a.r | 9 | |||
2523.2.a.s | 12 | |||
2523.2.a.t | 12 | |||
2523.2.a.u | 12 | |||
2523.2.a.v | 12 | |||
2523.2.c | \(\chi_{2523}(1681, \cdot)\) | n/a | 136 | 1 |
2523.2.f | \(\chi_{2523}(41, \cdot)\) | n/a | 488 | 2 |
2523.2.g | \(\chi_{2523}(190, \cdot)\) | n/a | 804 | 6 |
2523.2.i | \(\chi_{2523}(196, \cdot)\) | n/a | 816 | 6 |
2523.2.k | \(\chi_{2523}(14, \cdot)\) | n/a | 2928 | 12 |
2523.2.m | \(\chi_{2523}(88, \cdot)\) | n/a | 4088 | 28 |
2523.2.o | \(\chi_{2523}(28, \cdot)\) | n/a | 4032 | 28 |
2523.2.q | \(\chi_{2523}(17, \cdot)\) | n/a | 16128 | 56 |
2523.2.s | \(\chi_{2523}(7, \cdot)\) | n/a | 24528 | 168 |
2523.2.u | \(\chi_{2523}(4, \cdot)\) | n/a | 24192 | 168 |
2523.2.x | \(\chi_{2523}(2, \cdot)\) | n/a | 96768 | 336 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(2523))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(2523)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(29))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(87))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(841))\)\(^{\oplus 2}\)