# Properties

 Label 2520.2.bi.a Level $2520$ Weight $2$ Character orbit 2520.bi Analytic conductor $20.122$ Analytic rank $1$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$2520 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2520.bi (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$20.1223013094$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 280) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -\zeta_{6} q^{5} + ( -3 + \zeta_{6} ) q^{7} +O(q^{10})$$ $$q -\zeta_{6} q^{5} + ( -3 + \zeta_{6} ) q^{7} + ( 2 - 2 \zeta_{6} ) q^{11} + ( 4 - 4 \zeta_{6} ) q^{17} + 2 \zeta_{6} q^{19} + \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{25} -9 q^{29} + ( -4 + 4 \zeta_{6} ) q^{31} + ( 1 + 2 \zeta_{6} ) q^{35} -4 \zeta_{6} q^{37} - q^{41} + 9 q^{43} + ( 8 - 5 \zeta_{6} ) q^{49} + ( -10 + 10 \zeta_{6} ) q^{53} -2 q^{55} + ( -10 + 10 \zeta_{6} ) q^{59} -9 \zeta_{6} q^{61} + ( -5 + 5 \zeta_{6} ) q^{67} -14 q^{71} + ( -12 + 12 \zeta_{6} ) q^{73} + ( -4 + 6 \zeta_{6} ) q^{77} -14 \zeta_{6} q^{79} -11 q^{83} -4 q^{85} -15 \zeta_{6} q^{89} + ( 2 - 2 \zeta_{6} ) q^{95} -18 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - q^{5} - 5q^{7} + O(q^{10})$$ $$2q - q^{5} - 5q^{7} + 2q^{11} + 4q^{17} + 2q^{19} + q^{23} - q^{25} - 18q^{29} - 4q^{31} + 4q^{35} - 4q^{37} - 2q^{41} + 18q^{43} + 11q^{49} - 10q^{53} - 4q^{55} - 10q^{59} - 9q^{61} - 5q^{67} - 28q^{71} - 12q^{73} - 2q^{77} - 14q^{79} - 22q^{83} - 8q^{85} - 15q^{89} + 2q^{95} - 36q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2520\mathbb{Z}\right)^\times$$.

 $$n$$ $$281$$ $$631$$ $$1081$$ $$1261$$ $$2017$$ $$\chi(n)$$ $$1$$ $$1$$ $$-\zeta_{6}$$ $$1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
361.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 0 0 −0.500000 0.866025i 0 −2.50000 + 0.866025i 0 0 0
1801.1 0 0 0 −0.500000 + 0.866025i 0 −2.50000 0.866025i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2520.2.bi.a 2
3.b odd 2 1 280.2.q.a 2
7.c even 3 1 inner 2520.2.bi.a 2
12.b even 2 1 560.2.q.h 2
15.d odd 2 1 1400.2.q.e 2
15.e even 4 2 1400.2.bh.b 4
21.c even 2 1 1960.2.q.k 2
21.g even 6 1 1960.2.a.e 1
21.g even 6 1 1960.2.q.k 2
21.h odd 6 1 280.2.q.a 2
21.h odd 6 1 1960.2.a.i 1
84.j odd 6 1 3920.2.a.y 1
84.n even 6 1 560.2.q.h 2
84.n even 6 1 3920.2.a.m 1
105.o odd 6 1 1400.2.q.e 2
105.o odd 6 1 9800.2.a.r 1
105.p even 6 1 9800.2.a.bc 1
105.x even 12 2 1400.2.bh.b 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.q.a 2 3.b odd 2 1
280.2.q.a 2 21.h odd 6 1
560.2.q.h 2 12.b even 2 1
560.2.q.h 2 84.n even 6 1
1400.2.q.e 2 15.d odd 2 1
1400.2.q.e 2 105.o odd 6 1
1400.2.bh.b 4 15.e even 4 2
1400.2.bh.b 4 105.x even 12 2
1960.2.a.e 1 21.g even 6 1
1960.2.a.i 1 21.h odd 6 1
1960.2.q.k 2 21.c even 2 1
1960.2.q.k 2 21.g even 6 1
2520.2.bi.a 2 1.a even 1 1 trivial
2520.2.bi.a 2 7.c even 3 1 inner
3920.2.a.m 1 84.n even 6 1
3920.2.a.y 1 84.j odd 6 1
9800.2.a.r 1 105.o odd 6 1
9800.2.a.bc 1 105.p even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2520, [\chi])$$:

 $$T_{11}^{2} - 2 T_{11} + 4$$ $$T_{13}$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2}$$
$5$ $$1 + T + T^{2}$$
$7$ $$7 + 5 T + T^{2}$$
$11$ $$4 - 2 T + T^{2}$$
$13$ $$T^{2}$$
$17$ $$16 - 4 T + T^{2}$$
$19$ $$4 - 2 T + T^{2}$$
$23$ $$1 - T + T^{2}$$
$29$ $$( 9 + T )^{2}$$
$31$ $$16 + 4 T + T^{2}$$
$37$ $$16 + 4 T + T^{2}$$
$41$ $$( 1 + T )^{2}$$
$43$ $$( -9 + T )^{2}$$
$47$ $$T^{2}$$
$53$ $$100 + 10 T + T^{2}$$
$59$ $$100 + 10 T + T^{2}$$
$61$ $$81 + 9 T + T^{2}$$
$67$ $$25 + 5 T + T^{2}$$
$71$ $$( 14 + T )^{2}$$
$73$ $$144 + 12 T + T^{2}$$
$79$ $$196 + 14 T + T^{2}$$
$83$ $$( 11 + T )^{2}$$
$89$ $$225 + 15 T + T^{2}$$
$97$ $$( 18 + T )^{2}$$