Properties

Label 280.2.q.a
Level $280$
Weight $2$
Character orbit 280.q
Analytic conductor $2.236$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [280,2,Mod(81,280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(280, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("280.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 280.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.23581125660\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{3} + \zeta_{6} q^{5} + (\zeta_{6} - 3) q^{7} + 2 \zeta_{6} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{6} - 1) q^{3} + \zeta_{6} q^{5} + (\zeta_{6} - 3) q^{7} + 2 \zeta_{6} q^{9} + (2 \zeta_{6} - 2) q^{11} - q^{15} + (4 \zeta_{6} - 4) q^{17} + 2 \zeta_{6} q^{19} + ( - 3 \zeta_{6} + 2) q^{21} - \zeta_{6} q^{23} + (\zeta_{6} - 1) q^{25} - 5 q^{27} + 9 q^{29} + (4 \zeta_{6} - 4) q^{31} - 2 \zeta_{6} q^{33} + ( - 2 \zeta_{6} - 1) q^{35} - 4 \zeta_{6} q^{37} + q^{41} + 9 q^{43} + (2 \zeta_{6} - 2) q^{45} + ( - 5 \zeta_{6} + 8) q^{49} - 4 \zeta_{6} q^{51} + ( - 10 \zeta_{6} + 10) q^{53} - 2 q^{55} - 2 q^{57} + ( - 10 \zeta_{6} + 10) q^{59} - 9 \zeta_{6} q^{61} + ( - 4 \zeta_{6} - 2) q^{63} + (5 \zeta_{6} - 5) q^{67} + q^{69} + 14 q^{71} + (12 \zeta_{6} - 12) q^{73} - \zeta_{6} q^{75} + ( - 6 \zeta_{6} + 4) q^{77} - 14 \zeta_{6} q^{79} + (\zeta_{6} - 1) q^{81} + 11 q^{83} - 4 q^{85} + (9 \zeta_{6} - 9) q^{87} + 15 \zeta_{6} q^{89} - 4 \zeta_{6} q^{93} + (2 \zeta_{6} - 2) q^{95} - 18 q^{97} - 4 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + q^{5} - 5 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} + q^{5} - 5 q^{7} + 2 q^{9} - 2 q^{11} - 2 q^{15} - 4 q^{17} + 2 q^{19} + q^{21} - q^{23} - q^{25} - 10 q^{27} + 18 q^{29} - 4 q^{31} - 2 q^{33} - 4 q^{35} - 4 q^{37} + 2 q^{41} + 18 q^{43} - 2 q^{45} + 11 q^{49} - 4 q^{51} + 10 q^{53} - 4 q^{55} - 4 q^{57} + 10 q^{59} - 9 q^{61} - 8 q^{63} - 5 q^{67} + 2 q^{69} + 28 q^{71} - 12 q^{73} - q^{75} + 2 q^{77} - 14 q^{79} - q^{81} + 22 q^{83} - 8 q^{85} - 9 q^{87} + 15 q^{89} - 4 q^{93} - 2 q^{95} - 36 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
81.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 −2.50000 + 0.866025i 0 1.00000 + 1.73205i 0
121.1 0 −0.500000 0.866025i 0 0.500000 0.866025i 0 −2.50000 0.866025i 0 1.00000 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 280.2.q.a 2
3.b odd 2 1 2520.2.bi.a 2
4.b odd 2 1 560.2.q.h 2
5.b even 2 1 1400.2.q.e 2
5.c odd 4 2 1400.2.bh.b 4
7.b odd 2 1 1960.2.q.k 2
7.c even 3 1 inner 280.2.q.a 2
7.c even 3 1 1960.2.a.i 1
7.d odd 6 1 1960.2.a.e 1
7.d odd 6 1 1960.2.q.k 2
21.h odd 6 1 2520.2.bi.a 2
28.f even 6 1 3920.2.a.y 1
28.g odd 6 1 560.2.q.h 2
28.g odd 6 1 3920.2.a.m 1
35.i odd 6 1 9800.2.a.bc 1
35.j even 6 1 1400.2.q.e 2
35.j even 6 1 9800.2.a.r 1
35.l odd 12 2 1400.2.bh.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.q.a 2 1.a even 1 1 trivial
280.2.q.a 2 7.c even 3 1 inner
560.2.q.h 2 4.b odd 2 1
560.2.q.h 2 28.g odd 6 1
1400.2.q.e 2 5.b even 2 1
1400.2.q.e 2 35.j even 6 1
1400.2.bh.b 4 5.c odd 4 2
1400.2.bh.b 4 35.l odd 12 2
1960.2.a.e 1 7.d odd 6 1
1960.2.a.i 1 7.c even 3 1
1960.2.q.k 2 7.b odd 2 1
1960.2.q.k 2 7.d odd 6 1
2520.2.bi.a 2 3.b odd 2 1
2520.2.bi.a 2 21.h odd 6 1
3920.2.a.m 1 28.g odd 6 1
3920.2.a.y 1 28.f even 6 1
9800.2.a.r 1 35.j even 6 1
9800.2.a.bc 1 35.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + T_{3} + 1 \) acting on \(S_{2}^{\mathrm{new}}(280, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} + 5T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$19$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$23$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$29$ \( (T - 9)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$37$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$41$ \( (T - 1)^{2} \) Copy content Toggle raw display
$43$ \( (T - 9)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$59$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$61$ \( T^{2} + 9T + 81 \) Copy content Toggle raw display
$67$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$71$ \( (T - 14)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$79$ \( T^{2} + 14T + 196 \) Copy content Toggle raw display
$83$ \( (T - 11)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 15T + 225 \) Copy content Toggle raw display
$97$ \( (T + 18)^{2} \) Copy content Toggle raw display
show more
show less